15-740/18-740
Computer Architecture
Lecture 16: Pretetching Wrap-up

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

Exam solutions online
Pick up your exams

Feedback forms

Feedback Survey Results (I)

How fast is the pace of the course so far?
o Good: 29

o Fast: 13

a Slow: 2

How fast is the pace of lectures?
o Good: 33

o Fast: 6

a Slow: 5

How easy is the course material?
o Right level: 33

o Hard: 11

o Easy: 0

Feedback Survey Results (1)

How heavy is the course workload?
o Right amount: 13

o High: 29

o Low: 1

Last Time

Hardware Prefetching

o Next-line
o Stride
Instruction based
Cache block address based

o Stream buffers

o Locality based prefetchers

o Prefetcher performance: Accuracy, coverage, timeliness
o Prefetcher aggressiveness

o Feedback directed prefetcher throttling

How to Cover More Irregular Access Patterns?

More irregular access patterns

o Indirect array accesses

Linked data structures

Multiple regular strides (1,2,3,1,2,3,1,2,3,...)
Random patterns?

Generalized prefetcher for all patterns?

Correlation based prefetchers
Content-directed prefetchers
Precomputation or execution-based prefetchers

Markov Prefetching (I)

Consider the following history of load addresses

A B CDCEACFFEAADBCD,EADB,CD,C
After referencing a particular address (say A or E), are
some addresses more likely to be referenced next

Markov Pretetching (II)

A
Load Data Addr Prefetch Confidence Prefetch Confidence
Load .. A Y R N
— || tag) | | Candidated | w | CandidateN |
Data ,
Addr T I TR R T I
N

Track the likely next addresses after seeing a particular address
Prefetch accuracy is generally low so prefetch up to N next addresses to
increase coverage

Prefetch accuracy can be improved by using longer history
o Decide which address to prefetch next by looking at the last K load addresses
instead of just the current one

o e.g., index with the XOR of the data addresses from the last K loads
o Using history of a few loads can increase accuracy dramatically
Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

8

Markov Pretetching (I1I)

Advantages:

o Can cover arbitrary access patterns
Linked data structures
Streaming patterns (though not so efficiently!)

Disadvantages:

o Correlation table needs to be very large for high coverage

Recording every miss address and its subsequent miss addresses
is infeasible

o Low timeliness: Lookahead is limited since a prefetch for the
next access/miss is initiated right after previous

o Consumes a lot of memory bandwidth
Especially when Markov model probabilities (correlations) are low

o Cannot reduce compulsory misses

Content Directed Prefetching (I)

A specialized prefetcher for pointer values

Cooksey et al., “A stateless, content-directed data
prefetching mechanism,” ASPLOS 2002.

Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches all pointers in a cache block

How to identify pointer addresses:

o Compare address sized values within cache block with cache
block’s address = if most-significant few bits match, pointer

10

Content Directed Prefetching (II)

Virtual Address Predictor

vGenerate Prefetch

[31:20]

X80022220

L2

DRAM

11

Making Content Directed Prefetching Efficient

Hardware does not have enough information on pointers
Software does (and can profile to get more information)

Idea:

o Compiler profiles and provides hints as to which pointer
addresses are likely-useful to prefetch.

o Hardware uses hints to prefetch only likely-useful pointers.

Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.

12

Shortcomings of CDP — An example

Struct node{
HashLookup(int Key) { int Kg&;;
int * D1_ptr;

for (node = head ; node -> Key != Key; node = node -> Next;) ; int * D*2_ptr;
if (node) return node->D1; node * Next;
} }
N \
| > D2 Key » D1
l D1 " D2
Key > v
" D2 Key + D1
"I D2
Key » D1
"I D2

Example from mst

13

Shortcomings of CDP — An example

[0z:1€]

Cache Line Addr

Key

D1 ptr

D2 ptr

Next

Key

D1 ptr

D2 ptr

Next

[31:20]

[31:20] l [31:20] [31:20] l [31:20] l [31:20]

—(

[31:20]
_,é) —(=)

Virtual Address Predictor

l [31:20]

N \
Key D1
" D2 Key » D1
v "1 D2
Key » D1 v
"1 D2
Key » D1
" D2

14

Shortcomings of CDP — An example

HashLookup(int Key) {

for (node = head ; node -> Key != Key; node = node -> Next;)

if (node) return node -> D1;

