15-740/18-740
Computer Architecture
Lecture 22: Superscalar Processing (11)

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

Project Milestone 2
o Due Today

Homework 4

o Out today
o Due November 15

Midterm II
o November 22

Project Poster Session
o December 9 or 10

Readings

Required (New):

o Patel et al., “Evaluation of design options for the trace cache fetch
mechanism,” IEEE TC 1999.

o Palacharla et al., "Complexity Effective Superscalar Processors,” ISCA 1997.

Required (OId):

o Smith and Sohi, “"The Microarchitecture of Superscalar Processors,” Proc.
IEEE, Dec. 1995.

o Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.

o Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology
Journal, 2001.

o Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.

Recommended:

o Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth
Instruction Fetching,” MICRO 1996.

Superscalar Processing

Fetch (supply N instructions)
Decode (generate control signals for N instructions)
Rename (detect dependencies between N instructions)

Dispatch (determine readiness and select N instructions to
execute in-order or out-of-order)

Execute (have enough functional units to execute N
instructions + forwarding paths to forward results of N
instructions)

Write into Register File (have enough ports to write results
of N instructions)

Retire (N instructions)

l.ast Lecture

Superscalar processing
o Fetch issues: alignment and fetch breaks
o Solutions to fetching N instructions at a time
Split line fetch
Basic block reordering
Superblock
Trace cache

Techniques to Reduce Fetch Breaks

Compiler

o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA

Reducing Fetch Breaks: Trace Cache

Dynamically determine the basic blocks that are executed consecutively
Trace: Consecutively executed basic blocks

Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

fime —»

Dynamic Instruction Stream

Basic trace cache operation:

o Fetch from consecutively-stored basic blocks (predict next trace or branches)
o Verify the executed branch directions with the stored ones

o If mismatch, flush the remaining portion of the trace

Rotenberg et al., "Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

Patel et al., "Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
7

An Example Trace Cache Based Processor

e 3
1 () Fetch Address ‘f ()
Fill Instruction |<—
Unit ~ Trace Cache Cache Level 2
Multiple Instruction
Branch Cach
)) Predictor ache
A Align/Merge
(Selection Logic j«L
| | |
Next Fetch Address

1

l ’ ’
[Register Rename] Level 2
Data
Y Cache
Execution Core J——-
- J
- S

= From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

Multiple Branch Predictor

= S. Patel, "Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

Fetch Address Pattern
History

@ Table

Global History

Three 2-bit counters .

prediction for 18t branch J
prediction for 2nd branch
prediction for Srd branch

Trace Cache Design Issues (1I)

Should entire “path” match for a trace cache hit?

Partial matching: A piece of a trace is supplied based on branch prediction
+ Increases hit rate when there is not a full path match
-- Lengthens critical path (next fetch address dependent on the match)

’ Address of A | /;\
\{;
(8)
Trace Cache - -
t/ D | C\I
' NN AN
A [&8 | ¢ | (
Multiple Predicted path: ABC
Branch Fetched segment: ABD
Predictor
No partial matching: miss
Partial Matching: AB
Predictions
'
{ Selection Logic]A TINTIT
A | &8 |

Figure 6.1: The trace cache and branch predictor are indexed with the ad-
dress of block A. The inset figure shows the control flow from
block A. The predictor selects the sequence ABD. The trace
cache only contains ABC. AB is supplied.

10

Trace Cache Design Issues (I11)

Path associativity: Multiple traces starting at the same address can be present
in the cache at the same time.

+ Good for traces with unbiased branches (e.g., ping pong between C and D)
-- Need to determine longest matching path
-- Increased cache pressure

{ A\I

p
\ﬂ/i
= ~
\

\2/ \C

Trace Cache set Trace Cache

{ Multiple
B > Branch
{ Predictor

) . | nmamT
path selection logic |‘

LA |l 8] o |

11

Trace Cache Design Issues (IV)

Predicted path: ABC
Fetched segment: AB] Z

No partial matching: miss
Partial matching: AB
Inactive Issue: AB (active) Z ctive)

Instruction Window

Inactive issue: All blocks within a trace
cache line are issued even if they do not
match the predicted path

+ Reduces impact of branch mispredictions
+ Reduces basic block duplication in trace cache

-- Slightly more complex scheduling/branch
resolution

-- Some instructions not dispatched/flushed

H W

F G X
E Y
C

A B y A

12

Trace Cache Design Issues (V)

Branch promotion: promote highly-biased branches to branches
with static prediction

+ La rg e r tra Ces Without Branch Promotion

+ No need for consuming (4) 4
branch predictor BW [- | @)

+ Can enable optimizations © e
within trace

-- Requires hardware to (4) 4
determine highly-biased - = B @) e

branches .@

How to Determine Biased Branches

Branch Blas Table

Branch Address
> dir n-bit saturating counter
i D—' Promote
Y
Previous outcome # Consecutive occurrences

Figure 6.19: Diagram of the branch bias table.

