Backpropagation

Spring 2020

Story so far

- Image classification problem
- Linear models
- Score function
- Loss function
- Learning
- Learning as optimization
- Gradient descent (batch, mini-batch, stochastic)

Today

- Learning as optimization
- Gradient descent (batch, mini-batch, stochastic)
- Require computing gradients
- Backpropagation
- Technique for computing gradients recursively
- Key technique for training deep networks

Gradients

- Consider $f(X)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- $\nabla f(X)=\left[\begin{array}{llll}\frac{\partial f(X)}{\partial x_{1}} & \frac{\partial f(X)}{\partial x_{2}} & \cdots & \frac{\partial f(X)}{\partial x_{n}}\end{array}\right]$

Computing gradients analytically

$$
f(x, y)=x y \quad \rightarrow \quad \frac{\partial f}{\partial x}=y \quad \frac{\partial f}{\partial y}=x
$$

$$
\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]=[y, x]
$$

Derivatives measure sensitivity

$$
x=4, y=-3 \quad f(x, y)=-12
$$

$$
\frac{\partial f}{\partial x}=-3
$$

If we were to increase x by a tiny amount, the effect on the whole expression would be to decrease it (due to the negative sign), and by three times that amount.

A composed function

$$
f(x, y, z)=(x+y) z
$$

$$
q=x+y \quad f=q z
$$

Chain rule

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}
$$

Chain rule applied

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}
$$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& f=q z \quad q=x+y
\end{aligned}
$$

$$
\frac{\partial f}{\partial q}=z \quad \frac{\partial q}{\partial x}=1
$$

$$
\frac{\partial f}{\partial x}=z
$$

Chain rule on example function

```
# set some inputs
x = -2; y = 5; z = -4
# perform the forward pass
q = x + y # q becomes 3
f = q * z # f becomes -12
# perform the backward pass (backpropagation) in reverse order:
# first backprop through f = q * z
dfdz = q # df/dz = q, so gradient on z becomes 3
dfdq = z # df/dq = z}\mathrm{ , so gradient on q becomes -4
# now backprop through q = x + y
dfdx = 1.0 * dfdq # dq/dx = 1. And the multiplication here is the chain rule!
dfdy = 1.0 * dfdq # dq/dy = 1
```


Backpropagation illustrated

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& q=x+y \quad \frac{\partial q}{\partial x}=1 \quad \frac{\partial q}{\partial y}=1 \\
& f=q z \quad \frac{\partial f}{\partial q}=z \quad \frac{\partial f}{\partial z}=q \\
& \text { Compute }: \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

$$
\frac{\partial f}{\partial z}=q
$$

Backpropagation: key local step

Backpropagation: key ideas

- Gradients computed locally
- Gradient of interest computed by recursive applications of chain rule

Backpropagation in practice

- Staged computation
- Carefully decompose complex function to easily compute gradients

Backpropagation in practice

- Staged computation example

$$
\begin{gathered}
f(x, y)=\frac{x+\sigma(y)}{\sigma(x)+(x+y)^{2}} \quad \sigma(x)=\frac{1}{1+e^{-x}} \\
\frac{\partial f}{\partial x}=\frac{1}{\frac{1}{\mathrm{e}^{-x}+1}+(x+y)^{2}}-\frac{\left(x+\frac{1}{\mathrm{e}^{-y}+1}\right)\left(\frac{\mathrm{e}^{-x}}{\left(\mathrm{e}^{-x}+1\right)^{2}}+2(x+y)\right)}{\left(\frac{1}{\mathrm{e}^{-x}+1}+(x+y)^{2}\right)^{2}}
\end{gathered}
$$

Backpropagation in practice

- Staged computation example: decomposing for forward pass

$$
\sigma(y)=\frac{1}{1+e^{-y}}
$$

$$
f(x, y)=\frac{x+\sigma(y)}{\sigma(x)+(x+y)^{2}}
$$

$$
f(x, y)=\frac{x+\sigma(y)}{\sigma(x)+(x+y)^{2}} \quad \text { whee }=\frac{\sigma(x)}{1+e^{-x}}
$$

$$
{ }_{n u m}=x+\sigma(y)
$$

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

$$
\begin{aligned}
& x p y=x+y \\
& x p y=g^{n}=(x p y)^{2}
\end{aligned}
$$

$$
d_{\text {en }}=\sigma(x)+\text { xpysqr }
$$

$$
\text { invden }=\frac{1}{\text { den }}
$$

Backpropagation in practice

- Staged computation example: backward pass

$$
f(x, y)=\frac{x+\sigma(y)}{\sigma(x)+(x+y)^{2}}
$$

Backward pass reuses variables computed in forward pass (cache them!)

