
15-740/18-740  
Computer Architecture 

Lecture 22: Superscalar Processing (II) 

Prof. Onur Mutlu 
Carnegie Mellon University 



Announcements 
  Project Milestone 2 

  Due Today 

  Homework 4 
  Out today 
  Due November 15 

  Midterm II 
  November 22 

  Project Poster Session 
  December 9 or 10 

2 



Readings 
  Required (New): 

  Patel et al., “Evaluation of design options for the trace cache fetch 
mechanism,” IEEE TC 1999.  

  Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997. 

  Required (Old): 
  Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. 

IEEE, Dec. 1995. 
  Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000. 
  Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology 

Journal, 2001. 
  Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.  

  Recommended: 
  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth 

Instruction Fetching,” MICRO 1996. 

3 



Superscalar Processing 
  Fetch (supply N instructions) 
  Decode (generate control signals for N instructions) 
  Rename (detect dependencies between N instructions) 
  Dispatch (determine readiness and select N instructions to 

execute in-order or out-of-order) 
  Execute (have enough functional units to execute N 

instructions + forwarding paths to forward results of N 
instructions) 

  Write into Register File (have enough ports to write results 
of N instructions) 

  Retire (N instructions) 

4 



Last Lecture 
  Superscalar processing 

  Fetch issues: alignment and fetch breaks 
  Solutions to fetching N instructions at a time 

  Split line fetch 
  Basic block reordering 
  Superblock 
  Trace cache 

5 



Techniques to Reduce Fetch Breaks 
  Compiler 

  Code reordering (basic block reordering) 
  Superblock 

  Hardware 
  Trace cache 

  Hardware/software cooperative 
  Block structured ISA 

6 



Reducing Fetch Breaks: Trace Cache 
  Dynamically determine the basic blocks that are executed consecutively 
  Trace: Consecutively executed basic blocks 
  Idea: Store consecutively-executed basic blocks in physically-contiguous 

internal storage (called trace cache) 

  Basic trace cache operation: 
  Fetch from consecutively-stored basic blocks (predict next trace or branches) 
  Verify the executed branch directions with the stored ones 
  If mismatch, flush the remaining portion of the trace 

  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction 
Fetching,” MICRO 1996. 

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997. 

7 



An Example Trace Cache Based Processor  

  From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar 
Processors,” University of Michigan, 1999.  

8 



Multiple Branch Predictor 
  S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD 

Thesis, University of Michigan, 1999.  

9 



Trace Cache Design Issues (II)  
  Should entire “path” match for a trace cache hit? 
  Partial matching: A piece of a trace is supplied based on branch prediction 
+ Increases hit rate when there is not a full path match 
-- Lengthens critical path (next fetch address dependent on the match) 

10 



Trace Cache Design Issues (III) 
  Path associativity: Multiple traces starting at the same address can be present 

in the cache at the same time. 
+ Good for traces with unbiased branches (e.g., ping pong between C and D) 
-- Need to determine longest matching path 
-- Increased cache pressure 

11 



  Inactive issue: All blocks within a trace 
cache line are issued even if they do not 
match the predicted path 

 + Reduces impact of branch mispredictions 
 + Reduces basic block duplication in trace cache 
 -- Slightly more complex scheduling/branch 
resolution 

     -- Some instructions not dispatched/flushed 

Trace Cache Design Issues (IV) 

12 

Z 

Z 

Z 



Trace Cache Design Issues (V) 
  Branch promotion: promote highly-biased branches to branches 

with static prediction 
    + Larger traces 
    + No need for consuming 
       branch predictor BW 
    + Can enable optimizations 
       within trace 
    -- Requires hardware to 
       determine highly-biased 
       branches 

13 



How to Determine Biased Branches  

14 



Effect on Fetch Rate 

15 



Effect on IPC (16-wide superscalar) 

  ~15% IPC increase over “sequential I-cache” that breaks fetch on a 
predicted-taken branch 

16 



Fill Unit Optimizations 
  Fill unit constructs traces out of decoded instructions 
  Can perform optimizations across basic blocks 

  Branch promotion: promote highly-biased branches to 
branches with static prediction 

  Can treat the whole trace as an atomic execution unit 
  All or none of the trace is retired (based on branch directions in trace) 
  Enables many optimizations across blocks 

  Dead code elimination 
  Instruction reordering 
  Reassociation 

  Friendly et al., “Putting the Fill Unit to Work: Dynamic Optimizations for 
Trace Cache Microprocessors,”  MICRO 1998. 

17 



Remember This Optimization? 

