
Towards Evaluating  
the Robustness 

of Neural Networks

Nicholas Carlini and David Wagner 
University of California, Berkeley



Background:  
Adversarial Examples

• For a classification neural network F(x) 

• Given an input X classified as label L ... 

• ... it is easy to find an X′ close to X 

• ... so that  F(X′) != L



Motivation: 
Why should we care?



Distance Metrics

• "Adversarial examples are close to the original" 

• How do we define close? 

• This is what lets us compare attacks. 

• In what domain? Images.



Distance Metrics

• Lp distance metrics: 

• L0 - number of pixels changed 

• L2 - standard Euclidian distance 

• Linfinity - amount each pixel can be changed



If any Lp distance is small, 
the two images should be 

visually similar



Classified as a 1 Classified as a 0



For this talk: 
 

Assume complete knowledge 
of model parameters

(but lots of work exists for other threat models)



Two ways to evaluate robustness: 

1. Construct a proof of robustness 
 2. Demonstrate constructive attack



Proving Robustness
• It is possible to prove robustness 

• ... for specific input points 

• ... on simple datasets (e.g., MNIST) 

• ... for small networks (e.g., 100 neurons) 

• ... for ReLU activations

N Carlini, G Kat, C Barrett, and D Dill. "Provably Minimally- 
Distorted Adversarial Examples." Under Submission to ICML.



Finding  
Adversarial Examples

• Formulation: given input x, find x′ where  
minimize     d(x,x′) 
such that        F(x′) = T  
                   x′ is "valid" 

• Gradient Descent to the rescue? 

• Non-linear constraints are hard



Reformulation
• Formulation: 

minimize     d(x,x′) + g(x′) 
such that    x′ is "valid" 

• Where g(x′) is some kind of loss function on how 
close F(x′) is to target T 

• g(x′) is small if F(x′) = T 

• g(x′) is large if F(x′) != T



Reformulation
• For example 

• g(x′) = (1-F(x′)T) 

• If F(x′) says the probability of T is 1: 

• g(x′) = (1-F(x′)T) = (1-1) = 0 

•  F(x′) says the probability of T is 0: 

• g(x′) = (1-F(x′)T) = (1-0) = 1



Does this work?
• Formulation: 

minimize     d(x,x′) + g(x′) 
such that    x′ is "valid" 
 
 
 
 
 
 

d(x,x′) g(x′)+

+ =

Problem 1:  
Global minimum is not an 

adversarial example



Does this work?
• Formulation: 

minimize     d(x,x′)/5 + g(x′) 
such that    x′ is "valid" 
 
 
 
 
 
 

d(x,x′)/5 g(x′)+

+ =



Does this work?
• Formulation: 

minimize     d(x,x′)/5 + g(x′) 
such that    x′ is "valid" 
 
 
 
 
 
 

d(x,x′)/5 g(x′)+

+ =

Problem 2:  
Gradient direction does not point 

toward the global minimum



Does this work?
• Formulation: 

minimize     d(x,x′)/1e10 + g(x′)  
such that    x′ is "valid" 
 
 
 
 
 
 

d(x,x′)/1e10 g(x′)+

+ =

Problem 3:  
Global minimum is not the minimally 

perturbed adversarial example



Constructing a better  
loss function

1. Global minimum at the decision boundary 

2. Gradient points towards the global minimum  
 
 
 



Improved Formulation
• Formulation: 

minimize     d(x,x′) + g(x′) 
such that    x′ is "valid" 
 
 
 
 
 
 

d(x,x′) g(x′)+

+ =





L0 from L2

• First attempt: 

• minimize     d(x,x') + g(x')  
such that    x' is "valid" 

• Where the distance d is the L0 distance



L0 from L2

• Solve the L2 minimization problem and identify 
the least changed pixel 

• Force that pixel to remain constant 

• Re-solve the L2 minimization problem with that 
pixel fixed at the initial value 

• Repeat, finding the new least-changed pixel





Linfinity from L2

• Formulation: 
minimize     d(x,x') + g(x')  
such that    x is "valid"



Linfinity from L2

• Initially set a budget ∆=1 

• Formulation: 
minimize     sum[max(|xi-x'i| - ∆, 0)] + g(x') 
such that    x is "valid" 

• Decrease ∆ and solve again





Visualizations
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Is this attack useful?



This attack breaks  
almost everything

• N Carlini and D Wagner, "Defensive Distillation is Not 
Robust to Adversarial Examples". 2016 

• N Carlini and D Wagner. "Adversarial Examples are not 
Easily Detected". AISEC. 2017 

• N Carlini and D Wagner. "MagNet and "Efficient Defenses 
against Adversarial Attack" are Not Robust to Adversarial 
Examples". 2017 

• A Athalye, N Carlini and D Wagner. "Obfuscated Gradients 
Give a False Sense of Security: Circumventing Defenses 
to Adversarial Examples". Under submission to ICML.













Case studies on evaluating 
defenses to adversarial examples



Defense Idea #1: 

Additional Neural 
Network Detection

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischo. 2017. On Detecting 
Adversarial Perturbations. In International Conference on Learning Representations. 
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Training an adversarial 
example detector
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Sounds great. 



Sounds great. 

But we already know it's easy to 
fool neural networks ...



... so just construct  
adversarial examples to 

1. be misclassified 
2. not be detected



Breaking Detection 
Adversarial Training

• minimize     d(x,x′) + g(x′) 
such that        x′ is "valid" 

• Old: g(x′) measures loss of classifier on x′ 
 
 
                 



Breaking Detection 
Adversarial Training

• minimize     d(x,x′) + g(x′) + h(x′) 
such that        x′ is "valid" 

• Old: g(x′) measures loss of classifier on x′ 

• New: h(x′) measures loss of detector on x′  
                  



Original

Adversarial 
(unsecured)

Adversarial 
(with detector)





Defense Idea #2: 

Thermometer Encoding

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. 2018. Thermometer encoding: One hot 
way to resist adversarial examples. In International Conference on Learning Representations. 



Problem: 
Neural Networks are "overly linear"



Thermometer Encoding

• Break linearity by changing input representation 

• T(0.13) = 1 1 0 0 0 0 0 0 0 0 

• T(0.66) = 1 1 1 1 1 1 0 0 0 0 

• T(0.97) = 1 1 1 1 1 1 1 1 1 1
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Claims: 

On CIFAR, 
with distortion 8/255, 

accuracy of 50% 

(compared to 0%)



Unfortunately, thermometer 
encoding only causes gradient 

descent to fail









Defense Idea #3: 

Adversarial Retraining

A Madry, A Makelov, L Schmidt, D Tsipras, and A Vladu. Towards deep learning models  
resistant to adversarial attacks. 2018. International Conference on Learning Representations.



Adversarial Training

• Given training data (X,Y) 

• Sample a minibatch (x,y) 

• Generate the adversarial minibatch (x',y) 

• Train on (x',y) 

• Repeat until convergence









... so that's images
what about other domains?



Audio has these  
same issues, too

N Carlini and D Wagner. "Audio Adversarial Examples: 
Targeted Attacks on Speech-to-Text". 2018.



"now I would drift gently  
off to dream land"



[adversarial]



It was the best of times, it was the 
worst of times, it was the age of 

wisdom, it was the age of 
foolishness, it was the epoch of 

belief, it was the epoch of incredulity



original or adversarial?



original or adversarial?



On audio, traditional ML 
methods are not vulnerable 

to adversarial examples







Questions?

Nicholas Carlini 
https://nicholas.carlini.com 

npc@berkeley.edu


