
15-740/18-740
Computer Architecture

Lecture 10: Runahead and MLP

Prof. Onur Mutlu
Carnegie Mellon University

Last Time …

2

Issues in Out-of-order execution
Buffer decoupling
Register alias tables
Physical register files
Centralized vs. distributed reservation stations
Scheduling logic

Readings
Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” IEEE Micro Top Picks 2006.

Zhou, Dual-Core Execution: “Building a Highly Scalable Single-
Thread Instruction Window,” PACT 2005.

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

3

Questions
Why is OoO execution beneficial?

What if all operations take single cycle?
Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?
How large of an instruction window do we need to continue
decoding?
How many cycles of latency can OoO tolerate?
What limits the latency tolerance scalability of Tomasulo’s
algorithm?

Active/instruction window size: determined by register file,
scheduling window, reorder buffer, store buffer, load buffer

4

5

Small Windows: Full-window Stalls
When a long-latency instruction is not complete,
it blocks retirement.

Incoming instructions fill the instruction window.

Once the window is full, processor cannot place new
instructions into the window.

This is called a full-window stall.

A full-window stall prevents the processor from making
progress in the execution of the program.

6

ADD R2 R2, 64

STOR mem[R2] R4

ADD R4 R4, R5

MUL R4 R4, R3

LOAD R3 mem[R2]

ADD R2 R2, 8

BEQ R1, R0, target

LOAD R1 mem[R5]

Small Windows: Full-window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order,
but cannot be retired.

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

L2 cache misses are responsible for most full-window stalls.

LOAD R3 mem[R2]

7

Impact of L2 Cache Misses

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

8

Impact of L2 Cache Misses

500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

9

The Problem
Out-of-order execution requires large instruction windows
to tolerate today’s main memory latencies.

As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency.

Building a large instruction window is a challenging task
if we would like to achieve

Low power/energy consumption (tag matching logic, ld/st
buffers)
Short cycle time (access, wakeup/select latencies)
Low design and verification complexity

Efficient Scaling of Instruction Window Size
One of the major research issues in out of order execution

How to achieve the benefits of a large window with a small
one (or in a simpler way)?

Runahead execution?
Upon L2 miss, checkpoint architectural state, speculatively
execute only for prefetching, re-execute when data ready

Continual flow pipelines?
Upon L2 miss, deallocate everything belonging to an L2 miss
dependent, reallocate/re-rename and re-execute upon data ready

Dual-core execution?
One core runs ahead and does not stall on L2 misses, feeds
another core that commits instructions

10

Runahead Execution (I)
A technique to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is a long-latency cache miss:
Checkpoint architectural state and enter runahead mode

In runahead mode:
Speculatively pre-execute instructions
The purpose of pre-execution is to generate prefetches
L2-miss dependent instructions are marked INV and dropped

Runahead mode ends when the original miss returns
Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

11

Compute

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Hit Load 2 Hit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Perfect Caches:

Small Window:

Runahead:

Runahead Example

Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:

For both regular and irregular access patterns

Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

Hardware prefetcher and branch predictor tables are trained
using future access information.

Runahead Execution Mechanism
Entry into runahead mode

Checkpoint architectural register state

Instruction processing in runahead mode

Exit from runahead mode
Restore architectural register state from checkpoint

Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

L2-miss dependent instructions are identified and treated
specially.

They are quickly removed from the instruction window.
Their results are not trusted.

L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

Two types of results produced: INV and VALID

INV = Dependent on an L2 miss

INV results are marked using INV bits in the register file and
store buffer.

INV values are not used for prefetching/branch resolution.

Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

Oldest instruction is examined for pseudo-retirement
An INV instruction is removed from window immediately.
A VALID instruction is removed when it completes execution.

Pseudo-retired instructions free their allocated resources.
This allows the processing of later instructions.

Pseudo-retired stores communicate their data to
dependent loads.

Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

Purpose: Data communication through memory in runahead mode.

