
15-740/18-740
Computer Architecture

Lecture 16: Prefetching Wrap-up

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
  Exam solutions online
  Pick up your exams

  Feedback forms

2

Feedback Survey Results (I)
  How fast is the pace of the course so far?

  Good: 29
  Fast: 13
  Slow: 2

  How fast is the pace of lectures?
  Good: 33
  Fast: 6
  Slow: 5

  How easy is the course material?
  Right level: 33
  Hard: 11
  Easy: 0

3

Feedback Survey Results (II)
  How heavy is the course workload?

  Right amount: 13
  High: 29
  Low: 1

4

Last Time
  Hardware Prefetching

  Next-line
  Stride

  Instruction based
  Cache block address based

  Stream buffers
  Locality based prefetchers
  Prefetcher performance: Accuracy, coverage, timeliness
  Prefetcher aggressiveness
  Feedback directed prefetcher throttling

5

How to Cover More Irregular Access Patterns?

  More irregular access patterns
  Indirect array accesses
  Linked data structures
  Multiple regular strides (1,2,3,1,2,3,1,2,3,…)
  Random patterns?
  Generalized prefetcher for all patterns?

  Correlation based prefetchers
  Content-directed prefetchers
  Precomputation or execution-based prefetchers

6

Markov Prefetching (I)
  Consider the following history of load addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

  After referencing a particular address (say A or E), are
some addresses more likely to be referenced next

7

A B C

D E F
1.0

.33 .5

.2

1.0 .6 .2

.67
.6

.5

.2

Markov
Model

Markov Prefetching (II)

  Track the likely next addresses after seeing a particular address
  Prefetch accuracy is generally low so prefetch up to N next addresses to

increase coverage
  Prefetch accuracy can be improved by using longer history

  Decide which address to prefetch next by looking at the last K load addresses
instead of just the current one

  e.g., index with the XOR of the data addresses from the last K loads
  Using history of a few loads can increase accuracy dramatically

  Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

8

Load Data Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……
….

Load
Data
Addr

Markov Prefetching (III)
  Advantages:

  Can cover arbitrary access patterns
  Linked data structures
  Streaming patterns (though not so efficiently!)

  Disadvantages:
  Correlation table needs to be very large for high coverage

  Recording every miss address and its subsequent miss addresses
is infeasible

  Low timeliness: Lookahead is limited since a prefetch for the
next access/miss is initiated right after previous

  Consumes a lot of memory bandwidth
  Especially when Markov model probabilities (correlations) are low

  Cannot reduce compulsory misses
9

Content Directed Prefetching (I)
  A specialized prefetcher for pointer values
  Cooksey et al., “A stateless, content-directed data

prefetching mechanism,” ASPLOS 2002.
  Idea: Identify pointers among all values in a fetched cache

block and issue prefetch requests for them.

+ No need to memorize/record past addresses!
+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches all pointers in a cache block

  How to identify pointer addresses:
  Compare address sized values within cache block with cache

block’s address  if most-significant few bits match, pointer
10

Content Directed Prefetching (II)

11

x40373551

L2 DRAM … …

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch
Virtual Address Predictor

X80022220

22220 X800

11100 x800

Making Content Directed Prefetching Efficient

  Hardware does not have enough information on pointers
  Software does (and can profile to get more information)

  Idea:
  Compiler profiles and provides hints as to which pointer

addresses are likely-useful to prefetch.
  Hardware uses hints to prefetch only likely-useful pointers.

  Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.

12

13

Shortcomings of CDP – An example

HashLookup(int Key) {
 …
 for (node = head ; node -> Key != Key;

Struct node{
 int Key;
 int * D1_ptr;
 int * D2_ptr;
 node * Next;
}

node = node -> Next;
 if (node) return node->D1;
}

…

Key
D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

) ;

Key

Example from mst

14

Shortcomings of CDP – An example

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next
Cache Line Addr

…

Key
D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key

15

Shortcomings of CDP – An example

HashLookup(int Key) {
 …
 for (node = head ; node = node -> Next;
 if (node)
}

) ;

…

Key
D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;
return node -> D1;

Key

16

Shortcomings of CDP – An example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next
Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[31:20]

Hybrid Hardware Prefetchers
  Many different access patterns

  Streaming, striding
  Linked data structures
  Localized random

  Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive
-- Prefetchers start getting in each other’s way (contention,

pollution
 - Need to manage accesses from each prefetcher

17

Execution-based Prefetchers (I)
  Idea: Pre-execute a piece of the (pruned) program solely

for prefetching data
  Only need to distill pieces that lead to cache misses

  Speculative thread: Pre-executed program piece can be
considered a “thread”

  Speculative thread can be executed
  On a separate processor/core
  On a separate hardware thread context (think fine-grained

multithreading)
  On the same thread context in idle cycles (during cache misses)

18

Execution-based Prefetchers (II)
  How to construct the speculative thread:

  Software based pruning and “spawn” instructions
  Hardware based pruning and “spawn” instructions
  Use the original program (no construction), but

  Execute it faster without stalling and correctness constraints

  Speculative thread
  Needs to discover misses before the main program

  Avoid waiting/stalling and/or compute less

  To get ahead, uses
  Branch prediction, value prediction, only address generation

computation

19

Thread-Based Pre-Execution
  Dubois and Song, “Assisted

Execution,” USC Tech
Report 1998.

  Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

  Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

20

Thread-Based Pre-Execution Issues
  Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context

  When the main thread is stalled

  When to spawn the precomputation thread?
1. Insert spawn instructions well before the “problem” load

  How far ahead?
  Too early: prefetch might not be needed
  Too late: prefetch might not be timely

2. When the main thread is stalled

  When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

21

Thread-Based Pre-Execution Issues
  Read

  Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

  Many issues in software-based pre-execution discussed

22

An Example

23

Example ISA Extensions

24

Results on an SMT Processor

25

Problem Instructions

26

Fork Point for Prefetching Thread

27

Pre-execution Slice Construction

28

Runahead Execution (I)
  A simple pre-execution method for prefetching purposes

  When the oldest instruction is a long-latency cache miss:
  Checkpoint architectural state and enter runahead mode

  In runahead mode:
  Speculatively pre-execute instructions
  The purpose of pre-execution is to generate prefetches
  L2-miss dependent instructions are marked INV and dropped

  Runahead mode ends when the original miss returns
  Checkpoint is restored and normal execution resumes

  Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

29

Runahead Execution (Mutlu et al., HPCA 2003)

30

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Runahead Execution (III)
  Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
 + Follows the program path
+ No need to construct a pre-execution thread
+ Uses the same thread context as main thread, no waste of context
+ Simple to implement, most of the hardware is already built in

  Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses. Solution?
-- Effectiveness limited by available MLP
-- Prefetch distance limited by memory latency

  Implemented in IBM POWER6, Sun “Rock”
31

Execution-based Prefetchers (III)
+ Can prefetch pretty much any access pattern
+ Can be very low cost (e.g., runahead execution)
 + Especially if it uses the same hardware context
 + Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

 - Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful
 -- speculatively execute many instructions
 -- can occupy a separate thread context

32

