
Deep Feedforward Networks
Anupam Datta

CMU

Spring 2018

Security and Fairness of Deep Learning

Story so far

• Image classification problem

• Linear models
• Score function

• Loss function

• Learning

• Learning as optimization
• Gradient descent (batch, mini-batch, stochastic)

• Second-order ethods Ne to ’s ethod
• Backpropagation

Today

• From linear score functions to neural networks

• Practical design choices

• (Some) justification of design choices

Recall: Linear score function

For CIFAR:

W: 10 x 3072

 x: 3072 x 1

10 class scores

2-Layer neural network

• Iterated construction: linear function followed by non-linear function

• Training network: learn W1, W2 using stochastic gradient descent; use
backpropagation to compute gradients

For CIFAR:

W1: 100 x 3072

W2: 10 x 100

 x: 3072 x 1

10 class scores

Topic outline

• Setting up the architecture

• Setting up the data and the loss

• Learning and evaluation

Neural network architecture

Outline

• Modeling one neuron

• Biological motivation and connections

• Single neuron as a linear classifier

• Commonly used activation functions

• Neural Network architectures

• Layer-wise organization

• Example feed-forward computation

• Representational power

• Setting number of layers and their sizes

Biological motivation

Imperfect analogy!

Single neuron as a linear classifier

• Binary softmax classifier

• Interpret to be the probability of one of the classes

• Set threshold at 0.5

• Binary SVM classifier

• Attach a max-margin hinge loss to the output of the neuron

Commonly used activation functions

• Sigmoid weaknesses:
• saturate and kill gradients

• outputs not zero-centered

• Tanh outputs are zero-centered

Commonly used activation functions

• ReLU is often used in modern deep networks
• Linear, non-saturating form speeds up convergence of stochastic gradient descent; efficient

to compute (threshold operation)
• If learning rate is high, then ReLU units can die i.e., never activate during subsequent training

Commonly used activation functions

• Leaky ReLU

• Function has small negative slope when x < 0 to avoid dying

• Maxout

• Generalizes ReLU and Leaky ReLU; advantages of both but more parameters

Neural network architectures

• Neural network as a directed acyclic graph

• Examples above: 2-layer NN and 3-layer NN

• Fully connected layer

Example feedforward computation

• Repeated matrix multiplications interwoven with activation function

• x could hold a batch of training data evaluated in parallel

• Output layer neurons do not go through non-linear activation function

Representational power

Neural Networks with at least one hidden layer are universal

approximators:

Given any continuous function f(x) and some ϵ>0, there e ists a Neural
Network g(x) with one hidden layer (with a reasonable choice of non-

linearity, e.g. sigmoid) such that ∀x,∣f −g ∣<ϵ∀x

Representational power

• Neural Networks work well in practice because they compactly
express nice, smooth functions that fit well with the statistical
properties of data we encounter in practice, and are also easy to learn
using our optimization algorithms (e.g. gradient descent).

• The fact that deeper networks (with multiple hidden layers) can work
better than a single-hidden-layer networks is an empirical
observation, despite the fact that their representational power is
equal.

Setting number of layers and their sizes

With more neurons, we have greater representation power but possibly
more overfitting

Setting number of layers and their sizes

Train large network; control overfitting with regularization

The Loss Surfaces of Multilayer Networks

https://arxiv.org/abs/1412.0233

Setting up the data and the model

Outline

• Setting up the data and the model

• Data Preprocessing

• Weight Initialization

• Regularization

• Loss functions

Data preprocessing

• Mean subtraction

• Subtract the mean across every individual feature in the data

X -= np.mean(X, axis = 0)

Data matrix X, where we will assume that X is of size [N x D]

(N is the number of data, D is their dimensionality)

Data preprocessing

• Normalization

• Divide each zero-centered feature by its standard deviation

• Bringing data dimensions to same scale helps SGD converge

X /= np.std(X, axis = 0)

Outline

• Setting up the data and the model

• Data Preprocessing

• Weight Initialization

• Regularization

• Loss functions

Weight initialization

• First attempt

• Initialize all weights to 0

• Not a good idea

• Every neuron computes the same output => every neuron computes the same gradients
and undergoes the same parameter updates

Weight initialization

• Important to introduce asymmetry

• Idea: Initialize weights to independent small random numbers

• Issue: Distribution of the outputs from a randomly initialized neuron has a
variance that grows with the number of inputs

W = 0.01* np.random.randn(D,H)

where randn samples from a zero mean, unit standard

deviation gaussian.

