Security and Fairness of Deep Learning

Course Overview

Anupam Datta

CMU

Spring 2018

Course staff

- Instructor: Anupam Datta
 - Office: B23 221
 - Email: <u>danupam@cmu.edu</u>
 - Office hours: Thur 12-1pm Pacific
 - Google hangouts: link on Piazza
- TA: Caleb Lu
 - Office: Bldg 19 1031
 - Email: caleb.lu@sv.cmu.edu
 - Office hours: Mon 10am-12pm Pacific
 - Google hangouts: link on Piazza

Recent successes of deep learning

Image classification

Deep neural networks learn representations

Deeper layers learn progressively more abstract representations: pixels, edges, motifs, parts of objects, objects

Enabling trends

- Large volumes of training data
- Computation power
 - GPUs,...

Course objective

Understand deeply how and why deep networks work and their weaknesses

- 1. Fundamentals of deep networks
- 2. Unlocking the black box
- 3. Security of deep learning models
- 4. Fairness of deep learning

- 1. Fundamentals of deep networks
 - Background on machine learning
 - Architectures, training, platforms
 - Focus on convolutional and recurrent neural networks

theano

- 2. Unlocking the black box
 - Explaining behavior of deep neural networks

Integrated gradients

- 3. Security of deep learning models
 - Attacks on classifiers and defenses

- 4. Fairness of deep learning
 - Bias and de-biasing

Google Translate for Business: Translator Toolkit Website Translator

About Google Translate	Community	Mobile	G+	٦	About Google	Privacy & Terms	Help	Send feedback
------------------------	-----------	--------	----	---	--------------	-----------------	------	---------------

Image: Second second

 \equiv

https://twitter.com/tweeterrance/status/854766266094985216/photo/1

MOTHERBOARD

Prerequisites

- No formal prerequisites
- Basics of linear algebra, probability, multivariate calculus
 - Will review briefly in class and provide resources to learn on your own
 - Roughly Chapters 1-5 of <u>Deep Learning</u> textbook by Goodfellow et al.
- Familiarity with Python
 - Necessary for programming homework
- Quick class poll

Logistics

- Lectures: Tue & Thur, 10:30-11:50am Pacific
- Web page: http://www.ece.cmu.edu/~ece739/
- Temp web page: http://www.andrew.cmu.edu/user/kaijil/class-18739/
- Canvas (for grades, homework)
- Piazza (for all other communication)
 - Please enroll; you should have received invitation
- Textbook
 - <u>Deep Learning</u> textbook by Goodfellow, Bengio, Courville

Grading

- Homework: 80%
 - 4 x 20%
- Paper summaries: 10%
 - 5 x 2%
- Class participation: 10%
 - Be present and engaged in class and piazza

Collaboration policy on homework

• You are allowed to discuss homework problems with other students in the class, but are required to write out solutions independently and to acknowledge any collaboration or other source.

<u>CMU Computing Policy</u> <u>CMU Policy on Cheating</u>