A dependent load reads its data from the runahead cache.

Does not need to be always correct Size of runahead cache is
very small.

Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

INV branches cannot be resolved.
A mispredicted INV branch causes the processor to stay on the

wrong program path until the end of runahead execution.

VALID branches are resolved and initiate recovery if mispredicted.

Runahead Execution (III)
Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)

+ Follows the program path
+ No need to construct a pre-execution thread
+ Uses the same thread context as main thread, no waste of context
+ Simple to implement, most of the hardware is already built in

Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses. Solution?
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance limited by memory latency

Implemented in IBM POWER6, Sun “Rock”
20

Memory Level Parallelism (MLP)
Idea: Find and service multiple cache misses in parallel

Why generate multiple misses?

Enables latency tolerance: overlaps latency of different misses

How to generate multiple misses?
Out-of-order execution, multithreading, runahead, prefetching

21

time

A
B

C

isolated miss parallel miss

22

Memory Latency Tolerance Techniques

Caching [initially by Wilkes, 1965]
Widely used, simple, effective, but inefficient, passive
Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967]
Works well for regular memory access patterns
Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive

Multithreading [initially in CDC 6600, 1964]
Works well if there are multiple threads
Improving single thread performance using multithreading hardware is an
ongoing research effort

Out-of-order execution [initially by Tomasulo, 1967]
Tolerates cache misses that cannot be prefetched
Requires extensive hardware resources for tolerating long latencies

23

Runahead Execution vs. Large Windows

24

In-order vs. Out-of-order

25

Runahead vs. Large Windows (Alpha)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

64 128 256 384 512 1024 2048 4096 8192

Instruction Window Size (mem latency = 500 cycles)

In
st

ru
ct

io
ns

 P
er

 C
yc

le
 P

er
fo

rm
an

ce

Baseline

Runahead
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

64 128 256 384 512 1024 2048 4096 8192

Instruction Window Size (mem latency = 1000 cycles)

In
st

ru
ct

io
ns

 P
er

 C
yc

le
 P

er
fo

rm
an

ce

Baseline
Runahead

26

In-order vs. Out-of-order Execution (Alpha)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

100 300 500 700 900 1100 1300 1500 1700 1900
Memory Latency (in cycles)

In
st

ru
ct

io
ns

 P
er

 C
yc

le
 P

er
fo

rm
an

ce

OOO+RA
OOO
IO+RA
IO

Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
A large number of instructions are speculatively executed
Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

Ineffectiveness for pointer-intensive applications
Runahead cannot parallelize dependent L2 cache misses
Address-Value Delta (AVD) Prediction [MICRO’05]

Irresolvable branch mispredictions in runahead mode
Cannot recover from a mispredicted L2-miss dependent branch
Wrong Path Events [MICRO’04]

The Efficiency Problem

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
bz

ip
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rte

x

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
V

G

% Increase in IPC

% Increase in Executed Instructions

235%

22%
27%

Causes of Inefficiency
Short runahead periods

Overlapping runahead periods

Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” IEEE Micro Top Picks 2006.

Short Runahead Periods
Processor can initiate runahead mode due to an already in-flight L2
miss generated by

the prefetcher, wrong-path, or a previous runahead period

Short periods
are less likely to generate useful L2 misses
have high overhead due to the flush penalty at runahead exit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Miss

Miss 1

Miss 2

Load 1 Hit

Overlapping Runahead Periods

Compute

Load 1 Miss

Miss 1

Runahead

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

OVERLAP OVERLAP

Two runahead periods that execute the same instructions

Second period is inefficient

Useless Runahead Periods
Periods that do not result in prefetches for normal mode

They exist due to the lack of memory-level parallelism
Mechanism to eliminate useless periods:

Predict if a period will generate useful L2 misses
Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

