
Stochastic Gradient Descent

Spring 2020

Security and Fairness of Deep Learning

Image Classification

Linear model

• Score function
• Maps raw data to class scores

• Loss function
• Measures how well predicted classes agree with ground truth labels

• Multiclass Support Vector Machine loss (SVM loss)
• Softmax classifier (cross-entropy loss)

• Learning
• Find parameters of score function that minimize loss function

• Multiclass Support Vector Machine loss (SVM loss)

Recall: Linear model with SVM loss

• Score function
• Maps raw data to class scores

• Loss function
• Measures how well predicted classes agree with ground truth labels

f(xi,W) = Wxi

L =
1

N

X

i

X

j 6=yi

[max(0, f(xi;W)j � f(xi;W)yi +�)] + �
X

k

X

l

W 2
k,l

Today

• Learning model parameters with Stochastic Gradient Descent that
minimize loss

• Later
• Different score functions: deep networks
• Same loss functions and learning algorithm

Outline

• Visualizing the loss function
• Optimization

• Random search
• Random local search
• Gradient descent

• Mini-batch gradient descent

Visualizing SVM loss function

• Difficult to visualize fully
• CIFAR-10 a linear classifier weight matrix is of size [10 x 3073] for a total of

30,730 parameters

• Can gain intuition by visualizing along rays (1 dimension) or planes (2
dimensions)

Visualizing in 1-D

• Generate random weight matrix
• Generate random direction
• Compute loss along this direction

W

W1

L(W + aW1)

Loss for single example

Where is the minima?

Visualizing in 2-D

• Compute loss along plane L(W + aW1 + bW2)

Loss for single example Average loss for 100 examples
(convex function)

How do we find weights that minimize loss?

• Random search
• Try many random weight matrices and pick the best one
• Performance: poor

• Random local search
• Start with random weight matrix
• Try many local perturbations, pick the best one, and iterate
• Performance: better but still quite poor

• Useful idea: iterative refinement of weight matrix

Optimization basics

The problem of optimization

Find the value of x where f(x) is minimum

Our setting: x represents weights, f(x) represents loss function

x

f(x)

In two stages

• Function of single variable
• Function of multiple variables

Derivative of a function of single variable

df(x)

dx
= lim

h !0

f(x+ h)� f(x)

h

Derivatives

d

dx
(x2) = 2x

d

dx
(ex) = ex

d

dx
(ln x) =

1

x
if x > 0

Finding minima

Increase x if derivative negative, decrease if positive
i.e., take step in direction opposite to sign of derivative
(key idea of gradient descent)

x

f(x)
𝑑𝑦
𝑑𝑥

= 0

𝑑𝑦
𝑑𝑥 < 0

𝑑𝑦
𝑑𝑥 > 0

Doesn’t always work

• Theoretical and empirical evidence that gradient descent works quite
well for deep networks

f(x)

x

global minimum

inflection point

local minimum

global maximum

In two stages

• Function of single variable
• Function of multiple variables

Partial derivatives

The partial derivative of an n-ary function f(x1,...,xn) in the
direction xi at the point (a1,...,an) is defined to be:

Partial derivative example

By IkamusumeFan - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=42262627

At (1, 1), the slope is 3

The gradient of a scalar function

• The gradient 𝛻𝑓(𝑋) of a scalar function
𝑓(𝑋) of a multi-variate input 𝑋 is a
multiplicative factor that gives us the
change in 𝑓(𝑋) for tiny variations in 𝑋

𝑑𝑓 𝑋 = 𝛻𝑓 𝑋 𝑑𝑋
𝛻𝑓 𝑋 = 𝑑𝑓(𝑋)/𝑑𝑋

𝑑𝑓(𝑋)

𝑑𝑋

Gradients of scalar functions with multi-
variate inputs
•Consider 𝑓 𝑋 = 𝑓 𝑥., 𝑥0, … , 𝑥2

•𝛻𝑓(𝑋) = 45 6
478

45 6
479

⋯ 45 6
47;

Computing gradients analytically

f(x, y) = x+ y ! @f

@x
= 1

@f

@y
= 1

Computing gradients analytically

f(x, y) = xy ! @f

@x
= y

@f

@y
= x

rf = [
@f

@x
,
@f

@y
] = [y, x]

Derivatives measure sensitivity

If we were to increase by a tiny amount, the effect on the
whole expression would be to decrease it (due to the negative
sign), and by three times that amount.

x = 4, y = �3 f(x, y) = �12
@f

@x
= �3

x

f(x, y) = xy ! @f

@x
= y

@f

@y
= x

Finding minima

Take step in
direction
opposite to sign
of gradient

Gradient
vector 𝛻𝑓(𝑋)

Moving in this
direction increases
𝑓(𝑋) fastest

−𝛻𝑓(𝑋)
Moving in this

direction decreases
𝑓 𝑋 fastest

Gradient descent algorithm

• Initialize:
• 𝑥=
• 𝑘 = 0

• Do
• 𝑥?@. = 𝑥? − 𝜂?𝛻𝑓 𝑥?

• 𝑘 = 𝑘 + 1

• Until 𝑓 𝑥? − 𝑓 𝑥?D. ≤ 𝜀

Average gradient
across all training

examples

f(xk) =
1

N
⌃N

i=1fi(x
k)

5f(xk) =
1

N
⌃N

i=1 5 fi(x
k)

Step size affects convergence of gradient
descent

Murphy, Machine Learning, Fig 8.2

Gradient descent algorithm

• Initialize:
• 𝑥=
• 𝑘 = 0

• Do
• 𝑥?@. = 𝑥? − 𝜂?𝛻𝑓 𝑥?

• 𝑘 = 𝑘 + 1

• Until 𝑓 𝑥? − 𝑓 𝑥?D. ≤ 𝜀

Challenge to discuss later: How to choose step size?

Average gradient
across all training

examples

Challenge: Not scalable for very large data sets

Mini-batch gradient descent

• Initialize:
• 𝑥=
• 𝑘 = 0

• Do
• 𝑥?@. = 𝑥? − 𝜂?𝛻𝑓 𝑥?

• 𝑘 = 𝑘 + 1

• Until 𝑓 𝑥? − 𝑓 𝑥?D. ≤ 𝜀

Faster
convergence

Average gradient
over small batches

of training
examples (e.g.,
sample of 256

examples)

Special case: Stochastic or online gradient descent à
use single training example in each update step

Stochastic gradient descent convergence

Murphy, Machine Learning, Fig 8.8

SVM loss visualization

Challenge: Gradient does not exist

Computing subgradients analytically

The set of subderivatives at x0 for a convex function is
a nonempty closed interval [a, b], where a and b are
the one-sided limits:

Computing subgradients analytically

f(x, y) = max(x, y) ! @f

@x
= I(x >= y)

@f

@y
= I(y >= x)

The (sub)gradient is 1 on the input that is larger and 0 on the other input

Subgradient of SVM loss

Li =
X

j 6=yi

⇥
max(0, wT

j xi � wT
yi
xi +�)

⇤

rwyi
Li = �

0

@
X

j 6=yi

I(wT
j xi � wT

yi
xi +� > 0)

1

Axi

Number of classes that didn’t meet the desired margin

rwjLi = I(wT
j xi � wT

yi
xi +� > 0)xi

j-th class didn’t meet the desired margin

Review derivatives

• Please review rules for computing derivatives and partial derivatives
of functions, including the chain rule

• https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives

• You will need to use them in HW1!

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives

Summary

Acknowledgment

• Based on material from
• Stanford CS231n http://cs231n.github.io/
• CMU 11-785 Course
• Spring 2019 Course

http://cs231n.github.io/

