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Background:
Adversarial Examples

For a classification neural network F(x)
Given an input X classified as label L ...
... Iltis easy to find an X’ close to X

..sothat F(X") =L



Motivation:
Why should we care”



Distance Metrics

"Adversarial examples are close to the original’
How do we define close?
This is what lets us compare attacks.

In what domain”? Images.



Distance Metrics

Lo distance metrics:
Lo - number of pixels changed
Lo - standard Euclidian distance

Linfinity - @mount each pixel can be changed



f any Ly distance is small,
the two iImages should be
visually similar



Classified as a 1 Classified as a0



For this talk:

Assume complete knowledge
of model parameters

(but lots of work exists for other threat models)



Two ways to evaluate robustness:

1. Construct a proof of robustness
2. Demonstrate constructive attack




Proving Robustness

It Is possible to prove robustness
.. for specific input points
.. on simple datasets (e.g., MNIST)
.. for small networks (e.g., 100 neurons)

.. for RelLU activations

N Carlini, G Kat, C Barrett, and D Dill. "Provably Minimally-
Distorted Adversarial Examples." Under Submission to I[CML.



Finding
Adversarial Examples

Formulation: given input X, find x” where
minimize  d(x,x’)
suchthat FX') =T

x"1s "valid"

Gradient Descent to the rescue?

Non-linear constraints are hard



Reformulation

Formulation:
minimize  d(x,x’) + g(x’)
such that x’Is "valid"

Where g(x’) is some kind of loss function on how
close F(x’) is to target T

g(x)issmall it F(x") =T

g(x’)islarge it F(x") =T



Reformulation

For example
g(x") = (1-F(X")7)

It F(x”) says the probability of T is 1:
9(x') = (1-F(x')) = (1-1) = 0

F(x") says the probability of T is O:

gx') = (1-F()7) = (1-0) = 1



Does this work?
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Does this work?

Formulation:
minimize  d(x,x")/5 + g(x’)
such that x’i1s "valid"




Does this work?

Problem 2;
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Does this work?

Problem 3:
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Constructing a better
loss function

Global minimum at the decision boundary

Gradient points towards the global minimum

max (max {log(F(z)))} — log(F(a),). o)
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Improved Formulation

Formulation:
minimize  d(x,x’) + g(x’)
such that x’is "valid”

g(x’)
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L o from Lo

First attempt:

minimize  d(x,x") + g(x')
such that x'is "valid'

Where the distance d is the Lo distance



L o from Lo

Solve the L2 minimization problem and identity
the least changed pixel

Force that pixel to remain constant

Re-solve the L2 minimization problem with that
pixel tixed at the initial value

Repeat, finding the new least-changed pixel






Linfinity from Lo

Formulation:
minimize  d(x,x") + g(x')
such that x s "valid"



Linfinity from Lo

Initially set a budget A=1

Formulation:

minimize  sum[max(|x-x'j| - A, 0)] + g(x')
such that xis "valid”

Decrease A and solve again






Visualizations
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|s this attack useful?



This attack breaks
almost everything

N Carlini and D Wagner, "Defensive Distillation is Not
Robust to Adversarial Examples'. 2016

N Carlini and D Wagner. "Adversarial Examples are not
Easily Detected". AISEC. 2017

N Carlini and D Wagner. "MagNet and "Efficient Defenses
against Adversarial Attack” are Not Robust to Adversarial
Examples’. 2017

A Athalye, N Carlini and D Wagner. "Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses
to Adversarial Examples". Under submission to ICML.



Best Case Average Case Worst Case

Change of Clipped Projected Change of Clipped Projected Change of Clipped Projected
Variable Descent Descent Variable Descent Descent Variable Descent Descent
mean prob mean prob mean prob || mean prob mean prob mean prob || mean prob mean prob mean prob

246 100% 293 100% 231 100% 435 100% 521 100% 4.11 100% 776 100% 948 100% 7.37 100%

293 18% 1022 40% 1890 53%
309 17% 1191 41% 2401 5%
355 24% 425 35% 410 35%
642 100% 7.86 100% 6.12 100%
6.03 100% 7.50 100% 5.89 100%
620 100% 7.57 100% 594 100%

322 4% 899 63% 1506 74%
347 44% 955 63% 1584 74%
403 55% 749 7% 1760 71%
3.58 100% 420 100% 347 100%
347 100% 4.11 100% 341 100%
3.53 100% 4.14 100% 343 100%

455 80% 397 83% 349 8%
454 T71% 407 81% 376 82%
501 86% 652 100% 7.53 100%
1.97 100% 220 100% 1.94 100%
1.94 100% 2.18 100% 1.95 100%
1.96 100% 221 100% 1.94 100%

TABLE III
EVALUATION OF ALL COMBINATIONS OF ONE OF THE SEVEN POSSIBLE OBJECTIVE FUNCTIONS WITH ONE OF THE THREE BOX CONSTRAINT ENCODINGS.
WE SHOW THE AVERAGE L2 DISTORTION, THE STANDARD DEVIATION, AND THE SUCCESS PROBABILITY (FRACTION OF INSTANCES FOR WHICH AN
ADVERSARIAL EXAMPLE CAN BE FOUND). EVALUATED ON 1000 RANDOM INSTANCES. WHEN THE SUCCESS IS NOT 100%, MEAN IS FOR SUCCESSFUL
ATTACKS ONLY.




