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Key insight

Leverage second-order derivatives (gradient) in addition to first-order
derivatives to converge faster to minima



In two steps

* Function of single variable

* Function of multiple variables



Derivative at minima
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Turning Points

e Both maxima and minima have zero derivative

* Both are turning points



Derivatives of a curve
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* Both maxima and minima are turning points

e Both maxima and minima have zero derivative



Derivative of the derivative of the curve
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* The second derivative f”’(x) is —ve at maxima and +ve at minima



summary
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I » All locations with zero

derivative are critical points

~1* The second derivative is

e > (0 at minima
e < (0 at maxima

e Zero at inflection points



In two steps

* Function of single variable
* Function of multiple variables



Gradient of function with multi-variate inputs
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Note: Scalar function of multiple variables



The Hessian

* The Hessian of a function f (x4, x3, ..., Xp)
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Jnconstrained minimization of multivariate
function

1. Solve for the X where the gradient equation equals to zero

VF(X)=0

2. Compute the Hessian Matrix V2 f(X) at the candidate solution and
verify that

 Hessian is positive definite (eigenvalues positive) -> to identify local minima

 Hessian is negative definite (eigenvalues negative) -> to identify local
maxima




Example

* Minimize
f(x, %, %)=(X)Y+x(1 X)) (X) XX+(X)+X

e Gradient
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Example

* Set the gradient to null

2x,+1 X, | 0 )
Vi=0=| x+2x, x, |=| O
X, +2x+1 | | O

* Solving the 3 equatio_ns system with 3 unknowns




Example

2 1 0
* Compute the Hessian matrix Vv?f=| 1 2 1
0O 1 2

* Evaluate the eigenvalues of the Hessian matrix
=3414, ,=0.586, ,=2

* All the eigenvalues are positive => the Hessian matrix is positive
definite

* This point is a minimum




Catch

* Closed form solutions not always available

* Instead use an iterative refinement approach
 (Stochastic) gradient descent makes use of first-order derivatives (gradient)
e Can we do better with second-order derivatives (Hessian)?



Newton’s method for convex functions

* |terative update of model parameters like gradient descent

* Key update step

it = 2" — f (")

 Compare with gradient descent
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Taylor series

The Taylor series of a function f (x) that is infinitely differentiable at the
point a is the power series
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Taylor series second-order approximation

The Taylor series second-order approximation of a function f (x) that
is infinitely differentiable at the point a is

f(a) + f'(@)(z — a) + 5 f"(a) (= — a)



Local minimum of Taylor series second-order
approximation

f(a) + f'(@)(z —a) + 5 f"(a) (& — a)
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F(a)

f'(a) if f"(a) > 0



Newton’s method approach

Take step to local minima of second-order Taylor approximation of loss
function



Example

Murphy, Machine Learning, Fig 8.4
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or series second-order approximation for
tivariate function
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Deriving update rule

Local minima of this function
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Weakness of Newton’s method (1)

* Appropriate when function is strictly convex
* Hessian always positive definite
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Murphy, Machine Learning, Fig 8.4



Weakness of Newton’s method (2)

 Computing inverse Hessian explicitly is too expensive
e O(k”"3) if there are k model parameters: inverting a k x k matrix



Quasi-Newton methods address weakness

* lteratively build up approximation to the Hessian

* Popular method for training deep networks
e Limited memory BFGS (L-BFGS)
* Will discuss in a later lecture
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