
15-740/18-740
Computer Architecture

Lecture 13: More Caching

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
Project Milestone I

Due Monday, October 18

Paper Reviews
Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.
Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
Due Friday October 22

2

Last Time
Handling writes
Instruction vs. data
Cache replacement policies
Cache performance

Cache size, associativity, block size
Enhancements to improve cache performance

Critical-word first, subblocking
Replacement policy
Hybrid replacement policies
Cache miss classification
Victim caches
Hashing
Pseudo-associativity

3

Today
More enhancements to improve cache performance
Enabling multiple concurrent accesses
Enabling high bandwidth caches

Prefetching

4

Cache Readings
Required:

Hennessy and Patterson, Appendix C.1-C.3
Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.
Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

Recommended:
Seznec, “A Case for Two-way Skewed Associative Caches,” ISCA
1993.
Chilimbi et al., “Cache-conscious Structure Layout,” PLDI 1999.
Chilimbi et al., “Cache-conscious Structure Definition,” PLDI
1999.

5

Improving Cache “Performance”
Reducing miss rate

Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

Reducing miss latency

Reducing hit latency

6

Improving Basic Cache Performance
Reducing miss rate

More associativity
Alternatives/enhancements to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

Software approaches

Reducing miss latency/cost
Multi-level caches
Critical word first
Subblocking
Non-blocking caches
Multiple accesses per cycle
Software approaches

7

How to Reduce Each Miss Type
Compulsory

Caching cannot help
Prefetching

Conflict
More associativity
Other ways to get more associativity without making the
cache associative

Victim cache
Hashing
Software hints?

Capacity
Utilize cache space better: keep blocks that will be referenced
Software management: divide working set such that each
“phase” fits in cache

8

Victim Cache: Reducing Conflict Misses

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks
+ Can avoid ping ponging of cache blocks mapped to the same

set (if two cache blocks continuously accessed in nearby time
conflict with each other)

-- Increases miss latency if accessed serially with L2
9

Direct
Mapped
Cache

Next Level
Cache

Victim
cache

Hashing and Pseudo-Associativity
Hashing: Better “randomizing” index functions
+ can reduce conflict misses

by distributing the accessed memory blocks more evenly to sets

Example: stride where stride value equals cache size
-- More complex to implement: can lengthen critical path

Pseudo-associativity (Poor Man’s associative cache)
Serial lookup: On a miss, use a different index function and
access cache again
Given a direct-mapped array with K cache blocks

Implement K/N sets
Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

10

Skewed Associative Caches (I)
Basic 2-way associative cache structure

11

Way 0 Way 1

Tag Index Byte in Block

Same index function

for each way

=? =?

Skewed Associative Caches (II)
Skewed associative caches

Each bank has a different index function

12

Way 0 Way 1

tag index byte in block

f0

same index
same set

same index
redistributed to
different sets

=? =?

Skewed Associative Caches (III)
Idea: Reduce conflict misses by using different index
functions for each cache way

Benefit: indices are randomized
Less likely two blocks have same index

Reduced conflict misses

May be able to reduce associativity

Cost: additional latency of hash function

13

Improving Hit Rate via Software (I)
Restructuring data layout
Example: If column-major

x[i+1,j] follows x[i,j] in memory
x[i,j+1] is far away from x[i,j]

This is called loop interchange
Other optimizations can also increase hit rate

Loop fusion, array merging, …
What if multiple arrays? Unknown array size at compile time?

14

Poor code
for i = 1, rows

for j = 1, columns
sum = sum + x[i,j]

Better code
for j = 1, columns

for i = 1, rows
sum = sum + x[i,j]

More on Data Structure Layout
Pointer based traversal
(e.g., of a linked list)
Assume a huge linked
list (1M nodes) and
unique keys
Why does the code on
the left have poor cache
hit rate?

“Other fields” occupy
most of the cache line
even though rarely
accessed!

15

struct Node {
struct Node* node;
int key;
char [256] name;
char [256] school;

}

while (node) {
if (node key == input-key) {

// access other fields of node
}
node = node next;

}

How Do We Make This Cache-Friendly?
Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

Who should do this?
Programmer
Compiler

Profiling vs. dynamic

Hardware?
Who can determine what
is frequently used?

16

struct Node {
struct Node* node;
int key;
struct Node-data* node-data;

}

struct Node-data {
char [256] name;
char [256] school;

}

while (node) {
if (node key == input-key) {

// access node node-data
}
node = node next;

}

Improving Hit Rate via Software (II)
Blocking

Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache
Avoids cache conflicts between different chunks of
computation
Essentially: Divide the working set so that each piece fits in
the cache

But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming time

17

Improving Basic Cache Performance
Reducing miss rate

More associativity
Alternatives to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

Software approaches

Reducing miss latency/cost
Multi-level caches
Critical word first
Subblocking
Multiple outstanding accesses (Non-blocking caches)
Multiple accesses per cycle
Software approaches

18

Handling Multiple Outstanding Accesses
Non-blocking or lockup-free caches

Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache
Organization," ISCA 1981.

