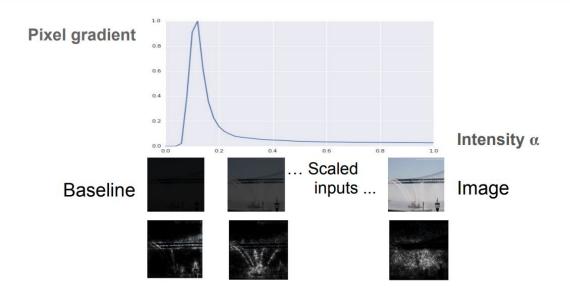
HW3 Prep 18739

Agenda

- HW3 is out
 - Due April 17 Before Class
- Review of explanation methods
 - Integrated Gradients
 - Influence-Directed Explanations
 - Their Relationships
- HW 3 Overview
- Generative Models

Integrated Gradients

IG(input, base) ::= (input - base) * $\int_{0^{-1}} \nabla F(\alpha^* input + (1-\alpha)^* base) d\alpha$



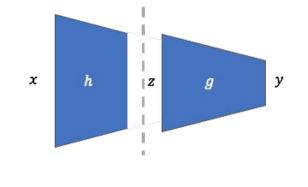
Integrated Gradients

Original image

Gradient at image

Integrated gradient

Influence Directed Explanations



y = f(x) = g(h(x))

Definition 1. The influence of an element j in the internal representation defined by $s = \langle g, h \rangle$ is given by

$$\chi_j^s(f, P) = \int_{\mathcal{X}} \left. \frac{\partial g}{\partial z_j} \right|_{h(\mathbf{x})} P(\mathbf{x}) d\mathbf{x} \tag{1}$$

Influence Directed Explanations

Comparison between the two

• Integrated Gradients:

IG(input, base) ::= (input - base) *
$$\int_{0^{-1}} \nabla F(\alpha^* \operatorname{input} + (1 - \alpha)^* \operatorname{base}) d\alpha$$

• Internal / Distributional Influence

Definition 1. The influence of an element j in the internal representation defined by $s = \langle g, h \rangle$ is given by

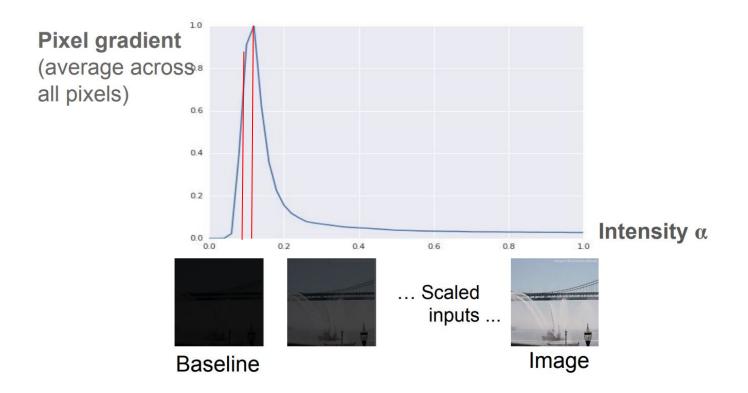
$$\chi_j^s(f, P) = \int_{\mathcal{X}} \left. \frac{\partial g}{\partial z_j} \right|_{h(\mathbf{x})} P(\mathbf{x}) d\mathbf{x} \tag{1}$$

Approximation Method for IG

IG(input, base) ::= (input - base) * $\int_{0^{-1}} \nabla F(\alpha^* input + (1-\alpha)^* base) d\alpha$

IntegratedGrads_i^{approx}(x) ::=
$$(x_i - x'_i) \times \sum_{k=1}^{m} \frac{\partial F(x' + \frac{k}{m} \times (x - x')))}{\partial x_i} \times \frac{1}{m}$$
(3)

Approximation Method



Approximation Method

Integrated Grads_i^{approx}(x) ::=

$$(x_i - x'_i) \times \sum_{k=1}^{m} \frac{\partial F(x' + \frac{k}{m} \times (x - x')))}{\partial x_i} \times \frac{1}{m}$$
(3)

def integrated_gradients(inp, base, label, steps=50):
 scaled_inps = [base + (float(i)/steps)*(inp-base) for i in range(0, steps)]
 predictions, grads = predictions_and_gradients(scaled_inputs, label)
 integrated_gradients = (img - base) * np.average(grads, axis=0)
 return integrated_gradients

Definition 1. The influence of an element j in the internal representation defined by $s = \langle g, h \rangle$ is given by

$\chi_j^s(f, P) = \int_{\mathcal{X}} \left. \frac{\partial g}{\partial z_j} \right|_{h(\mathbf{x})} P(\mathbf{x}) d\mathbf{x} \tag{1}$

HW3 Overview

- 3 Parts
- Focused Explanation of A Slice
 - What is the influence of neuron 0 towards the output class score C for an instance/Class
 - The attribution for a class is the mean attribution of every single instance in the class
 - Compare with Integrated Gradients
- Comparative Explanations
 - What is the influence of neuron 0 towards the output class score C1-C2 for an instance/Class
 - Compare with the explanations using only one class
- Model Compression Visualizing the essence of a class
 - 5 random classes
 - Find the neurons with most negative/positive influences
 - Mask the slice with selected neurons to create a binary classifier for that class

