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Key insight 

 

 

Leverage second-order derivatives (gradient) in addition to first-order 
derivatives to converge faster to minima  



In two steps 

• Function of single variable 

• Function of multiple variables 



Derivative at minima 

x 

f(x) 

𝑑𝑑 = 0 



Turning Points 

 

 

 

 

 

• Both maxima and minima have zero derivative 

• Both are turning points 
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Derivatives of a curve 

 

 

 

 

 

• Both maxima and minima are turning points 

• Both maxima and minima have zero derivative 
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Derivative of the derivative of the curve 

 

 

 

 

 

 

• The second derivative f’’(x) is –ve at maxima and +ve at minima 
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Summary 

• All locations with zero 

derivative are critical points 

 

• The second derivative is  

• 0 at minima 

• 0 at maxima 

• Zero at inflection points 
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In two steps 

• Function of single variable 

• Function of multiple variables 



Gradient of function with multi-variate inputs 

 

•Consider 𝑓 𝑋 = 𝑓 , , … , 𝑛  •𝛻𝑓 𝑋 = 𝜕𝑓 𝑋𝜕𝑥 𝜕𝑓 𝑋𝜕𝑥 ⋯ 𝜕𝑓 𝑋𝜕𝑥𝑛  

Note: Scalar function of multiple variables  



The Hessian 

• The Hessian of a function 𝑓 , , … , 𝑛   
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Unconstrained minimization of multivariate 

function 

1. Solve for the 𝑋 where the gradient equation equals to zero 

 

 

2. Compute the Hessian Matrix 𝛻 𝑓 𝑋  at the candidate solution and 

verify that 

• Hessian is positive definite (eigenvalues positive)  -> to identify local minima  

• Hessian is negative definite (eigenvalues negative) -> to identify local 

maxima 
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Example 

• Minimize 

 

 

• Gradient  
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Example 

• Set the gradient to null 

 

 

 

• Solving the 3 equations system with 3 unknowns 
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Example 

• Compute the Hessian matrix 

 

• Evaluate the eigenvalues of the Hessian matrix 

 

• All the eigenvalues are positive => the Hessian matrix is positive 
definite 

 

• This point is a minimum 
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Catch 

• Closed form solutions not always available 

 

• Instead use an iterative refinement approach 

• (Stochastic) gradient descent makes use of first-order derivatives (gradient) 

• Can we do better with second-order derivatives (Hessian)? 



Ne to ’s ethod for co ex fu ctio s 

• Iterative update of model parameters like gradient descent 

 

• Key update step 

 

 

• Compare with gradient descent 



Taylor series  

The Taylor series of a function f (x) that is infinitely differentiable at the 

point a is the power series 



Taylor series second-order approximation  

The Taylor series second-order approximation of a function f (x) that 

is infinitely differentiable at the point a is 



Local minimum of Taylor series second-order 

approximation  



Ne to ’s ethod approach 

 

 

 

Take step to local minima of second-order Taylor approximation of loss 
function 



Example 

Murphy, Machine Learning, Fig 8.4 



Taylor series second-order approximation for 

multivariate function  



Deriving update rule 

Local minima of this function 

 

 

 

is  

 

 



Weak ess of Ne to ’s ethod  

• Appropriate when function is strictly convex 

• Hessian always positive definite  

Murphy, Machine Learning, Fig 8.4 



Weak ess of Ne to ’s ethod  

• Computing inverse Hessian explicitly is too expensive 

• O(k^3) if there are k model parameters: inverting a k x k matrix 



Quasi-Newton methods address weakness 

 

• Iteratively build up approximation to the Hessian 

 

• Popular method for training deep networks 

• Limited memory BFGS (L-BFGS) 

• Will discuss in a later lecture 



Acknowledgment 

Based in part on material from CMU 11-785 


