
15-740/18-740
Computer Architecture

Lecture 18: Caching in Multi-Core

Prof. Onur Mutlu
Carnegie Mellon University

Last Time
Multi-core issues in prefetching and caching

Prefetching coherence misses: push vs. pull
Coordinated prefetcher throttling
Cache coherence: software versus hardware
Shared versus private caches
Utility based shared cache partitioning

2

Readings in Caching for Multi-Core
Required

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

Recommended (covered in class)
Lin et al., “Gaining Insights into Multi-Core Cache Partitioning:
Bridging the Gap between Simulation and Real Systems,”
HPCA 2008.
Qureshi et al., “Adaptive Insertion Policies for High-
Performance Caching,” ISCA 2007.

3

Software-Based Shared Cache Management
Assume no hardware support (demand based cache sharing, i.e.
LRU replacement)
How can the OS best utilize the cache?

Cache sharing aware thread scheduling
Schedule workloads that “play nicely” together in the cache

E.g., working sets together fit in the cache
Requires static/dynamic profiling of application behavior
Fedorova et al., “Improving Performance Isolation on Chip
Multiprocessors via an Operating System Scheduler,” PACT 2007.

Cache sharing aware page coloring
Dynamically monitor miss rate over an interval and change
virtual to physical mapping to minimize miss rate

Try out different partitions
4

OS Based Cache Partitioning
Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging
the Gap between Simulation and Real Systems,” HPCA 2008.
Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-
Level Page Allocation,” MICRO 2006.

Static cache partitioning
Predetermines the amount of cache blocks allocated to each
program at the beginning of its execution
Divides shared cache to multiple regions and partitions cache
regions through OS-based page mapping

Dynamic cache partitioning
Adjusts cache quota among processes dynamically
Page re-coloring
Dynamically changes processes’ cache usage through OS-
based page re-mapping

5

Page Coloring
Physical memory divided into colors
Colors map to different cache sets
Cache partitioning

Ensure two threads are allocated
pages of different colors

6

Thread A

Thread B

Cache
Way-1 Way-n…………

Memory page

Page Coloring

virtual page numberVirtual address page offset

physical page numberPhysical address Page offset

Address translation

Cache tag Block offsetSet indexCache address

Physically indexed cache

page color bits

… …

OS control

=

•Physically indexed caches are divided into multiple regions (colors).
•All cache lines in a physical page are cached in one of those regions (colors).

OS can control the page color of a virtual page through address mapping
(by selecting a physical page with a specific value in its page color bits).

Static Cache Partitioning using Page Coloring

… …...

……
…

……
…

Physically indexed cache

…
……

……
…

Physical pages are grouped to page bins
according to their page color1

2
3
4

…

i+2

i
i+1

…
Process 1

1
2
3
4

…

i+2

i
i+1

…
Process 2

O
S address m

apping

Shared cache is partitioned between two processes through address mapping.

Cost: Main memory space needs to be partitioned, too.

A
llocated color

Dynamic Cache Partitioning via Page Re-Coloring

page color table

……

N - 1

0

1

2

3

Page re-coloring:
Allocate page in new color
Copy memory contents
Free old page

A
llocated colors

Pages of a process are organized into linked lists
by their colors.

Memory allocation guarantees that pages are
evenly distributed into all the lists (colors) to
avoid hot points.

Dynamic Partitioning in Dual Core

Init: Partition the cache as (8:8)

Run current partition (P0:P1) for one epoch

finished

Try one epoch for each of the two neighboring
partitions: (P0 – 1: P1+1) and (P0 + 1: P1-1)

Choose next partitioning with best policy
metrics measurement (e.g., cache miss rate)

No

Yes
Exit

Experimental Environment

Dell PowerEdge1950
Two-way SMP, Intel dual-core Xeon 5160
Shared 4MB L2 cache, 16-way
8GB Fully Buffered DIMM

Red Hat Enterprise Linux 4.0
2.6.20.3 kernel
Performance counter tools from HP (Pfmon)
Divide L2 cache into 16 colors

Performance – Static & Dynamic

Lin et al., “Gaining Insights into Multi-Core Cache
Partitioning: Bridging the Gap between Simulation and
Real Systems,” HPCA 2008.

Software vs. Hardware Cache Management
Software advantages
+ No need to change hardware
+ Easier to upgrade/change algorithm (not burned into hardware)

Disadvantages
- Less flexible: large granularity (page-based instead of way/block)
- Limited page colors reduced performance per application

(limited physical memory space!), reduced flexibility
- Changing partition size has high overhead page mapping

changes
- Adaptivity is slow: hardware can adapt every cycle (possibly)
- Not enough information exposed to software (e.g., number of

misses due to inter-thread conflict)

13

Handling Shared Data in Private Caches
Shared data and locks ping-pong between processors if
caches are private
-- Increases latency to fetch shared data/locks
-- Reduces cache efficiency (many invalid blocks)
-- Scalability problem: maintaining coherence across a large

number of private caches is costly

How to do better?
Idea: Store shared data and locks only in one special core’s
cache. Divert all critical section execution to that core/cache.