Theano/Keras Overview

- In theano, everything is a variable
 - So to take the gradient of an output (Q) with respect to an input (inpt)
 - theano.grad(Q, wrt = inpt)
- How to calculate Q from a model?
 - Quantity of interest: the influence of a neuron towards a output class c1
 - Q = T.take(variable for output, c1, axis=1) (Equivalent to numpy v[:, c1])
 - Inpt = variable for input to the layer
- How to get the variable for output/input of a certain layer in a Keras model?
 - Using Theano Backend
 - V1 = model.layers[n].output
 - V2 = model.layers[n].output
 - o W = model.layers[n].get_weights()

Top Neuron

- Given an attribution map of slice A (50 neurons), which neuron is the most influential?
 - o **50 * 28 * 28**
 - Max
 - Average(sum)
- Use max for this homework
 - A neuron is influential if a feature is influential

Visualization

- Saliency Map
 - Compute Gradients of neuron activation wrt input pixels
 - Scale pixels of image accordingly
- You can use the same integrated influence measures
 - Path-Integrated gradients of neuron activation wrt input pixels
 - Scale pixels of image accordingly

Linear Activation Layer

```
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
#model.add(Dropout(0.5))
model.add(Activation('linear'))
model.add(Dense(4096, activation='relu'))
#model.add(Dropout(0.5))
model.add(Activation('linear'))
model.add(Dense(1000, activation='linear'))
```

- Avoid overshadowing of class scores
 - Softmax tends to decrease the score of the smaller value

Generative Models 18739

- Supervised learning
- Data (X,y)
 - X -> Data
 - Y-> Label
- Goal: Learn a function to map x->y
 - Map Image to label
- Examples:
 - Classification
 - Regression
 - Object Detection. etc.

Cat

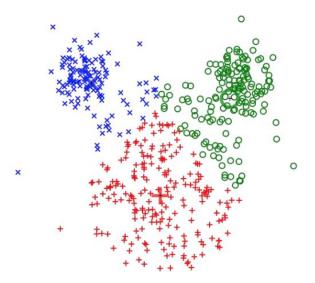
Classification

- Supervised learning
- Data (X,y)
 - X -> Data
 - Y-> Label
- Goal: Learn a function to map x->y
 - Map image to (bounding boxes, labels)
- Examples:
 - Classification
 - Regression
 - Object Detection. etc.

DOG, DOG, CAT

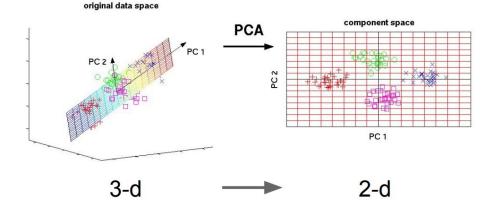
Object Detection

- Unsupervised learning
- Just Data X, No Labels!
- Goal: Learn some underlying hidden structure of the data
- Examples:
 - Clustering
 - Dimensionality reduction
 - Feature learning
 - Density estimation, etc.



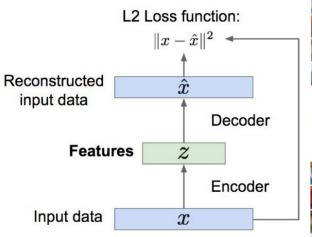
K-means clustering

- Unsupervised learning
- Just Data X, No Labels!
- Goal: Learn some underlying hidden structure of the data
- Examples:
 - Clustering
 - Dimensionality reduction
 - Feature learning
 - Density estimation, etc.



Principal Component Analysis (Dimensionality reduction)

- Unsupervised learning
- Just Data X, No Labels!
- Goal: Learn some underlying hidden structure of the data
- Examples:
 - Clustering
 - Dimensionality reduction
 - Feature learning
 - Density estimation, etc.



Reconstructed data

Encoder: 4-layer conv Decoder: 4-layer upconv

Autoencoders (Feature learning)

Supervised Learning

- Data (X,y)
 - o X -> Data
 - Y-> Label
- Goal: Learn a function to map x->y
 - Map Image to label
- Examples:
 - Classification
 - Regression
 - Object Detection. etc.

Unsupervised Learning

- Just Data X, No Labels!
- Goal: Learn some underlying hidden structure of the data
- Examples:
 - Clustering
 - Dimensionality reduction
 - Feature learning
 - Density estimation, etc.

Advantages of Unsupervised Learning

- Training Data is cheap!
- Solve unsupervised learning => understand structure of visual world
- Representation => Understanding => Explanations

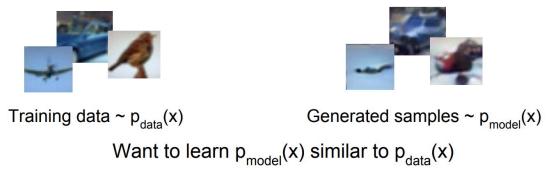
Generative Model

Given training data, generate new samples from same distribution

Training data ~ $p_{data}(x)$ Generated samples ~ $p_{model}(x)$ Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Generative Model

Given training data, generate new samples from same distribution



Addresses density estimation, a core problem in unsupervised learning

Several flavors:

- Explicit density estimation: explicitly define and solve for pmodel(x)
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

Generative Model

• Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features

Generative Adversarial Network

• Estimate the implicity density of image space

• Next Class

References

• http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf