15-740/18-740
Computer Architecture
Lecture 10: Runahead and MLP

Prof. Onur Mutlu
Carnegie Mellon University

Last Time ...

Issues in Out-of-order execution

o Buffer decoupling

o Register alias tables

o Physical register files

o Centralized vs. distributed reservation stations
o Scheduling logic

Readings

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” IEEE Micro Top Picks 2006.

Zhou, Dual-Core Execution: “Building a Highly Scalable Single-
Thread Instruction Window,” PACT 2005.

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

Questions

Why is 000 execution beneficial?
o What if all operations take single cycle?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?

o What limits the latency tolerance scalability of Tomasulo’s
algorithm?

Active/instruction window size: determined by reqister file,
scheduling window, reorder buffer, store buffer, load buffer

Small Windows: Full-window Stalls

When a long-latency instruction is not complete,
it blocks retirement.

Incoming instructions fill the instruction window.

Once the window is full, processor cannot place new
Instructions into the window.

o This is called a full-window stall.

A full-window stall prevents the processor from making
progress in the execution of the program.

Small Windows: Full-window Stalls

8-entry instruction window:

Oldest HOV\o N U SH I [RE]I L2 Miss! Takes 100s of cycles.
BEQ R1, RO, target
ADD R2 € R2, 8
LOAD R3 €< mem[R2]

Independent of the L2 miss,
MUL R4 < R4, R3 executed out of program order,

ADD R4 € R4, R5 but cannot be retired.
STOR mem[R2] € R4
ADD R2 €« R2, 64

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

= L2 cache misses are responsible for most full-window stalls.

Impact of 1.2 Cache Misses

100
95
90
85
80
75

Normalized Execution Time
(@]
o

E Non-stall (compute) time

B Full-window stall time

L2 Misses

128-entry window

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

Impact of 1.2 Cache Misses

100
95
90
85
80
75
70
65
60
55

50
45
40
35
30
25
20
15
10

5

0

Normalized Execution Time

500-cycle DRAM latency, aggressive stream-based prefetcher

L2 Misses

128-entry window

E Non-stall (compute) time

B Full-window stall time

2048-entry window

Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

The Problem

Out-of-order execution requires large instruction windows
to tolerate today’s main memory latencies.

As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency.

Building a large instruction window is a challenging task
If we would like to achieve

o Low power/energy consumption (tag matching logic, ld/st
buffers)

a Short cycle time (access, wakeup/select latencies)
o Low design and verification complexity

Etticient Scaling of Instruction Window Size

One of the major research issues in out of order execution

How to achieve the benefits of a large window with a small
one (or in a simpler way)?

o Runahead execution?

Upon L2 miss, checkpoint architectural state, speculatively
execute only for prefetching, re-execute when data ready

o Continual flow pipelines?

Upon L2 miss, deallocate everything belonging to an L2 miss
dependent, reallocate/re-rename and re-execute upon data ready

o Dual-core execution?

One core runs ahead and does not stall on L2 misses, feeds
another core that commits instructions

10

Runahead Execution (I)

A technigue to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

o Speculatively pre-execute instructions

o The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
11

berfect Caches: Runahead Example
Load 1 Hit Load 2 Hit

el o

Small Window:

Load 1 Miss Load 2 Miss
Miss 1 Miss 2

Runahead: :
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

Saved Cycles
Miss 1

Miss 2

Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

Pre-executed loads and stores independent of L2-miss
Instructions generate very accurate data prefetches:

o For both regular and irregular access patterns

Instructions on the predicted program path are prefetched
Into the instruction/trace cache and L2.

Hardware prefetcher and branch predictor tables are trained
using future access information.

Runahead Execution Mechanism

Entry into runahead mode
o Checkpoint architectural register state

Instruction processing in runahead mode

Exit from runahead mode
o Restore architectural register state from checkpoint

Instruction Processing in Runahead Mode

Load 1 Miss

h

Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

= It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

= L2-miss dependent instructions are identified and treated

specially.
o They are quickly removed from the instruction window.

o Their results are not trusted.

L.2-Miss Dependent Instructions

Load 1 Miss

Miss 1

= Two types of results produced: INV and VALID

= INV = Dependent on an L2 miss

= INV results are marked using INV bits in the register file and
store buffer.

= [NV values are not used for prefetching/branch resolution.

Removwval of Instructions from Window

Load 1 Miss

h

Miss 1

= Oldest instruction is examined for pseudo-retirement
o An INV instruction is removed from window immediately.
o A VALID instruction is removed when it completes execution.

= Pseudo-retired instructions free their allocated resources.
o This allows the processing of later instructions.