18 

opA: mul r1<-r2,3 

opC: mul r3<-r2,3 

opB: add r2<-r2,1 99 

1 

1 

Original Code 

opA: mul r1<-r2,3 

opC: mul r3<-r2,3 

opB: add r2<-r2,1 99 

1 

Part of Trace in Fill Unit 

opC’: mul r3<-r2,3 

opA: mul r1<-r2,3 

opC: mov r3<-r1 

opB: add r2<-r2,1 99 

1 

Optimized Trace 

opC’: mul r3<-r2,3 



Redundancy in the Trace Cache 
  ABC, BCA, CAB can all be in 
    the trace cache 
  Leads to contention and reduced  
    hit rate 

  One possible solution: Block based trace cache 
  Idea: Decouple storage of basic blocks from their “names” 

  Store traces of pointers to basic blocks rather than traces of basic 
blocks themselves 

  Basic blocks stored in a separate “block table” 
+ Reduces redundancy of basic blocks 
-- Lengthens fetch cycle (indirection needed to access blocks) 
-- Block table needs to be multiported to obtain multiple blocks per cycle 

19 



Enhanced I-Cache vs. Trace Cache (I) 

20 

1. Next trace prediction 
2. Trace cache fetch 

Trace Cache 
Enhanced 

Instruction Cache 

Fetch 

Completion 

1. Multiple-branch prediction 
2. Instruction cache fetch from 
    multiple blocks (N ports) 
3. Instruction alignment &  
    collapsing 

1. Multiple-branch predictor  
    update 

1. Trace construction and fill 
2. Trace predictor update 



Enhanced I-Cache vs. Trace Cache (II) 

21 



Frontend vs. Backend Complexity 
  Backend is not on the critical path of instruction execution 

  Easier to increase its latency without affecting performance 

  Frontend is on the critical path 
  Increased latency fetch directly increases 

  Branch misprediction penalty 

  Increased complexity can affect cycle time 

22 



Pentium 4 Trace Cache 
  A 12K-uop trace cache replaces the L1 I-cache 
  Trace cache stores decoded and cracked instructions 

  Micro-operations (uops): returns 6 uops every other cycle 

  x86 decoder can be simpler and slower 
  A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized 

Around Trace Segments Independent of Virtual Address Line", United States 
Patent No. 5,381,533, Jan 10, 1995  

23 

Front End BTB 
4K Entries 

ITLB & 
Prefetcher L2 Interface 

x86 Decoder 

Trace Cache 
12K uop’s 

Trace Cache BTB 
512 Entries 



Techniques to Reduce Fetch Breaks 
  Compiler 

  Code reordering (basic block reordering) 
  Superblock 

  Hardware 
  Trace cache 

  Hardware/software cooperative 
  Block structured ISA 

24 



Block Structured ISA 
  Blocks (> instructions) are atomic (all-or-none) operations 

  Either all of the block is committed or none of it 

  Compiler enlarges blocks by combining basic blocks with 
their control flow successors 
  Branches within the enlarged block converted to “fault” 

operations  if the fault operation evaluates to true, the block 
is discarded and the target of fault is fetched   

25 



Block Structured ISA (II) 
  Advantages: 

+ Larger blocks  larger units can be fetched from I-cache 
+ Aggressive compiler optimizations (e.g. reordering) can be enabled 

within atomic blocks 
+ Can explicitly represent dependencies among operations within an 

enlarged block 

  Disadvantages: 
-- “Fault operations” can lead to work to be wasted (atomicity) 
-- Code bloat (multiple copies of the same basic block exists in the binary 

and possibly in I-cache) 
   -- Need to predict which enlarged block comes next 

  Optimizations 
  Within an enlarged block, the compiler can perform optimizations that 

cannot normally be performed across basic blocks 
26 



Block Structured ISA (III) 
  Hao et al., “Increasing the instruction fetch rate via block-

structured instruction set architectures,” MICRO 1996. 

27 



Superblock vs. BS-ISA 
  Superblock 

  Single-entry, multiple exit code block  
  Not atomic 
  Compiler inserts fix-up code on superblock side exit 

  BS-ISA blocks 
  Single-entry, single exit 
  Atomic 

28 



Superblock vs. BS-ISA 
  Superblock  

 + No ISA support needed 
 -- Optimizes for only 1 frequently executed path 
     -- Not good if dynamic path deviates from profiled path  missed     

 opportunity to optimize another path 

  Block Structured ISA 
+ Enables optimization of multiple paths and their dynamic selection.  
+ Dynamic prediction to choose the next enlarged block. Can 

dynamically adapt to changes in frequently executed paths at run-
time 

+ Atomicity can enable more aggressive code optimization 
-- Code bloat becomes severe as more blocks are combined 
-- Requires “next enlarged block” prediction, ISA+HW support 
-- More wasted work on “fault” due to atomicity requirement 