Weight initialization

• Recommended practice for initializing weights of neurons in NNs with
ReLU units

• E er euro ’s eight ector is sa pled fro a ulti-dimensional gaussian
normalized by its variance

w = np.random.randn(n) * sqrt(2.0/n)

where n is the number of its inputs

Delving Deep into Rectifiers: Surpassing Human-Level Performance on

ImageNet Classification

https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852

Weight initialization (under simplifying assumptions)

• Initialize weights of NN as follows

• E er euro ’s eight ector is sa pled fro a ulti-dimensional gaussian
normalized by its variance

w = np.random.randn(n) * sqrt(1.0/n)

where n is the number of its inputs

 Based on: Understanding the difficulty of training deep feedforward neural

networks

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

Weight initialization (under simplifying assumptions)

Simplifying

assumptions

Zero mean

Identically

distributed

Want: Var(s) = Var(x)

Need: Var(w) = 1/n

Var(aX) = a^2Var(X)

So, draw w from unit Gaussian

and scale by 1/sqrt(n)

Weight initialization (under simplifying assumptions)

Simplifying

assumptions

Zero mean

Identically

distributed

Want: Var(s) = Var(x)

Need: Var(w) = 1/n

Var(aX) = a^2Var(X)

So, draw w from unit Gaussian

and scale by 1/sqrt(n)

Bias initialization

• Initialize biases to 0

Outline

• Setting up the data and the model

• Data Preprocessing

• Weight Initialization

• Regularization

• Loss functions

Recall: loss function

Regularization

• L2 regularization

For every weight in the network, we add the term to the
objective, where is the regularization strength

• Encourages the network to use all of its inputs a little rather than
some of its inputs a lot

• During gradient descent parameter update, every weight is decayed
linearly toward zero

Regularization

• L1 regularization

For every weight in the network, we add the term to the
objective, where is the regularization strength

• Encourages the network to use some of its inputs a lot (i.e. sparse
weight vectors)

• If explicit feature selection is not a goal, L2 regularization usually
performs better than L1 regularization

Regularization

• Dropout

• Sample a neural network within the full network and only update its
parameters

• Typically hidden units retained with p = 0.5, input units with p close to 1

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Regularization: Dropout

Regularization: Dropout

Regularization: Inverted Dropout

Regularization

In practice

It is most common to use a single, global L2 regularization strength that
is cross-validated. It is also common to combine this with dropout
applied after all layers. The value of p=0.5 is a reasonable default, but
this can be tuned on validation data.

Outline

• Setting up the data and the model

• Data Preprocessing

• Weight Initialization

• Regularization

• Loss functions

Loss functions for classification

Data loss

• SVM loss

• Cross-entropy loss

Learning and evaluation

Outline

• Gradient checks

• Monitoring the learning process

• Parameter updates

• Hyperparameter Optimization

• Evaluation

• Model Ensembles

Gradient checks

• SGD uses gradients that we computed analytically using calculus

• Issue: How do we check that we did not make errors?

• Compare analytic gradient implementation to the numerical gradient

Gradient checks: tip

• Use centered formula

Use Taylor expansion of f(x+h) and f −h : first for ula has a error o order of O(h), while the

second formula only has error terms on order of O(h^2)

Gradient checks:tip

• Use relative error

• Analytical gradient:

• Numerical gradient:

• In practice:

• relative error > 1e-2 usually means the gradient is probably wrong

• 1e-2 > relative error > 1e-4 should make you feel uncomfortable

• 1e-4 > relative error is usually okay for objectives with kinks. But if there are
no kinks (e.g. use of tanh nonlinearities and softmax), then 1e-4 is too high.

