15-740/18-740
Computer Architecture
Lecture 17: Prefetching, Caching, Multi-core

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

Milestone meetings
o Meet with Evangelos, Lavanya, Vivek

o And, me... especially if you receive(d) my feedback and |
asked to meet

L.ast Time

Markov Prefetching
Content Directed Prefetching
Execution Based Prefetchers

Multi-Core Issues in Pretetching
and Caching

Prefetching in Multi-Core (I)

Prefetching shared data
o Coherence misses

Prefetch efficiency a lot more important
o Bus bandwidth more precious
o Prefetchers on different cores can deny service to each other
and to demand requests
DRAM contention
Bus contention
Cache conflicts

o Need to coordinate the actions of independent prefetchers for
best system performance

Each prefetcher has different accuracy, coverage, timeliness

Shortcoming ot Local Pretetcher Throttling

Core 0O Core 1 Core 2 Core 3
Degree: 2 Degree: 2
DP Throttle Up
Share
Set 0 Beafi1® | Bsafl 1P Dem 3 [Dem 3
Set1 |Beefil(P Bsefi(P Dem 3 [Dem 3
Set 2 PehB |PemhB |PehB |PehB |
Local-only prefetcher control techniques
have no mechanism to detect inter-core interference

Prefetching 1n Multi-Core (I1)

Ideas for coordinating different prefetchers’ actions

o Utility-based prioritization
Prioritize prefetchers that provide the best marginal utility on
system performance

o Cost-benefit analysis
Compute cost-benefit of each prefetcher to drive prioritization

o Heuristic based methods

Global controller overrides local controller’s throttling decision
based on interference and accuracy of prefetchers

Ebrahimi et al., “Coordinated Management of Multiple Prefetchers
iIn Multi-Core Systems,” MICRO 2009.

Hierarchical Pretetcher Throttling

GoobhOomtis: goalepts or Global control’s goal: Keep
Maxinize deeisions made by tfiiCK,lg,hgpngg{pH(@L

peietdine neratmanse of | prefetcher- |
SQ@AIi%%P@rﬂq%}Iﬂbfrmance inter-core interference in

cause

| shared memq)% system

_ Final
T e Throttling Decision !
Pref. | — -
+ ! Throttling Decision Accuracy Global
Local — Control
Control | —— |Local _
Core i |Throttling Decision Cache Pollution

Feedback

Shared Cache

Hierarchical Pretetcher Throttling Example

- High accuracy
- High pollution

while other cores need b

- High bandwidth consumed

Memory Controller

andwidth

Emi@rce

Pref.i [...————

* Hig
Local
Control | —— |

Throttiileg Degision

Throttlieg_Pecision

High BW (i)
High BWNO (i)

v

Global
Control

7 §

 High Pol (i)

WPOI. Filteri || Shared Cache

Multi-Core Issues 1n Caching

Multi-core

Q

o o o o

More pressure on the memory/cache hierarchy - cache efficiency a
lot more important

Private versus shared caching
Providing fairness/QoS in shared multi-core caches
Migration of shared data in private caches
How to organize/connect caches:
Non-uniform cache access and cache interconnect design

Placement/insertion

Q

Q

Identifying what is most profitable to insert into cache
Minimizing dead/useless blocks

Replacement

Q

Cost-aware: which block is most profitable to keep?

10

Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

[Interconnection Network]

1000

X

Main Memory

The Cache Coherence Problem

Id r2, X
|

1000

Interconnection Network]

X

1000

Main Memory

12

The Cache Coherence Problem

Id r2, X

Id r2, X
|

1000 _ _1000_
Interconnection Network]
1000
X ——

Main Memory

13

The Cache Coherence Problem

Id r2, X
addrl, r2, rd
stx, rl

Id r2, X

2000 _1000_
Interconnection Network]
1000
X —

Main Memory

14

The Cache Coherence Problem

Id r2, X
addrl, r2, rd
stx, rl

2000

Id r2, X
|

1000

Interconnection Network

1000
X —

Main Memory

Should NOT
load 1000

Id r5, X

15

Cache Coherence: Whose Responsibility?

Software

o Can the programmer ensure coherence if caches are invisible to
software?

o What if the ISA provided the following instruction?

FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a
processor’s local cache

When does the programmer need to FLUSH-LOCAL an address?

o What if the ISA provided the following instruction?

FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all
other processors’ caches

When does the programmer need to FLUSH-GLOBAL an address?

Hardware
o Simplifies software’s job

o One idea: Invalidate all other copies of block A when a processor writes
to it
16

Snoopy Cache Coherence

Caches “snoop” (observe) each other’s write/read

operations
A simple protocol:

PrRd/-- PrwWr / BusWr

Q PrWr / BusWr

BusWr
PrRd / BusRd

Write-through, no-
write-allocate
cache

Actions: PrRd,
Prwr, BusRd,
BusWr

17

Multi-core Issues 1n Caching

How does the cache hierarchy change in a multi-core
system?
Private cache: Cache belongs to one core

Shared cache: Cache is shared by multiple cores

/’
COREO| |CORE1 CORE 2 CORE 3
A A A A
A A\ 4 \ 4 A 4
L2 L2 L2 L2
CACHE CACHE CACHE CACHE

\

\ DRAM MEMORY CONTROLLER

/

\ DRAM MEMORY CONTROLLER

18

Shared Caches Between Cores

Advantages:
o Dynamic partitioning of available cache space
No fragmentation due to static partitioning
o Easier to maintain coherence
o Shared data and locks do not ping pong between caches

Disadvantages

o Cores incur conflict misses due to other cores’ accesses
Misses due to inter-core interference
Some cores can destroy the hit rate of other cores
0 What kind of access patterns could cause this?

o Guaranteeing a minimum level of service (or fairness) to each
core is harder (how much space, how much bandwidth?)

o High bandwidth harder to obtain (N cores - N ports?)