}
s \
" D2 Key » D1
I > D2
Key > D1 v
> D2 Key » D1
> D2
Key J D1
> D2

15

Shortcomings of CDP — An example

[0z:1€]

Cache Line Addr

Key

D1 ptr

D2 ptr

Next

Key

D1 ptr

D2 ptr

Next

[31:20]
—»

1[31:201 [31:20] 1[31:201 l[31:20] [31:20]
50 B O o

l [31:20]

l [31:20]

e

Virtual Address Predictor

e

Key

A\ 4 \ 4

D1

\4

Key

D2

A\ 4 A\ 4

D1

D2

\ 4

Key

D1

D2

N

Key

D1

A\ 4 A\ 4

Key

D2

D1

\ 4 \ 4

D2

16

Hybrid Hardware Prefetchers

Many different access patterns

o Streaming, striding
o Linked data structures
o Localized random

Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive

-- Prefetchers start getting in each other’s way (contention,

pollution
- Need to manage accesses from each prefetcher

17

Execution-based Pretetchers (I)

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can be
considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)

18

Execution-based Pretetchers (1I)

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread
o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead, uses

Branch prediction, value prediction, only address generation
computation

19

Thread-Based Pre-Execution

BRANCH

fork

prediction

speedup

Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

Zilles and Sohi, “"Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

20

Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)
3. Same core, same context

When the main thread is stalled

When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
How far ahead?
0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled

When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

21

Thread-Based Pre-Execution Issues

Read

a Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”

ISCA 2001.
o Many issues in software-based pre-execution discussed
Key (a) Multiple Pointer Chains

== Main Execution

e

» Pre-Execution

L > = Array Elements Accessed

(d) Multiple Control-Flow Paths

22

An Example

(a) Original Code (b) Code with Pre-Execution

register int 1;
register arc_t *arcout;

for(; 1< tnps;){

register int 1;
register arc_t *arcout;
for(; 1< taps;){
/I loop over ‘trips” lists
if (arcout[1] ident != FIXED) {

first_of_sparse _list = arcout + 1;

}

arcin = (arc_t *)first_of_sparse_list
- tail»--}mark;
/I traverse the list starting with
/I the first node just assigned
while (arcin) |
tail = arcin—»tail;

;r-cin = (arc_t *)tail—» mark;

}

14+, arcout+=3;

}

/I loop over ‘trips” lists
if (arcout[1].1dent != FIXED) {

first_of_sparse_list = arcout + 1;

}

/l invoke a pre-execution starting
/l at END_FOR
PreExecute_Start(tEND_FOR);
arcin = (arc_t *)first_of_sparse_list
—»tail—» mark;

/] traverse the list starting with
/I the first node just assigned
while (arcin) |

tail = arcin— tail;

arcin = (arc_t *)tail —»mark;
1
/I terminate this pre-execution after
/l prefetching the entire list
PreExecute_Stop();
END_FOR:
/I the target address of the pre-
/l execution
1++, arcout+=3;
1
/I terminate this pre-execution if we
/I have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

23

Example ISA Extensions

T'hread_I D = PreExecute_Start(Stari_PC, Max_Insts):
Request for an 1dle context to start pre-execution at
Start_PC and stop when Max_Insts mstructions have
been executed: 1'hread_I D holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(/'hread_{D): Terminate the pre-
execution thread with I'hread_{ [D. This instruction has
effect only if it 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)

24

Results on an SMT Processor

(a) Execution Time Normalized to the Original Case

105
o 100 memmim 100 100 100 100 100 100
£ 1001 . 90 ﬁil
c
-% . load L2-miss stall
§ load L2-hit stall
w -
3 50 other stall
N busy
(1]
£
S
=
0 0 PX 0 PX 0 PX 0 PX 0 PX 0 PX 0 PX
Compress Em3d Equake Mcf Mst Raytrace Twolf

25

Problem Instructions

Figure 2. Example problem instructions from heap insertion
routine in vpr.