29 



Superscalar Processing 
  Fetch (supply N instructions) 
  Decode (generate control signals for N instructions) 
  Rename (detect dependencies between N instructions) 
  Dispatch (determine readiness and select N instructions to 

execute in-order or out-of-order) 
  Execute (have enough functional units to execute N 

instructions + forwarding paths to forward results of N 
instructions) 

  Write into Register File (have enough ports to write results 
of N instructions) 

  Retire (N instructions) 

30 



Decoding Multiple Instructions Per Cycle 
  Fixed length instructions 

  Relatively easy: each instruction can be decoded 
independently 

  Variable length instructions 
  Instruction boundaries not known before decode 

  Later instructions’ decode dependent on earlier ones in the same 
cycle 

-- Increases decoder latency 

  Two techniques ease decoding (especially variable-length 
instructions) 
  Pre-decoding 
  Decoded I-cache (or trace cache) 

31 



Pre-decoding 

  Instruction pre-decoding: 
  Store information on instruction boundaries in the I-cache 

  Before inserting instruction into I-cache, pre-decode 

  Mark start/end bytes of instructions 
  This information used to convey the correct instruction bytes to 

the parallel decoders 
  Implemented in AMD K5 

  What other pre-decode information can be useful? 
  Branch or not 
  Type of branch 
  Usually anything that 1) can ease decode 2) can reduce the 

latency of predicting the next fetch address (for the next cycle) 

32 



AMD K5 Pre-decode 

33 



Pre-decoded I-Cache 
  Advantages: 

+ Simplifies variable length decode 
+ Could reduce decode pipeline depth 
    + Partial decoding done on cache fill 
+ Could reduce next fetch address calculation latency 

 (can be the critical path in many designs) 

  Disadvantages: 
-- Increases I-cache fill latency 
-- Reduces I-cache storage efficiency 

34 



Decode Cache 
  Decode cache 

  Idea: Store decoded instructions in a separate cache 
  Access decode cache and I-cache in parallel or series 
  If decode cache miss, decode instructions (perhaps serially) and 

insert into decode cache 
  Next time, decode cache hit: no need to decode multiple instructions 

  Pentium 4 works similarly with its trace cache 
  Trace cache miss: Decode only 1 x86 instruction per cycle 
  Trace cache hit: Supplies 3 micro-instructions per cycle 

+ Eases parallel decode of variable length instructions 
+ Eliminates decoding from critical path (decode cache hit) 
+ Can reduce energy consumption (less decoding) 
-- Increases front-end complexity  

35 



CISC to RISC Translation (I) 
  Complex instructions harder to implement in hardware 

  More costly to implement, require multiple resources (e.g., 
memory and functional units), dependency checks in OoO 
execution become more complex 

  Simple instructions easier to pipeline, implement, and 
optimize for 

  Can we get the “simplicity” benefits of a simple ISA while 
executing a complex one? 

  Idea: Decoder dynamically translates complex instructions 
into simple ones 
  Called instruction cracking into micro-operations (uops) 

  Uops not visible to software 

36 



Complex to Simple Translation (II) 
  Two methods for cracking 

  Hardware combinational logic 
  Decoder translates a complex instruction into multiple simple ones 

  Microsequencer and microcode ROM 
  Microsequencer sequences through simple instructions stored in 

Microcode ROM 

  Pentium 4 employs both 
  A complex instruction that requires >4 uops is translated by the 

Microcode ROM (e.g., REP MOVS) 
  A complex instruction <= 4 uops ins inserted into the trace 

cache (cracked and decoded) after the x86 decoder handles it 

37 



Microsequencing 

38 



Pentium 4 Decoders 

39 



Pentium Pro Decoders (I) 
  No trace or decode 

cache 
  3 parallel decoders 

  1 complex (max 4 
uops) 

  2 simple (max 1 uop) 
  Up to 6 uops 

  Microsequencer 
  > 4 uop instructions 
  4 uops/cycle 

  Decoding consumes 3 
cycles 

40 



Pentium Pro Decoders (II) 

41 



AMD K6 Decoders 
  2 full x86 

decoders 

  Up to 4 uops 

42 



Instruction Buffering 
  Decouples one pipeline stage from another 

  E.g., buffering between fetch and decode 
  Sometimes decode can take too long or stalls 

  Microsequenced instructions 
  Insufficient decoder strength (simple decoder and complex 

instruction) 
  Backend stalls (e.g. full window stall) 

+ Fetch can continue filling the buffer when decode stalls 
+ When fetch stalls, the decoder will be supplied instructions 

from the buffer 
-- Extra complexity and buffer 

43 