19

Shared Caches: How to Share?

Free-for-all sharing

o Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

o Not thread/application aware

o An incoming block evicts a block regardless of which threads
the blocks belong to

Problems

o A cache-unfriendly application can destroy the performance of
a cache friendly application

o Not all applications benefit equally from the same amount of
cache: free-for-all might prioritize those that do not benefit

o Reduced performance, reduced fairness

20

Problem with Shared Caches

i ! i I

21

Problem with Shared Caches

Processor Core 1 2 [Processor Core 2]
| i §

L1$
| |

L2 $

22

Problem with Shared Caches

i ! i !

[t2’s throughput is significantly reduced due to unfair cache sharing.

23

Controlled Cache Sharing

Utility based cache partitioning

o Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.

o Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

Fair cache partitioning

o Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Shared/private mixed cache mechanisms

o Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in
CMPs,” HPCA 20009.

o Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 20009.

24

Utility Based Shared Cache Partitioning

Goal: Maximize system throughput

Observation: Not all threads/applications benefit equally from
caching = simple LRU replacement not good for system
throughput

Idea: Allocate more cache space to applications that obtain the
most benefit from more space

The high-level idea can be applied to other shared resources as
well.

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.

25

Utility Based Cache Partitioning (I)

‘ Utility U = Misses with a ways - Misses with b ways ‘

Misses per 1000 instructions

77

20+
18-
lo-
14 -

124

Low Utility
High Utility
Saturating Utility

0 2 4 & 8 10 12 14 16
Num ways from 16-way 1MB L2

26

Utlity Based Cache Partitioning (11)

50
'L. —m— equake }‘
45
10 *'L..\"L vpr
\
15 —

Misses per 1000 instructions (MPKI)

':I":I | 1 I | | | | I I I | | | | I |
0123456738 910111217141516

Idea: Give more cache to the application that
benefits more from cache

Utility Based Cache Partitioning (111

Three components:
4 Utility Monitors (UMON) per core
[Partitioning Algorithm (PA)

Main Memory

1 Replacement support to enforce partitions

28

Utility Monitors

 For each core, simulate LRU using auxiliary tag store (ATS)
O Hit counters in ATS to count hits per recency position

U LRU is a stack algorithm: hit counts =>» utility
E.g. hits(2 ways) = HO+H1

(MRU)HO H1 H2...H15(LRU)
MTS + >,
Set A Set A
Set B Set B
Set C ATS Set C
Set D Set D
Set E Set E
Set F Set F
Set G Set G
Set H Set H

29

Utility Monitors

C'DUNTE RS {I/G:F
k 051

GTH /‘— \
‘posy

TAG
DIRECTORY MRU |

| LRU |

il

more recent

'HIT COUNTER | Value
CTRPOSO | 30
CTRPOS1 | 20
CTRPOS2 | 15
CTRPOS3 | 10

MISSES = 25

.
.
-

1 2 3 4
Num. ways per set

(a)

(b)

Figure 4. (a) Hit counters for each recency position. (b) Example
of how utility information can be tracked with stack property.

30

Dynamic Set Sampling

o Extra tags incur hardware and power overhead

2 DSS reduces overhead [Qureshi+ ISCA'06]

0 32 sets sufficient (analytical bounds)
o Storage < 2kB/UMON

(MRU)HO H1 H2...H15(LRU)
MTD

Set A
Set C
Set D Set D
| SetE | Set E
| setG | V >)
Set H Set H

Partitioning Algorithm

Evaluate all possible partitions and select the best

With a ways to corel and (16-a) ways to core2:

Hits g e; = (Hp+ H, + ... + H.;) ---- from UMON1
HItS — (HO + Hl + e + H16_a_1) =TT from UMON2

core2 ~—

Select a that maximizes (Hits ., + HitS . e,)

Partitioning done once every 5 million cycles

32

Way Partitioning

Way partitioning support:
1. Each line has core-id bits

2. On a miss, count ways occupied in set by miss-causing app

Yes No

Victim is the LRU line Victim is the LRU line
from other app from miss-causing app

Performance Metrics

Three metrics for performance:

Weighted Speedup (default metric)
=> perf = IPC,/SinglelPC,; + IPC,/SinglelPC,
=» correlates with reduction in execution time

Throughput
=> perf = IPC, + IPC,
=» can be unfair to low-I1PC application

Hmean-fairness

=> perf = hmean(IPC,/SinglelPC,, IPC,/SinglelPC,)
=» balances fairness and performance

34

Utility Based Cache Partitioning Performance

Four cores sharing a 2MB 32-way L2

| RU
=== JCP(Greedy)
wmmm | JCP(LoOkahead

m=m JCP(EvalAll)

Weighted Speedup (with four cores)

Mix1 Mix2 Mix3 Mix4

(gap-applu-apsi-gzp) (swm-glg-mesa-prl) (mcf-applu-art-vrtx) (mcf-art-egk-wupw)

Utility Based Cache Partitioning

Advantages over LRU
+ Better utilizes the shared cache

Disadvantages/Limitations

- Scalability: Partitioning limited to ways. What if you have
numWays < numApps?

- Scalability: How is utility computed in a distributed cache?
- What if past behavior is not a good predictor of utility?

36