Backward pass

$$
\begin{aligned}
& \frac{\partial f}{\partial n u m}=\text { invden }, \frac{\partial f}{\partial \text { invader }}=\text { mun } \\
& \frac{\partial f}{\partial d e n}=\frac{\partial \text { invden }}{\partial \text { den }} \cdot \frac{\partial f}{\partial \text { invoden }} \\
& =\left(-\frac{1}{\left(d e_{n}\right)^{2}}\right) \cdot \text { nun }
\end{aligned}
$$

Backpropagation in practice

- Staged computation example: forward pass code

```
x = 3 # example values
y = -4
# forward pass
sigy = 1.0 / (1 + math.exp(-y)) # sigmoid in numerator #(1)
num = x + sigy # numerator #(2)
sigx = 1.0 / (1 + math.exp(-x)) # sigmoid in denominator #(3)
xpy = x + y #(4)
xpysqr = xpy**2 #(5)
den = sigx + xpysqr # denominator #(6)
invden = 1.0 / den #(7)
f = num * invden # done! #(8)
```

Chain rule, generalized

$$
\begin{array}{ll}
f(x, y, z)=(x+y) z \\
q=x+y & \frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}+0 \\
f=q z & \frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial x}
\end{array}
$$

In general:

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad \frac{\partial f}{\partial x}=\frac{\partial f}{\partial a_{1}} \frac{\partial a_{1}}{\partial x}+\frac{\partial f}{\partial a_{2}} \frac{\partial a_{2}}{\partial x}+\cdots+\frac{\partial f}{\partial a_{n}} \frac{\partial a_{n}}{\partial x}
$$

Backpropagation in practice

- Staged computation example: backward pass code

```
dw in code denotes
\(\frac{\partial f}{\partial w}\)
```

```
# backprop f = num * invden
```

dnum = invden \# gradient on numerator \#(8)

```
dnum = invden # gradient on numerator #(8)
dinvden = num #(8)
dinvden = num #(8)
# backprop invden = 1.0 / den
# backprop invden = 1.0 / den
dden = (-1.0 / (den**2)) * dinvden #(7)
dden = (-1.0 / (den**2)) * dinvden #(7)
# backprop den = sigx + xpysqr
# backprop den = sigx + xpysqr
dsigx = (1) * dden #(6)
dsigx = (1) * dden #(6)
dxpysqr = (1) * dden #(6)
dxpysqr = (1) * dden #(6)
# backprop xpysqr = xpy**2
# backprop xpysqr = xpy**2
dxpy = (2 * xpy) * dxpysqr #(5)
dxpy = (2 * xpy) * dxpysqr #(5)
# backprop xpy = x + y 
# backprop xpy = x + y 
dy = (1) * dxpy #(4)
dy = (1) * dxpy #(4)
# backprop sigx = 1.0 / (1 + math.exp(-x))
# backprop sigx = 1.0 / (1 + math.exp(-x))
dx += ((1 - sigx) * sigx) * dsigx # Notice += !! See notes below #(3)
dx += ((1 - sigx) * sigx) * dsigx # Notice += !! See notes below #(3)
# backprop num = x + sigy
# backprop num = x + sigy
dx += (1) * dnum #(2)
dx += (1) * dnum #(2)
dsigy = (1) * dnum #(2)
dsigy = (1) * dnum #(2)
# backprop sigy = 1.0 / (1 + math.exp(-y))
# backprop sigy = 1.0 / (1 + math.exp(-y))
dy += ((1 - sigy) * sigy) * dsigy
```

dy += ((1 - sigy) * sigy) * dsigy

```

\section*{Gradients for vectorized code}


\section*{Gradients for vectorized code}
- Details of
- Jacobian matrix
- Chain rule with vectors and matrices
- Work out on paper
- Review notes: http://cs231n.stanford.edu/vecDerivs.pdf

\section*{Acknowledgment}

\section*{Based in part on material from}
- Stanford CS231n http://cs231n.github.io/
- Spring 2019 course

\section*{Patterns in backward flow}

- add gate: distributes gradient equally to its inputs
- max gate: routes gradient of output to max input
- mul gate: swaps input activations and multiplies by gradient```