= Pseudo-retired stores communicate their data to
dependent loads.

Store/lLoad Handling in Runahead Mode

Load 1 Miss

Miss 1

= A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

= Purpose: Data communication through memory in runahead mode.
= A dependent load reads its data from the runahead cache.

= Does not need to be always correct - Size of runahead cache is
very small.

Branch Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= INV branches cannot be resolved.

2 A mispredicted INV branch causes the processor to stay on the
wrong program path until the end of runahead execution.

= VALID branches are resolved and initiate recovery if mispredicted.

Runahead Execution (I11)

Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ No need to construct a pre-execution thread
+ Uses the same thread context as main thread, no waste of context
+ Simple to implement, most of the hardware is already built in

Disadvantages/Limitations:

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance limited by memory latency

Implemented in IBM POWERG, Sun “Rock”

20

Memory Level Parallelism (MLP)

Idea: Find and service multiple cache misses in parallel

Why generate multiple misses?

Isolated miss

parallel miss

A 4

]

/

v

, time

o Enables latency tolerance: overlaps latency of different misses

How to generate multiple misses?

o Out-of-order execution, multithreading, runahead, prefetching

21

Memory Latency Tolerance Techniques

Caching [initially by Wilkes, 1965]
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967]
o Works well for regular memory access patterns

o Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive

Multithreading [initially in CDC 6600, 1964]
o Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an
ongoing research effort

Out-of-order execution [initially by Tomasulo, 1967]

o Tolerates cache misses that cannot be prefetched
o Requires extensive hardware resources for tolerating long latencies

22

Runahead Execution vs. Large Windows

- B 128-entry window (baseline)

L M 128-entry window with Runahead
1.3 [1256-entry window

1.2 | [384-entry window

- B 512-entry window

o
—]

o
°

=
%

&=
9

e
=)

Micro-operations Per Cycle
=
n

&S
=

0.2 -

0.1 -

0.0 -
S95 FP00 INT00 WEB MM PROD SERV WS AVG

In-order vs. Out-of-order

1.3

1.2

1.1

Micro-operations Per Cycle
o= = e = e = e =
— (] [75] e Ln (=) ~1 = =] =] (—]

&=
>

15% 10%

14% 12%

M in-order baseline
M in-order + runahead
M out-of-order baseline

M out-of-order + runahead

20% 22%

17% 13%

73% 23%

39% 20%

280/0 150/“ 50% 47'%!

73% 16%

S95 FP00 INT00 WEB MM

PROD

SERV WS AVG

24

Instructions Per Cycle Performance

Runahead vs. Large Windows (Alpha)

3.00

2.75 4
2.50 +
2.25 4

2.00
1.75 ~
1.50 A
1.25 4
1.00 A
0.75 A
0.50

0.25

——-Baseline

0.00

-= Runahead

64

128 256 384 512 1024 2048 4096 8192
Instruction Window Size (mem latency =500 cycles)

Instructions Per Cycle Performance

3.00

2.75

2.50
2.25 ~

2.00
1.75 A
1.50 ~
1.25 A
1.00 +
0.75 A
0.50

0.25

—-Baseline

0.00

-# Runahead

64

128 256 384 512 1024 2048 4096 8192
Instruction Window Size (mem latency = 1000 cycles)

2

In-order vs. Out-of-order |

“xecution (Alpha)

Instructions Per Cycle Performance

3.00
2.75
2.50
2.25
2.00

1.75 -

1.50

1.25
1.00 -
0.75 -
0.50 -

0.25
0.00

~_ ~-000+RA
!\\\ =000
NS - |0+RA
=10
+ —.
100 300 500 700 900 1100 1300 1500 1700 1900

Memory Latency (in cycles)

20

Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO’05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO’04]

The Etticiency Problem

A

110%

100%

90%

80%

70%

60%

50%

409

309

209

109

0%

[2359

B % Increase in IPC

B % Increase in Executed Instructions

bzip2

cr

eon
gap
gcc
gzip
mcf

parser

perlbmk

twolf

sixtrack

WUPWj

AVG

%
2T%

Causes of Inefficiency

Short runahead periods
Overlapping runahead periods
Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” IEEE Micro Top Picks 2006.

