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Announcements

Milestone meetings
o Meet with Evangelos, Lavanya, Vivek

o And, me... especially if you receive(d) my feedback and |
asked to meet



L.ast Time

Markov Prefetching
Content Directed Prefetching
Execution Based Prefetchers



Multi-Core Issues in Pretetching
and Caching




Prefetching in Multi-Core (I)

Prefetching shared data
o Coherence misses

Prefetch efficiency a lot more important
o Bus bandwidth more precious
o Prefetchers on different cores can deny service to each other
and to demand requests
DRAM contention
Bus contention
Cache conflicts

o Need to coordinate the actions of independent prefetchers for
best system performance

Each prefetcher has different accuracy, coverage, timeliness



Shortcoming ot Local Pretetcher Throttling
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Local-only prefetcher control techniques
have no mechanism to detect inter-core interference




Prefetching 1n Multi-Core (I1)

Ideas for coordinating different prefetchers’ actions

o Utility-based prioritization
Prioritize prefetchers that provide the best marginal utility on
system performance

o Cost-benefit analysis
Compute cost-benefit of each prefetcher to drive prioritization

o Heuristic based methods

Global controller overrides local controller’s throttling decision
based on interference and accuracy of prefetchers

Ebrahimi et al., “Coordinated Management of Multiple Prefetchers
iIn Multi-Core Systems,” MICRO 2009.



Hierarchical Pretetcher Throttling
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Hierarchical Pretetcher Throttling Example
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Multi-Core Issues 1n Caching

Multi-core

Q

o o o o

More pressure on the memory/cache hierarchy - cache efficiency a
lot more important

Private versus shared caching
Providing fairness/QoS in shared multi-core caches
Migration of shared data in private caches
How to organize/connect caches:
Non-uniform cache access and cache interconnect design

Placement/insertion

Q

Q

Identifying what is most profitable to insert into cache
Minimizing dead/useless blocks

Replacement

Q

Cost-aware: which block is most profitable to keep?
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Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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Cache Coherence: Whose Responsibility?

Software

o Can the programmer ensure coherence if caches are invisible to
software?

o What if the ISA provided the following instruction?

FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a
processor’s local cache

When does the programmer need to FLUSH-LOCAL an address?

o What if the ISA provided the following instruction?

FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all
other processors’ caches

When does the programmer need to FLUSH-GLOBAL an address?

Hardware
o Simplifies software’s job

o One idea: Invalidate all other copies of block A when a processor writes
to it
16



Snoopy Cache Coherence

Caches “snoop” (observe) each other’s write/read

operations
A simple protocol:

PrRd/-- PrwWr / BusWr

Q PrWr / BusWr

BusWr
PrRd / BusRd

Write-through, no-
write-allocate
cache

Actions: PrRd,
Prwr, BusRd,
BusWr
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Multi-core Issues 1n Caching

How does the cache hierarchy change in a multi-core
system?
Private cache: Cache belongs to one core

Shared cache: Cache is shared by multiple cores

/’
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Shared Caches Between Cores

Advantages:
o Dynamic partitioning of available cache space
No fragmentation due to static partitioning
o Easier to maintain coherence
o Shared data and locks do not ping pong between caches

Disadvantages

o Cores incur conflict misses due to other cores’ accesses
Misses due to inter-core interference
Some cores can destroy the hit rate of other cores
0 What kind of access patterns could cause this?

o Guaranteeing a minimum level of service (or fairness) to each
core is harder (how much space, how much bandwidth?)

o High bandwidth harder to obtain (N cores - N ports?)
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Shared Caches: How to Share?

Free-for-all sharing

o Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

o Not thread/application aware

o An incoming block evicts a block regardless of which threads
the blocks belong to

Problems

o A cache-unfriendly application can destroy the performance of
a cache friendly application

o Not all applications benefit equally from the same amount of
cache: free-for-all might prioritize those that do not benefit

o Reduced performance, reduced fairness
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Problem with Shared Caches

i ! i I
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Problem with Shared Caches
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Problem with Shared Caches

i ! i !