Essentially, a specialized core for processing critical sections
Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

14

Non-Uniform Cache Access
Large caches take a long time to access
Wire delay

Closeby blocks can be accessed faster, but furthest blocks determine
the worst-case access time

Idea: Variable latency access time in a single cache
Partition cache into pieces

Each piece has different latency
Which piece does an address map to?

Static: based on bits in address
Dynamic: any address can map to any piece

How to locate an address?
Replacement and placement policies?

Kim et al., “An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches,” ASPLOS 2002.

15

Multi-Core Cache Efficiency: Bandwidth Filters

Caches act as a filter that reduce memory bandwidth
requirement

Cache hit: No need to access memory
This is in addition to the latency reduction benefit of caching
GPUs use caches to reduce memory BW requirements

Efficient utilization of cache space becomes more important
with multi-core

Memory bandwidth is more valuable
Pin count not increasing as fast as # of transistors

10% vs. 2x every 2 years

More cores put more pressure on the memory bandwidth

How to make the bandwidth filtering effect of caches better?
16

Revisiting Cache Placement (Insertion)
Is inserting a fetched/prefetched block into the cache
(hierarchy) always a good idea?

No allocate on write: does not allocate a block on write miss
How about reads?

Allocating on a read miss
-- Evicts another potentially useful cache block
+ Incoming block potentially more useful

Ideally:
we would like to place those blocks whose caching would be
most useful in the future
we certainly do not want to cache never-to-be-used blocks

17

Revisiting Cache Placement (Insertion)
Ideas:

Hardware predicts blocks that are not going to be used
Lai et al., “Dead Block Prediction,” ISCA 2001.

Software (programmer/compiler) marks instructions that touch
data that is not going to be reused

How does software determine this?

Streaming versus non-streaming accesses
If a program is streaming through data, reuse likely occurs
only for a limited period of time
If such instructions are marked by the software, the hardware
can store them temporarily in a smaller buffer (L0 cache)
instead of the cache

18

Reuse at L2 Cache Level

19

DoA Blocks: Blocks unused between insertion and eviction

For the 1MB 16-way L2, 60% of lines are DoA
Ineffective use of cache space

(%
) D

oA
 L

in
es

Why Dead on Arrival Blocks?

20

Streaming data Never reused. L2 caches don’t help.

Working set of application greater than cache size

Solution: if working set > cache size, retain some working set

art

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Cache size in MB

mcf

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Cache size in MB

Cache Insertion Policies: MRU vs. LRU

21

a b c d e f g h
MRU LRU

i a b c d e f g

Reference to ‘i’ with traditional LRU policy:

a b c d e f g i

Reference to ‘i’ with LIP:

Choose victim. Do NOT promote to MRU

Lines do not enter non-LRU positions unless reused

Other Insertion Policies: Bimodal Insertion

22

if (rand() < ε)
Insert at MRU position;

else
Insert at LRU position;

LIP does not age older lines

Infrequently insert lines in MRU position

Let ε = Bimodal throttle parameter

For small ε , BIP retains thrashing protection of LIP
while responding to changes in working set

Analysis with Circular Reference Model

23

For small ε , BIP retains thrashing protection of LIP
while adapting to changes in working set

Policy (a1 a2 a3 … aT)N (b1 b2 b3 … bT)N

LRU 0 0
OPT (K-1)/T (K-1)/T
LIP (K-1)/T 0

BIP (small ε) ≈ (K-1)/T ≈ (K-1)/T

Reference stream has T blocks and repeats N times.
Cache has K blocks (K<T and N>>T)

Two consecutive reference streams:

Analysis with Circular Reference Model

24

LIP and BIP Performance vs. LRU

25

Changes to insertion policy increases misses for
LRU-friendly workloads

LIP BIP(ε=1/32)

(%
) R

ed
uc

tio
n

in
 L

2
M

P
K

I

Dynamic Insertion Policy (DIP)
Qureshi et al., “Adaptive Insertion Policies for High-
Performance Caching,” ISCA 2007.

26

Two types of workloads: LRU-friendly or BIP-friendly

DIP can be implemented by:

1. Monitor both policies (LRU and BIP)

2. Choose the best-performing policy

3. Apply the best policy to the cache

Need a cost-effective implementation Set Sampling

Dynamic Insertion Policy Miss Rate

27

DIP (32 dedicated sets)BIP

(%
) R

ed
uc

tio
n

in
 L

2
M

P
K

I

DIP vs. Other Policies

28

0

5

10

15

20

25

30

35

 (LRU+RND) (LRU+LFU) (LRU+MRU) DIP OPT Double

%
 R

ed
uc

ti
on

 i
n

av
er

ag
e

M
PK

I

DIP OPT Double(2MB)(LRU+RND) (LRU+LFU) (LRU+MRU)