Best Case Average Case Worst Case

MNIST CIFAR MNIST CIFAR MNIST CIFAR
mean prob  mean prob || mean prob  mean prob || mean prob  mean prob

Our Lo 10 100% 7.4  100% || 19 100% 15 100% || 36 100% 29 100%

Our Lo 1.7 100% 036 100% || 2.2 100%  0.60 100% || 2.9 100%  0.92 100%
Our Lo 0.4 100%  0.02 100% || 0.18 100%  0.023 100% || 0.25 100%  0.038 100%

TABLE VI
COMPARISON OF OUR ATTACKS WHEN APPLIED TO DEFENSIVELY DISTILLED NETWORKS. COMPARE TO TABLE[[V]|FOR UNDISTILLED NETWORKS.




Best Case Average Case Worst Case

MNIST CIFAR MNIST CIFAR MNIST CIFAR
mean prob  mean prob || mean prob  mean prob || mean prob  mean prob

Our Lg 8.5 100% RY 100% 16 100% 13 100% 33 100% 24 100%
JSMA-Z 20 100% 20 100% 56 100% 58 100% 180 98% 150 100%
JSMA-F 17 100% 25 100% 45 100% 110 100% 100 100% 240 100%

"OwlL, 136 100% 017 100% || 1.76 100% 0.3 100% || 2.60 100%  0.51 100%
Deepfool 2.11 100% 0.85 100% — - - — - -

0% 0.34 1%

0.26 42% 0.029 51% -
0.26 100% 0.023 100%

Fast Gradient Sign 0.22 100% 0.015 99%
0.19 100% 0.014 100%

Iterative Gradient Sign 0.14 100% 0.0078 100%

Our Lo, 0.13 100% 0.0092 100% H 0.16 100% 0.013 100% H 0.23 100% 0.019 100%

TABLE IV
COMPARISON OF THE THREE VARIANTS OF TARGETED ATTACK TO PREVIOUS WORK FOR OUR MNIST AND CIFAR MODELS. WHEN SUCCESS RATE IS
NOT 100%, THE MEAN IS ONLY OVER SUCCESSES.




Untargeted

Average Case

Least Likely

mean

prob

mean

prob

mean

prob

Our Lo
JSMA-Z
JSMA-F

48

100%
0%
0%

410

100%
0%
0%

5200

100%
0%
0%

Our L2
Deepfool

0.32
0.91

100%
100%

0.96

100%

2.22

100%

Our Lo
FGS
IGS

0.004
0.004
0.004

100%
100%
100%

0.006
0.064
0.01

100%
2%
99%

0.01
0.03

100%
0%
98%

TABLE V
COMPARISON OF THE THREE VARIANTS OF TARGETED ATTACK TO
PREVIOUS WORK FOR THE INCEPTION V3 MODEL ON IMAGENET. WHEN
SUCCESS RATE IS NOT 100%, THE MEAN IS ONLY OVER SUCCESSES.







Case studies on evaluating
defenses to adversarial examples



Defense |dea #1:

Additional Neural
Network Detection

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischo. 2017. On Detecting
Adversarial Perturbations. In International Conference on Learning Representations.



Normal Classifier

.

7’"' Claséifier



Normal Classifier

? Clagsifier



Detector & Classifier

'7”' Detector Claséifier



Detector & Classifier

Detector Classitier
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Training an adversarial
example detector



Normal Training
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Detection Training (1)
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Detection Training (2)
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Sounds great.



Sounds great.

But we already know it's easy to
fool neural networks ...



... SO Just construct
adversarial examples to

1. be misclassified
2. Not be detected



Breaking Detection
Adversarial Training

minimize  d(x,x’) + g(x’)
such that x’is "valid”

Old: g(x’) measures loss of classifier on x’



Breaking Detection
Adversarial Training

minimize  d(x,x’) + g(x’) + h(x’)
such that x’is "valid”

Old: g(x’) measures loss of classifier on x’

New: h(x") measures loss of detector on x’



Original

Adversarial
(unsecured)

Adversarial
(with detector)







Defense |dea #2:

T'hermometer Encoding

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. 2018. Thermometer encoding: One hot
way to resist adversarial examples. In International Conference on Learning Representations.



Problem:
Neural Networks are "overly linear’



Thermometer Encoding

Break linearity by changing input representation
7(0.13)=1100000000
T(06)=1111110000

T7(097)=1111111111



Standard Neural Network

7



With Thermometer Encoding

111000
1110
11 1
10900
0Omm0
111000
11111 0



Claims:

On CIFAR,
with distortion 8/255,
accuracy of 50%

(compared to 0%)



Unfortunately, thermometer
encoding only causes gradient
descent to fail












Defense |ldea #3:

Adversarial Retraining

A Madry, A Makelov, L Schmidt, D Tsipras, and A Vladu. Towards deep learning models
resistant to adversarial attacks. 2018. International Conference on Learning Representations.



Adversarial Iraining

Given training data (X,Y)

Sample a minibatch (x,y)

Generate the adversarial minibatch (x',y)
Train on (x',y)

Repeat until convergence












... SO that's Images
what about other domains?



Audio has these
same ISSUes, too

N Carlini and D Wagner. "Audio Adversarial Examples:
Targeted Attacks on Speech-to-Text'. 2018.



‘now | would drift gently
off to dream land"



ladversarial]



It was the best of times, It was the

be

worst of times, It was the age of
wisdom, it was the age of
foolishness, it was the epoch of
ief, it was the epoch of incredulity




original or adversarial®?



original or adversarial®?



On audio, traditional ML
methods are not vulnerable
to adversarial examples









Questions?

Nicholas Carlini
hitps://nicholas.carlini.com
npc@berkeley.edu