14

Effect on Fetch Rate

16 —
157 19% 22%
14 7l4% 38% 44% § o 59%
0 - 0
54% 550 49%
26%
14%
j<*]
]
<
o
= = Enhanced TC.ic
> = Baseline TC.ic
= = Sequential IC
2_
1_
O_
comp gcc go 1jpeg It m88k perl vor gs pgp plot ss
Benchmarks

15

FEttect on IPC (16-wide superscalar)

Instructions Per Cycle

9
_ .
i 5 o]
- - “;: 5
1_
o
- . _ . ch gs PP plot
comp gce go 1jpeg i m88k perl vor N i
SPEC Benchmarks UNIX Benchmarks
Configuration | TCache | ICache Blocks Br Pred | BTB
Name Size Size per Fetch Type Size
TCe T 128KB KB 3 Multiple | 1KB
TC1C GAKB GIKB 3 Multiple | 8KB
telC IKB 128K B 3 Multiple | 16KB
Single [28KB l Hybrid | 20KB
Sequential [28KB 3 Multiple | 16KB

~15% IPC increase over “sequential I-cache” that breaks fetch on a

predicted-taken branch

s

= TCic

o TCIC

= te IC

= Single IC

= Sequential IC

16

Fill Unit Optimizations

Fill unit constructs traces out of decoded instructions

Can perform optimizations across basic blocks
o Branch promotion: promote highly-biased branches to
branches with static prediction

o Can treat the whole trace as an atomic execution unit
All or none of the trace is retired (based on branch directions in trace)
Enables many optimizations across blocks

o Dead code elimination

o Instruction reordering

o Reassociation ADDIRx + Ry + 4 ADDIRx «— Ry + 4
—>

ADDIRz +~ Rx + 4 ADDIRz + Ry + 8

Friendly et al., "Putting the Fill Unit to Work: Dynamic Optimizations for
Trace Cache Microprocessors,” MICRO 1998.

17

Remember This Optimization?

opA: mul r1<-r2,3

99

/

w‘

opB: add r2<-r2,1

opC: mul r3<-r2,3

1

Original Code

99

A 4

opC: mov r3<-r1

opA: mul r1<-r2,3

99

y

opC: mul r3<-r2,3

opA: mul r1<-r2,3

Optimized Trace

18

Redundancy in the Trace Cache

ABC, BCA, CAB can all be in .r-\/,;{ .
the trace cache 7
Leads to contention and reduced (;) 5 instructions
hit rate | /[\
| \ €) enstructions
~

One possible solution: Block based trace cache
Idea: Decouple storage of basic blocks from their “names”

o Store traces of pointers to basic blocks rather than traces of basic
blocks themselves

o Basic blocks stored in a separate “block table”
+ Reduces redundancy of basic blocks
-- Lengthens fetch cycle (indirection needed to access blocks)

-- Block table needs to be multiported to obtain multiple blocks per cycle
19

Enhanced I-Cache vs. Trace Cache (I)