Short Runahead Periods

= Processor can initiate runahead mode due to an already in-flight L2
miss generated by

o the prefetcher, wrong-path, or a previous runahead period

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Miss

coplrsesl W W

Miss 1

= Short periods
o are less likely to generate useful L2 misses
o have high overhead due to the flush penalty at runahead exit

Overlapping Runahead Periods

Two runahead periods that execute the same instructions

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Compute OVERLAP I OVERLAP |]

Miss 1

Miss 2

Second period is inefficient

Useless Runahead Periods

= Periods that do not result in prefetches for normal mode

Load 1 Miss Load 1 Hit

H

Miss 1
= They exist due to the lack of memory-level parallelism
= Mechanism to eliminate useless periods:

o Predict if a period will generate useful L2 misses

o Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

= Useless period predictors are trained based on this estimation

Overall Impact on Executed Instructions

110%

100%

90%

o
o
x

Increase in Executed Instructions

20% -

10% -+

0% -

70% -

60% -

50%

40% -

30% -

235%
M baseline runahead
M all techniques
@
®
y
\4
A
Y— = X = - - X
82588 EPETEEEE2LRE LSBT EEREE Y
N 8 ¢ 2 2 o = &5 8 2 % £ o © S o & g S > & = 3 Z
< © S 5 > s © > g E o= E E X © &8
o O (7] ;

26.5%

6.2%

Overall Impact on IPC

Increase in IPC

110%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

116%

bzip2

crafty

eon

M baseline runahead

M all techniques

gap

gcc
gzip
mcf
parser
perlbmk

twolf

vortex

vpr

ammp

applu

apsi

art

equake

facerec

fma3d

galgel

lucas

mesa

mgrid

sixtrack

swim

wupwj

AVG

N

2.6%
. 1%

Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO’05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO’04]

The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Add@

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome

The Goal of AVD Prediction

= Enable the parallelization of dependent L2 cache misses In
runahead mode with a low-cost mechanism

= How:

o Predict the values of L2-miss address (pointer) loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

Parallelizing Dependent Cache Misses

@not Compute Its Add@

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Value Pred@ CCan Compute Its Address> .

Load 1 Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative

5 Instructions

Saved Cycles
Miss 1

AVD Prediction [MICRO’05]

Address-value delta (AVD) of a load instruction defined as:
AVD = Effective Address of Load — Data Value of Load

For some address loads, AVD is stable

An AVD predictor keeps track of the AVDs of address loads

When a load is an L2 miss in runahead mode, AVD
predictor is consulted

If the predictor returns a stable (confident) AVD for that
load, the value of the load is predicted

Predicted Value = Effective Address — Predicted AVD

Why Do Stable AVDs Occur?

Regularity in the way data structures are
o allocated in memory AND
o traversed

Two types of loads can have stable AVDs

o Traversal address loads
Produce addresses consumed by address loads

o Leaf address loads
Produce addresses consumed by data loads

Traversal Address L.oads

Regularly-allocated linked list: A traversal address load loads the
pointer to next node:
A node = node->next
,/A+k AVD = Effective Addr — Data Value
7/~ N\ 7/~ N\
Effective Addr | Data Value; AVD
Atk A A+k K
A+3k A+k A+2k -k
e A+2k A+3k -k
v

Striding Stable AVD
data value

Leaf Address Loads

Sorted dictionary in parser: Dictionary looked up for an input word.

No_des point to strings (words) : A leaf address load loads the pointer to
String and node allocated consecutively : _
the string of each node:

lookup (node, input) { /I ...

| A+k ptr_str = node->string;
m = check_match(ptr_str, input);

...

B+k éa\ N\.C+k }
B C AVD = Effective Addr — Data Value
D+k Evk FAk \G+k Effective Addr | Dzlta Vaiue/AvD)
A+k A K

5 5§38 & Ao
F+k F K

| 4

No stride! Stable AVD

Performance of AVD Prediction

o 1.0 - runahead = —
S
5 097 14.3%
2 0.8 - 15.5%
©
(]
S 0.7 |
2
W 0.6
®)
S
o 0.5
£
E 04 - B Execution Time
g |
g 03 M Executed Instructions
LLl
5 0.2
N
£ 0.1
5
< 0.0 - ‘ ‘ ‘
0@ \ o Q;\ @\
06 \{\Q:b' : \(QQJ \g@éb’ < 0\0 K ’OS Q ?‘

Runahead and Dual Core Execution

Runahead execution:

+ Approximates the MLP benefits of a large instruction window (no stalling on
L2 misses)

-- Window size limited by L2 miss latency (runahead ends on miss return)
Dual-core execution:

+ Window size is not limited by L2 miss latency

-- Multiple cores used to execute the application

g,
-
=
=1
—
o
T
ey
o]
- -
E [
o
ot [
- [
.
=]
[
Ty
==h
ot
[

In-order || superscalar
] N
T core -'
/

Easier to scale (FIFO)

=

i back processor
|

Zhou, Dual-Core Execution: “Building a Highly Scalable Single-Thread

Instruction Window,” PACT 2005.
44