struct s_heap **heap; // from [l..heap_size]
int heap _size; // # of slots in the heap
int heap tail; // first unused slot in heap

void add_to heap (struct s_heap *hptr) {

1. heap[heap tail] = hptr; branch

2. int ifrom = heap_tail; misprediction
3. int ito = ifrom/2;
4. heap tail++;

5. while ((ito >= 1) &&

cache miss

6. (heap[ifrom]->cost < heap[ito]=->cost))
7. struct s_heap *temp ptr = heap[ito];
8. heap[ito] = heap[ifrom];
9. heap[ifrom] = temp_ ptr;
10. ifrom = ito;
11. ito = ifrom/2;
}

Fork Point for Prefetching Thread

Figure 3. The node to heap function, which serves as
the fork point for the slice that covers add to heap.

void node to heap (..., float cost, ...) {
struct s_heap *hptr; -e-——— fork point

hptr = alloc_heap_data();
hptr->cost = cost;

add_to_heap (hptr);

27

Pre-execution Slice Construction

Figure 4. Alpha assembly for the add_to_heap function.

The instructions are annotated with the number of the line in

Figure 2 to which they correspond. The problem instructions

are in bold and the shaded instructions comprise the

un-optimized slice. Figure 5. Slice constructed for example problem instructions.

node_to_heap: . _ Much smaller than the original code, the slice contains a loop
--- /* skips ~40 instructions */ that mimics the loop in the original code.

1ds s$fo, 4(a2) heap[ifrom]->cost
heap[ito]->cost
(heap[ifrom]->cost

< heap[ito]->cost)

6

6 1lds sf1, 41(aq)
6 cmptlt $fo0,$f1,$f0
6 fbeq $f0, return
8
9
5

2 lda sl, 252(gp) # &heap_tail
2 1d1 t2, 0(sl) # ifrom = heap_tail .
1 1dgq ts, -76(sl) # &heap[O0] slice:
3 cmplt t2, 0, t4 # see note 1 ldg $6, 328(gp) # &heap
4 addl t2, 0xl, t6 # heap_tail +4 2 1dl $3, 252(gp) # ito = heap_tail
1 s8addg t2, t5, t3 # &heap[heap_tail] slice loop:
4 stl t6, 0(sl) i;torehheap_téil 3,11 gra $3, 0xl, $3 # ito /= 2
: :g: 2§'f33;4 % oo L eap tastd 6 s8addq $3, $6, $16 # &heap[ito]
3 sra t4, 0x1l, t4 # ito = ifrom/2 6 ldg $18, 0($16) # heap[ito]
5 ble t4, return # (ito < 1) 6 lds Sf1, 4(S18) 2 heap[ito]->cost
loop: 6 cmptle $f1,$f17,5f31 £ (heap[ito]->cost
6 s8addg t2, t5, a0 # &heap[ifrom] # < cost) PRED
6 s8addg t4, t5, t7 # &heap[ito] .
11 cmpltq t4, 0, t9 # see ﬁote br slice_loop
10 move CATED # ifrom = ito .
6 ldg a2z, 0(ao0) # heap[ifrom] ## Annotations
6 1ldg a4, 0(t7) # heap[ito] fork: on first instruction of node_ to_heap
11 addl t4, t9, to # see note live=1in: $f17<cost>' gp
11 sra t9, 0x1, t4 zito = ifrom/2 max loop iterations: 4
=
#
2
stq a2z, 0(t7) # heap[ito]
stq a4, 0(ao0) # heap[ifrom]
bgt t4, loop # (ito >= 1)

return:
. /* register restore code & return */

_ note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization. 28

Runahead Execution (I)

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

o The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., "Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

29

Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:
Load 1 Miss Load 2 Miss

Runahead: :
Load 1 Miss ~ Load 2 Miss Load 1Hit Load 2 Hit

>
Saved Cycles

30

Runahead Execution (I11)

Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ No need to construct a pre-execution thread
+ Uses the same thread context as main thread, no waste of context
+ Simple to implement, most of the hardware is already built in

Disadvantages/Limitations:

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?
-- Effectiveness limited by available MLP

-- Prefetch distance limited by memory latency

Implemented in IBM POWER6, Sun “Rock”

31

Execution-based Pretetchers (11I)

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)
+ Especially if it uses the same hardware context
+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions
-- Can occupy a separate thread context

32