[t2’s throughput is significantly reduced due to unfair cache sharing.
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Controlled Cache Sharing

Utility based cache partitioning

o Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.

o Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

Fair cache partitioning

o Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Shared/private mixed cache mechanisms

o Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in
CMPs,” HPCA 20009.

o Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 20009.
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Utility Based Shared Cache Partitioning

Goal: Maximize system throughput

Observation: Not all threads/applications benefit equally from
caching = simple LRU replacement not good for system
throughput

Idea: Allocate more cache space to applications that obtain the
most benefit from more space

The high-level idea can be applied to other shared resources as
well.

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.
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Utility Based Cache Partitioning (I)
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Utlity Based Cache Partitioning (11)
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Idea: Give more cache to the application that
benefits more from cache




Utility Based Cache Partitioning (111

Three components:
4 Utility Monitors (UMON) per core
[ Partitioning Algorithm (PA)

Main Memory

1 Replacement support to enforce partitions
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Utility Monitors

 For each core, simulate LRU using auxiliary tag store (ATS)
O Hit counters in ATS to count hits per recency position

U LRU is a stack algorithm: hit counts =>» utility
E.g. hits(2 ways) = HO+H1

(MRU)HO H1 H2...H15(LRU)
MTS + >,
Set A Set A
Set B Set B
Set C ATS Set C
Set D Set D
Set E Set E
Set F Set F
Set G Set G
Set H Set H
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Utility Monitors
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Figure 4. (a) Hit counters for each recency position. (b) Example
of how utility information can be tracked with stack property.
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Dynamic Set Sampling

o Extra tags incur hardware and power overhead

2 DSS reduces overhead [Qureshi+ ISCA'06]

0 32 sets sufficient (analytical bounds)
o Storage < 2kB/UMON

(MRU)HO H1 H2...H15(LRU)
MTD

Set A
Set C
Set D Set D
| SetE | Set E
| setG | V >)
Set H Set H




Partitioning Algorithm

Evaluate all possible partitions and select the best

With a ways to corel and (16-a) ways to core2:

Hits g e; = (Hp+ H, + ... + H.;)  ---- from UMON1
HItS — (HO + Hl + e + H16_a_1) =TT from UMON2

core2 ~—

Select a that maximizes (Hits ., + HitS . e,)

Partitioning done once every 5 million cycles
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Way Partitioning

Way partitioning support:
1. Each line has core-id bits

2. On a miss, count ways occupied in set by miss-causing app

Yes No

Victim is the LRU line Victim is the LRU line
from other app from miss-causing app




Performance Metrics

Three metrics for performance:

Weighted Speedup (default metric)
=> perf = IPC,/SinglelPC,; + IPC,/SinglelPC,
=» correlates with reduction in execution time

Throughput
=> perf = IPC, + IPC,
=» can be unfair to low-I1PC application

Hmean-fairness

=> perf = hmean(IPC,/SinglelPC,, IPC,/SinglelPC,)
=» balances fairness and performance
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Utility Based Cache Partitioning Performance

Four cores sharing a 2MB 32-way L2

| RU
=== JCP(Greedy)
wmmm | JCP(LoOkahead

m=m JCP(EvalAll)

Weighted Speedup (with four cores)

Mix1 Mix2 Mix3 Mix4

(gap-applu-apsi-gzp) (swm-glg-mesa-prl) (mcf-applu-art-vrtx) (mcf-art-egk-wupw)




Utility Based Cache Partitioning

Advantages over LRU
+ Better utilizes the shared cache

Disadvantages/Limitations

- Scalability: Partitioning limited to ways. What if you have
numWays < numApps?

- Scalability: How is utility computed in a distributed cache?
- What if past behavior is not a good predictor of utility?
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