Enhanced
Instruction Cache Trace Cache

—_—

. Multiple-branch prediction 1. Next trace prediction
2. Instruction cache fetch from 2. Trace cache fetch
Fetch multiple blocks (N ports)
3. Instruction alignment &
collapsing

~~~~~~~~ S b At

Execution Core Execution Core

___________ — T

1. Multiple-branch predictor 1. Trace construction and fill
update 2. Trace predictor update

Completion

20



Enhanced I-Cache vs. Trace Cache (1I)

Trace cache:

Pros — Moves complexity to backend (fill unit))
Cons — Inefficient instruction storage (redundancy)

<+—— |nstruction storage redundancy

Fetch time complexity ———»

Enhanced instruction cache:

Pros — Efficient instruction storage
Cons — Very complex and costly fetch engine

21



Frontend vs. Backend Complexity

Backend is not on the critical path of instruction execution
o Easier to increase its latency without affecting performance

Frontend is on the critical path

o Increased latency fetch directly increases
Branch misprediction penalty

o Increased complexity can affect cycle time

22



Pentium 4 Trace Cache

A 12K-uop trace cache replaces the L1 I-cache

Trace cache stores decoded and cracked instructions

o Micro-operations (uops): returns 6 uops every other cycle
x86 decoder can be simpler and slower

A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized
Around Trace Segments Independent of Virtual Address Line", United States

Patent No. 5,381,533, Jan 10, 1995

\ 4

\ 4




Techniques to Reduce Fetch Breaks

Compiler

o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA

24



Block Structured ISA

Blocks (> instructions) are atomic (all-or-none) operations
o Either all of the block is committed or none of it

Compiler enlarges blocks by combining basic blocks with
their control flow successors

o Branches within the enlarged block converted to “fault”
operations = if the fault operation evaluates to true, the block
is discarded and the target of fault is fetched

A A
al N *2 aibi a2
alb2
B /X\ |
b1 /\Ea E >
| b2/ \b1
c D BC BD E
AT T ™
cl c2 dl d2 el e2

A\ T A

cl c2 di d2 el e2

25



Block Structured ISA (IT)

Advantages:
+ Larger blocks - larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled
within atomic blocks

+ Can explicitly represent dependencies among operations within an
enlarged block

Disadvantages:
-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary
and possibly in I-cache)

-- Need to predict which enlarged block comes next

Optimizations

o Within an enlarged block, the compiler can perform optimizations that
cannot normally be performed across basic blocks

26



Block Structured ISA (I11)

Hao et al., “"Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.

161 == Conventional ISA
== Conventional ISA == Block-Structured ISA
= Block-Structured ISA

~J oo
o O
I !

12 1

$8 588
Block Size

o0

1

Execution Time
(Millions of cycles)

S
1

o
|

gcc comp go ijpeg li m88k perl vortex gcc comp go ijpeg |t m88k perl vortex
Benchmark Benchmark

Figure 3. Performance comparison of block- Figure 5. Average block sizes for block-

structured ISA executables and conventional structured and conventional ISA executables.
ISA executables.

27



Superblock vs. BS-ISA

Superblock

o Single-entry, multiple exit code block
o Not atomic

o Compiler inserts fix-up code on superblock side exit

BS-ISA blocks
o Single-entry, single exit
o Atomic

28



Superblock vs. BS-ISA

Superblock
+ No ISA support needed
-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path - missed
opportunity to optimize another path

Block Structured ISA
+ Enables optimization of multiple paths and their dynamic selection.

+ Dynamic prediction to choose the next enlarged block. Can
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
29



Superscalar Processing

Fetch (supply N instructions)
Decode (generate control signals for N instructions)
Rename (detect dependencies between N instructions)

Dispatch (determine readiness and select N instructions to
execute in-order or out-of-order)

Execute (have enough functional units to execute N
instructions + forwarding paths to forward results of N
instructions)

Write into Register File (have enough ports to write results
of N instructions)

Retire (N instructions)

30



Decoding Multiple Instructions Per Cycle

Fixed length instructions

o Relatively easy: each instruction can be decoded
independently

Variable length instructions

o Instruction boundaries not known before decode

Later instructions’ decode dependent on earlier ones in the same
cycle

-- Increases decoder latency

Two techniques ease decoding (especially variable-length
instructions)

o Pre-decoding

o Decoded I-cache (or trace cache)
31



Pre-decoding

Instruction pre-decoding:

o Store information on instruction boundaries in the I-cache
Before inserting instruction into I-cache, pre-decode

o Mark start/end bytes of instructions

o This information used to convey the correct instruction bytes to
the parallel decoders

o Implemented in AMD K5

What other pre-decode information can be useful?
o Branch or not
o Type of branch

o Usually anything that 1) can ease decode 2) can reduce the
latency of predicting the next fetch address (for the next cycle)