Useless period predictors are trained based on this estimation

Compute

Load 1 Miss

Runahead
Miss 1

Load 1 Hit

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
bz

ip
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rte

x

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
V

G

In
cr

ea
se

 in
 E

xe
cu

te
d

In
st

ru
ct

io
ns

baseline runahead

all techniques

235%

Overall Impact on Executed Instructions

26.5%

6.2%

Overall Impact on IPC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
bz

ip
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
c f

pa
r s

er

pe
rlb

m
k

tw
ol

f

vo
rte

x

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
VG

In
cr

ea
se

 in
 IP

C

baseline runahead

all techniques

116%

22.6%
22.1%

Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
A large number of instructions are speculatively executed
Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

Ineffectiveness for pointer-intensive applications
Runahead cannot parallelize dependent L2 cache misses
Address-Value Delta (AVD) Prediction [MICRO’05]

Irresolvable branch mispredictions in runahead mode
Cannot recover from a mispredicted L2-miss dependent branch
Wrong Path Events [MICRO’04]

Runahead execution cannot parallelize dependent misses
wasted opportunity to improve performance
wasted energy (useless pre-execution)

Runahead performance would improve by 25% if this
limitation were ideally overcome

The Problem: Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV

The Goal of AVD Prediction
Enable the parallelization of dependent L2 cache misses in
runahead mode with a low-cost mechanism

How:
Predict the values of L2-miss address (pointer) loads

Address load: loads an address into its destination register,
which is later used to calculate the address of another load
as opposed to data load

Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Hit

Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

Runahead

Cannot Compute Its Address!

Saved Speculative
Instructions

Miss

AVD Prediction [MICRO’05]

Address-value delta (AVD) of a load instruction defined as:
AVD = Effective Address of Load – Data Value of Load

For some address loads, AVD is stable
An AVD predictor keeps track of the AVDs of address loads
When a load is an L2 miss in runahead mode, AVD
predictor is consulted

If the predictor returns a stable (confident) AVD for that
load, the value of the load is predicted

Predicted Value = Effective Address – Predicted AVD

Why Do Stable AVDs Occur?
Regularity in the way data structures are

allocated in memory AND
traversed

Two types of loads can have stable AVDs
Traversal address loads

Produce addresses consumed by address loads
Leaf address loads

Produce addresses consumed by data loads

Traversal Address Loads
Regularly-allocated linked list:

A

A+k

A+2k

A+3k...

A traversal address load loads the
pointer to next node:

node = node next

Effective Addr Data Value AVD

A A+k -k

A+k A+2k -k

A+2k A+3k -k

Stable AVDStriding
data value

AVD = Effective Addr – Data Value

Leaf Address Loads
Sorted dictionary in parser:
Nodes point to strings (words)
String and node allocated consecutively

A+k

A C+k

C

B+k

B
D+k E+k F+k G+k

D E F G

Dictionary looked up for an input word.

A leaf address load loads the pointer to
the string of each node:

Effective Addr Data Value AVD

A+k A k

C+k C k

F+k F k

lookup (node, input) { // ...
ptr_str = node string;
m = check_match(ptr_str, input);
// …

}

Stable AVDNo stride!

AVD = Effective Addr – Data Valuestring

node

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

bis
ort

he
alt

h

mst
pe

rim
ete

r
tre

ea
dd tsp

vo
ron

oi mcf

pa
rse

r

tw
olf vp

r

AVG

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

an
d

Ex
ec

ut
ed

 In
st

ru
ct

io
ns

Execution Time

Executed Instructions

Performance of AVD Prediction
runahead

14.3%
15.5%

Runahead and Dual Core Execution
Runahead execution:
+ Approximates the MLP benefits of a large instruction window (no stalling on

L2 misses)
-- Window size limited by L2 miss latency (runahead ends on miss return)

Dual-core execution:
+ Window size is not limited by L2 miss latency
-- Multiple cores used to execute the application

Zhou, Dual-Core Execution: “Building a Highly Scalable Single-Thread
Instruction Window,” PACT 2005.

44

Easier to scale (FIFO)