• 1e-7 and less you should be happy.

Gradient computation

• Symbolic (analytical) differentiation available in deep learning libraries

Monitoring during learning

• Loss function

Monitoring during learning

• Train/Val accuracy

Monitoring during learning

• Ratio of updates:weights

A rough heuristic is that this ratio should be somewhere around 1e-3.

If it is lower than this then the learning rate might be too low. If it is higher then the
learning rate is likely too high.

Monitoring during learning

• Activation / Gradient distributions per layer

• plot activation/gradient histograms for all layers of the network

• not a good sign to see any strange distributions

• e.g. with tanh neurons we would like to see a distribution of neuron
activations between the full range of [-1,1], instead of seeing all neurons
outputting zero, or all neurons being completely saturated at either -1 or 1.

Annealing the learning rate

• Step decay

• Reduce the learning rate by some factor every few epochs.

• Typical values might be reducing the learning rate by a half every 5 epochs, or
by 0.1 every 20 epochs. These numbers depend heavily on the type of
problem and the model.

• One heuristic you may see in practice is to watch the validation error while
training with a fixed learning rate, and reduce the learning rate by a constant
(e.g. 0.5) whenever the validation error stops improving.

Monitoring during learning

• First-layer Visualizations

Parameter updates

• Vanilla SGD

where learning_rate is a hyperparameter - a fixed constant.

Parameter updates

• Momentum update

A typical setting is to start with momentum of about 0.5 and

anneal it to 0.99 or so over multiple epochs (cf. learning rate is

decreased over time)

Gra it alo g
slope

Viscous drag

Second-order methods

• Ne to ’s ethod does ot scale earlier lecture

• Computing inverse Hessian explicitly is too expensive

• Quasi-newton method L-BFGS works quite well

• Iteratively build up limited memory approximation of Hessian

Dean et al. Large Scale Distributed Deep Networks

http://research.google.com/archive/large_deep_networks_nips2012.html

Per-parameter adaptive learning rate
methods

• Adaptively tune learning rate per parameter (instead of single global
learning rate)

• Adagrad

• RMSprop

Adagrad

• cache has size equal to the size of the gradient, and keeps track of per-parameter
sum of squared gradients

• Reduce effective learning rate for weights with high gradients; increase for
weights with small gradients

• eps (usually set somewhere in range from 1e-4 to 1e-8) avoids division by zero

• Monotonically decreasing learning rate may stop learning too early

RMSprop

• Adjusts Adagrad to reduce aggressive, monotonically decreasing learning
rate

• Uses a moving average of squared gradients

• decay_rate is a hyperparameter and typical values are [0.9, 0.99, 0.999]

• Unlike Adagrad the updates do not get monotonically smaller

Hyperparameter optimization

• Some hyperparameters

• the initial learning rate

• learning rate decay schedule (such as the decay constant)

• regularization strength (L2 penalty, dropout strength)

Hyperparameter optimization

• Hyperparameter ranges

• Search for multiplicative hyperparameters (e.g., learning rate, regularization
strength) on a log scale

• Dropout parameter search on original scale

learning_rate = 10 ** uniform(-6, 1)

dropout = uniform(0,1)

Hyperparameter optimization

• Random search better than grid search

Random Search for Hyper-Parameter Optimization

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Hyperparameter optimization

• Search from coarse to fine ranges

• First search in coarse ranges (e.g. 10 ** [-6, 1]), and then depending on where
the best results are turning up, narrow the range.

Model ensembles

• Approach

• Train multiple independent models, and at test time average their predictions

• Trai i g i depe de t odels

• Same model, different initializations

• Top models discovered during cross-validation

• Different checkpoints of a single model

• Running average of parameters during training

Hinton et al., Distilling the Knowledge in a Neural Network

https://arxiv.org/abs/1503.02531

Acknowledgment

Based in part on material from Stanford CS231n
http://cs231n.github.io/

http://cs231n.github.io/

Batch Normalization

• Batch Normalization is a technique that alleviates problems with
proper initialization of neural networks

• We will discuss it in a later lecture

Numerical gradient

A problem of efficiency