Question: If the processor can generate multiple cache
accesses, can the later accesses be handled while a
previous miss is outstanding?
Idea: Keep track of the status/data of misses that are being
handled in Miss Status Handling Registers (MSHRs)

A cache access checks MSHRs to see if a miss to the same
block is already pending.

If pending, a new request is not generated
If pending and the needed data available, data forwarded to later
load

Requires buffering of outstanding miss requests

19

Non-Blocking Caches (and MLP)
Enable cache access when there is a pending miss
Enable multiple misses in parallel

Memory-level parallelism (MLP)
generating and servicing multiple memory accesses in parallel

Why generate multiple misses?

Enables latency tolerance: overlaps latency of different misses

How to generate multiple misses?
Out-of-order execution, multithreading, runahead, prefetching

20

time

A
B

C

isolated miss parallel miss

Miss Status Handling Register
Also called “miss buffer”
Keeps track of

Outstanding cache misses
Pending load/store accesses that refer to the missing cache
block

Fields of a single MSHR
Valid bit
Cache block address (to match incoming accesses)
Control/status bits (prefetch, issued to memory, which
subblocks have arrived, etc)
Data for each subblock
For each pending load/store

Valid, type, data size, byte in block, destination register or store
buffer entry address

21

Miss Status Handling Register

22

MSHR Operation
On a cache miss:

Search MSHR for a pending access to the same block
Found: Allocate a load/store entry in the same MSHR entry
Not found: Allocate a new MSHR
No free entry: stall

When a subblock returns from the next level in memory
Check which loads/stores waiting for it

Forward data to the load/store unit
Deallocate load/store entry in the MSHR entry

Write subblock in cache or MSHR
If last subblock, dellaocate MSHR (after writing the block in
cache)

23

Non-Blocking Cache Implementation
When to access the MSHRs?

In parallel with the cache?
After cache access is complete?

MSHRs need not be on the critical path of hit requests
Which one below is the common case?

Cache miss, MSHR hit
Cache hit

24

Improving Basic Cache Performance
Reducing miss rate

More associativity
Alternatives/enhancements to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

Software approaches

Reducing miss latency/cost
Multi-level caches
Critical word first
Subblocking
Non-blocking caches
Multiple accesses per cycle
Software approaches

25

Reducing Miss Cost/Latency via Software
Enabling more memory-level parallelism

Restructuring code
Taking advantage of stall-on-use policy in hardware

Inserting prefetch instructions

26

Enabling High Bandwidth Caches

Multiple Instructions per Cycle
Can generate multiple cache accesses per cycle
How do we ensure the cache can handle multiple accesses
in the same clock cycle?

Solutions:
true multi-porting
virtual multi-porting (time sharing a port)
multiple cache copies
banking (interleaving)

28

Handling Multiple Accesses per Cycle (I)
True multiporting

Each memory cell has multiple read or write ports
+ Truly concurrent accesses (no conflicts regardless of address)
-- Expensive in terms of area, power, and delay

What about read and write to the same location at the same
time?

Peripheral logic needs to handle this

Virtual multiporting
Time-share a single port
Each access needs to be (significantly) shorter than clock cycle
Used in Alpha 21264
Is this scalable?

29

Cache
Copy 1

Handling Multiple Accesses per Cycle (II)
Multiple cache copies

Stores update both caches
Loads proceed in parallel

Used in Alpha 21164

Scalability?
Store operations form a
bottleneck
Area proportional to “ports”

30

Port 1

Load

Store

Port 1

Data

Cache
Copy 2Port 2

Load

Port 2

Data

Handling Multiple Accesses per Cycle (III)
Banking (Interleaving)

Bits in address determines which bank an address maps to
Address space partitioned into separate banks
Which bits to use for “bank address”?

+ No increase in data store area
-- Cannot always satisfy multiple accesses

Why?
-- Crossbar interconnect in input/output

Bank conflicts
Two accesses are to the same bank
How can these be reduced?

Hardware? Software?

31

Bank 0:
Even

addresses

Bank 1:
Odd

addresses

Evaluation of Design Options
Which alternative is better?

true multi-porting
virtual multi-porting (time sharing a port)
multiple cache copies
banking (interleaving)
How do we answer this question?

Simulation
See Juan et al.’s evaluation of above options: “Data caches for
superscalar processors,” ICS 1997.
What are the shortcomings of their evaluation?
Can one do better with sole simulation?

32

