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Image Classification



Linear model

• Score function
• Maps raw data to class scores

• Loss function
• Measures how well predicted classes agree with ground truth labels

• Multiclass Support Vector Machine loss (SVM loss)
• Softmax classifier (cross-entropy loss)

• Learning
• Find parameters of score function that minimize loss function

• Multiclass Support Vector Machine loss (SVM loss)



Recall: Linear model with SVM loss

• Score function
• Maps raw data to class scores

• Loss function
• Measures how well predicted classes agree with ground truth labels
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Today

• Learning model parameters with Stochastic Gradient Descent that 
minimize loss

• Later
• Different score functions: deep networks
• Same loss functions and learning algorithm



Outline

• Visualizing the loss function
• Optimization

• Random search
• Random local search
• Gradient descent

• Mini-batch gradient descent



Visualizing SVM loss function

• Difficult to visualize fully 
• CIFAR-10 a linear classifier weight matrix is of size [10 x 3073] for a total of 

30,730 parameters

• Can gain intuition by visualizing along rays (1 dimension) or planes (2 
dimensions)



Visualizing in 1-D

• Generate random weight matrix
• Generate random direction
• Compute loss along this direction  
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Where is the minima?



Visualizing in 2-D

• Compute loss along plane L(W + aW1 + bW2)

Loss for single example Average loss for 100 examples 
(convex function)



How do we find weights that minimize loss?

• Random search
• Try many random weight matrices and pick the best one
• Performance: poor

• Random local search
• Start with random weight matrix
• Try many local perturbations, pick the best one, and iterate
• Performance: better but still quite poor

• Useful idea: iterative refinement of weight matrix



Optimization basics



The problem of optimization

Find the value of x where f(x) is minimum

Our setting: x represents weights, f(x) represents loss function
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In two stages

• Function of single variable
• Function of multiple variables



Derivative of a function of single variable
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Finding minima

Increase x if derivative negative, decrease if positive
i.e., take step in direction opposite to sign of derivative
(key idea of gradient descent)
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Doesn’t always work

• Theoretical and empirical evidence that gradient descent works quite 
well for deep networks
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In two stages

• Function of single variable
• Function of multiple variables



Partial derivatives

The partial derivative of an n-ary function f(x1,...,xn) in the 
direction xi at the point (a1,...,an) is defined to be:



Partial derivative example

By IkamusumeFan - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=42262627

At (1, 1), the slope is 3



The gradient of a scalar function

• The gradient 𝛻𝑓(𝑋) of a scalar function 
𝑓(𝑋) of a multi-variate input 𝑋 is a 
multiplicative factor that gives us the 
change in 𝑓(𝑋) for tiny variations in 𝑋

𝑑𝑓 𝑋 = 𝛻𝑓 𝑋 𝑑𝑋
𝛻𝑓 𝑋 = 𝑑𝑓(𝑋)/𝑑𝑋

𝑑𝑓(𝑋)

𝑑𝑋



Gradients of scalar functions with multi-
variate inputs
•Consider 𝑓 𝑋 = 𝑓 𝑥., 𝑥0, … , 𝑥2

•𝛻𝑓(𝑋) = 45 6
478

45 6
479

⋯ 45 6
47;



Computing gradients analytically

f(x, y) = x+ y ! @f
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Computing gradients analytically
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Derivatives measure sensitivity

If we were to increase     by a tiny amount, the effect on the 
whole expression would be to decrease it (due to the negative 
sign), and by three times that amount.
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Finding minima

Take step in 
direction 
opposite to sign 
of gradient

Gradient
vector 𝛻𝑓(𝑋)

Moving in this 
direction increases 
𝑓(𝑋) fastest

−𝛻𝑓(𝑋)
Moving in this 

direction decreases 
𝑓 𝑋 fastest



Gradient descent algorithm

• Initialize: 
• 𝑥=
• 𝑘 = 0

• Do
• 𝑥?@. = 𝑥? − 𝜂?𝛻𝑓 𝑥?

• 𝑘 = 𝑘 + 1

• Until 𝑓 𝑥? − 𝑓 𝑥?D. ≤ 𝜀

Average gradient 
across all training 

examples
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Step size affects convergence of gradient 
descent 

Murphy, Machine Learning, Fig 8.2



Gradient descent algorithm

• Initialize: 
• 𝑥=
• 𝑘 = 0

• Do
• 𝑥?@. = 𝑥? − 𝜂?𝛻𝑓 𝑥?

• 𝑘 = 𝑘 + 1

• Until 𝑓 𝑥? − 𝑓 𝑥?D. ≤ 𝜀

Challenge to discuss later: How to choose step size?

Average gradient 
across all training 

examples

Challenge: Not scalable for very large data sets



Mini-batch gradient descent

• Initialize: 
• 𝑥=
• 𝑘 = 0

• Do
• 𝑥?@. = 𝑥? − 𝜂?𝛻𝑓 𝑥?

• 𝑘 = 𝑘 + 1

• Until 𝑓 𝑥? − 𝑓 𝑥?D. ≤ 𝜀

Faster 
convergence

Average gradient 
over small batches 

of training 
examples (e.g., 
sample of 256 

examples)

Special case: Stochastic or online  gradient descent à
use single training example in each update step



Stochastic gradient descent convergence

Murphy, Machine Learning, Fig 8.8



SVM loss visualization

Challenge: Gradient does not exist



Computing subgradients analytically

The set of subderivatives at x0 for a convex function is 
a nonempty closed interval [a, b], where a and b are 
the one-sided limits:



Computing subgradients analytically

f(x, y) = max(x, y) ! @f

@x
= I(x >= y)

@f

@y
= I(y >= x)

The (sub)gradient is 1 on the input that is larger and 0 on the other input



Subgradient of SVM loss
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Review derivatives

• Please review rules for computing derivatives and partial derivatives 
of functions, including the chain rule

• https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives

• You will need to use them in HW1!

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives


Summary
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