32



AMD K5 Pre-decode

pre-

W

W

decode

\

A T

reservation
stations

functional units
and
data cache

A T

8

Wl

L) (8 o 0 o

nstr. : byte [ tROI;t
ranslate
cache [—={ queue | .
| q | _| &dispatch
register
file

PR

\

'\

/[

memory

interface

N /qL: \1/

re-order buffer

33



Pre-decoded I-Cache

Advantages:

+ Simplifies variable length decode

+ Could reduce decode pipeline depth
+ Partial decoding done on cache fill

+ Could reduce next fetch address calculation latency
(can be the critical path in many designs)

Disadvantages:
-- Increases I-cache fill latency
-- Reduces I-cache storage efficiency

34



Decode Cache

Decode cache
o Idea: Store decoded instructions in a separate cache

o Access decode cache and I-cache in parallel or series

o If decode cache miss, decode instructions (perhaps serially) and
insert into decode cache

o Next time, decode cache hit: no need to decode multiple instructions

Pentium 4 works similarly with its trace cache
0 Trace cache miss: Decode only 1 x86 instruction per cycle
0 Trace cache hit: Supplies 3 micro-instructions per cycle

+ Eases parallel decode of variable length instructions
+ Eliminates decoding from critical path (decode cache hit)

+ Can reduce energy consumption (less decoding)
-- Increases front-end complexity

35



CISC to RISC Translation (1)

Complex instructions harder to implement in hardware

o More costly to implement, require multiple resources (e.g.,
memory and functional units), dependency checks in Oo0
execution become more complex

Simple instructions easier to pipeline, implement, and

optimize for

Can we get the “simplicity” benefits of a simple ISA while
executing a complex one?

Idea: Decoder dynamically translates complex instructions
into simple ones

o Called instruction cracking into micro-operations (uops)
Uops not visible to software

36



Complex to Simple Translation (II)

Two methods for cracking
o Hardware combinational logic

Decoder translates a complex instruction into multiple simple ones
o Microsequencer and microcode ROM

Microsequencer sequences through simple instructions stored in
Microcode ROM

Pentium 4 employs both

o A complex instruction that requires >4 uops is translated by the
Microcode ROM (e.g., REP MOVS)

o A complex instruction <= 4 uops ins inserted into the trace
cache (cracked and decoded) after the x86 decoder handles it

37



Microsequencing

Microcode Instruction Pointer

Requests from

Decoders CONTROL
Control to stop «— LOGIC
Decoders f
Micro-op
Decode
and
Predictor

o

MICROCODE
ROM

Multiple Micro-Ops

Yyvyvy

Released directly to output queue

38



Pentium 4 Decoders

Front-End BTB o
(4K Entries) S

Instruction
TLB/Prefetcher

< 64-bits wide

S@m

L1 Data Cache (8Kbyte 4-way)

K 256 bits ’

Instruction Decoder Microcode
ROM
Trace Cach_.e BTB Trace Cache > on Queus Quad
(512 Entries) (12K pops)
Pumped
_
| Allocator / Register Renamer | 3.2 GBI/s
| Memory uop Queue | | Integer/Floating Point uop Queue | Bus
A A
[ Memory Scheduler | [ Fast | [ Slow/General FP Scheduler | [Simple FP | Interf_ace
] Unit
\ 4 \ 4 ; $ :
| Integer Register File / Bypass Network [« FP Register / Bypass | i i
‘ ‘ L 3 A ‘ ‘ A ‘ \ A I A
AGU AGU 2x ALU ||| 2x ALu || | stow ALU FP L2 Cache
MMX FP (256K Byte
Load Store Simple Simple Complex SSE Move 8-wa )
Address | | Address Instr. Instr. Instr. SSE2 y
] ] L
| | — 48GB/s

39



Pentium Pro Decoders (I)

qumbagany [ mom No trace or decode
f coeen cache

| Bus Interface Unit E

‘ o 3 llel decod
Next IP
l Instruction Fetch Unit i Instruction Cache (L1) }.—b E,:m pa ra e eco ers
; oo
Instruction Decoder Lal;?ert Buffer D 1 Com pIeX (maX 4
Simple Simple Complex utte ’
Instuction Instuction Instuction
Decoder Decodler Dezoder » Microcode Fr u O pS)
T T T 1T Instruction Intdher
¢ l ‘ l Sequencer Uit .
| | o 2 simple (max 1 uop)
o T Retirement
etirement Unit R Fi Data Cach
e || o Up to 6 uops
Reorder Buffer (Instruction Pool) Registers)

e Microsequencer

' . .
o > 4 uop instructions

SIMD FP Floating- Inteqer Integer Memory
Unit Point Unit Ue,?,‘ Un?te Interface
(FPU) (FPU) Unit a 4 uopS/ CYCIe

Internal Data-Results Buses

el e el e e e W Decoding consumes 3

1 2
Decode | Decode | Decode | Rename | ROB Rd | Rdy/Sch|Dispatch| Exec CYCIES

Fetch Fetch

40



Pentium Pro Decoders (11)

i x86 instruction bytes

Length Decoder

i marked x86 bytes

Input Buffer

#

Instruction Steering Logic

'

#

¢ x86 instructions

DECODER

DECODER

DECODER

m

|

l MicroOps

Output Queue

Yvvy

MicroOps

41



AMD K6 Decoders

Prefetch
Predecode

X86 Byte Queue

Instruction Cache

¢

|

MICRO CODE
ROM

Scanner
Decoder Decoder Decoder Decoder
|~— |
| [ | |

Finished Micro Ops

2 full x86
decoders

Up to 4 uops

42



Instruction Buttering

Decouples one pipeline stage from another

E.g., buffering between fetch and decode

o Sometimes decode can take too long or stalls

Microsequenced instructions

Insufficient decoder strength (simple decoder and complex
instruction)

Backend stalls (e.g. full window stall)

+ Fetch can continue filling the buffer when decode stalls

+ When fetch stalls, the decoder will be supplied instructions
from the buffer

-- Extra complexity and buffer

43



