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Story so far 

• Image classification problem 

• Linear models 
• Score function 

• Loss function 

• Learning  

 

• Learning as optimization 
• Gradient descent (batch, mini-batch, stochastic) 

• Second-order ethods Ne to ’s ethod   
• Backpropagation 



Today 

• From linear score functions to neural networks 

• Practical design choices 

• (Some) justification of design choices 



Recall: Linear score function 

For CIFAR:  

 

W: 10 x 3072 

 x:   3072 x 1 

10 class scores 

 



2-Layer neural network 

• Iterated construction: linear function followed by non-linear function 

• Training network: learn W1, W2 using stochastic gradient descent; use 
backpropagation to compute gradients 

 

For CIFAR:  

 

W1: 100 x 3072 

W2:   10 x 100 

 x: 3072 x 1 

10 class scores 

 

 



Topic outline 

• Setting up the architecture 

• Setting up the data and the loss 

• Learning and evaluation 



Neural network architecture 



Outline 

• Modeling one neuron 

• Biological motivation and connections 

• Single neuron as a linear classifier 

• Commonly used activation functions 

 

• Neural Network architectures 

• Layer-wise organization 

• Example feed-forward computation 

• Representational power 

• Setting number of layers and their sizes 



Biological motivation 

Imperfect analogy! 



Single neuron as a linear classifier 

• Binary softmax classifier 

• Interpret                                 to be the probability of one of the classes 

 

• Set threshold at 0.5                                                 

 

• Binary SVM classifier 

• Attach a max-margin hinge loss to the output of the neuron 



Commonly used activation functions 

• Sigmoid weaknesses:  
• saturate and kill gradients 

• outputs not zero-centered 

• Tanh outputs are zero-centered 



Commonly used activation functions 

• ReLU is often used in modern deep networks 
• Linear, non-saturating form speeds up convergence of stochastic gradient descent; efficient 

to compute (threshold operation) 
• If learning rate is high, then ReLU units can die i.e., never activate during subsequent training  



Commonly used activation functions 

• Leaky ReLU 

• Function has small negative slope when x < 0 to avoid dying 

 

 

• Maxout 

• Generalizes ReLU and Leaky ReLU; advantages of both but more parameters 



Neural network architectures 

• Neural network as a directed acyclic graph 

• Examples above: 2-layer NN and 3-layer NN 

• Fully connected layer 



Example feedforward computation 

• Repeated matrix multiplications interwoven with activation function 

• x could hold a batch of training data evaluated in parallel 

• Output layer neurons do not go through non-linear activation function 



Representational power 

Neural Networks with at least one hidden layer are universal 

approximators: 

 

Given any continuous function f(x) and some ϵ>0, there e ists a Neural 
Network g(x) with one hidden layer (with a reasonable choice of non-

linearity, e.g. sigmoid) such that ∀x,∣f −g ∣<ϵ∀x 



Representational power 

• Neural Networks work well in practice because they compactly 
express nice, smooth functions that fit well with the statistical 
properties of data we encounter in practice, and are also easy to learn 
using our optimization algorithms (e.g. gradient descent). 

 

• The fact that deeper networks (with multiple hidden layers) can work 
better than a single-hidden-layer networks is an empirical 
observation, despite the fact that their representational power is 
equal. 



Setting number of layers and their sizes 

With more neurons, we have greater representation power but possibly 
more overfitting 



Setting number of layers and their sizes 

Train large network; control overfitting with regularization 

The Loss Surfaces of Multilayer Networks 

 

https://arxiv.org/abs/1412.0233


Setting up the data and the model 



Outline 

• Setting up the data and the model 

• Data Preprocessing 

• Weight Initialization 

• Regularization  

 

 

• Loss functions 

 



Data preprocessing 

• Mean subtraction 

• Subtract the mean across every individual feature in the data 

X -= np.mean(X, axis = 0) 

Data matrix X, where we will assume that X is of size [N x D]  

(N is the number of data, D is their dimensionality) 



Data preprocessing 

• Normalization 

• Divide each zero-centered feature by its standard deviation 

• Bringing data dimensions to same scale helps SGD converge   

X /= np.std(X, axis = 0) 



Outline 

• Setting up the data and the model 

• Data Preprocessing 

• Weight Initialization 

• Regularization  

 

 

• Loss functions 

 



Weight initialization 

• First attempt 

• Initialize all weights to 0 

• Not a good idea 

• Every neuron computes the same output => every neuron computes the same gradients 
and undergoes the same parameter updates 

 



Weight initialization 

• Important to introduce asymmetry  

• Idea: Initialize weights to independent small random numbers 

 

 

 

 

 

• Issue: Distribution of the outputs from a randomly initialized neuron has a 
variance that grows with the number of inputs 

 

 

W = 0.01* np.random.randn(D,H) 

where randn samples from a zero mean, unit standard 

deviation gaussian. 



Weight initialization 

• Recommended practice for initializing weights of neurons in NNs with 
ReLU units 

 

 

 

 

• E er  euro ’s eight ector is sa pled fro  a ulti-dimensional gaussian 
normalized by its variance 

 

w = np.random.randn(n) * sqrt(2.0/n)  

where n is the number of its inputs 

Delving Deep into Rectifiers: Surpassing Human-Level Performance on 

ImageNet Classification 

https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852


Weight initialization (under simplifying assumptions) 

• Initialize weights of NN as follows 

 

 

 

• E er  euro ’s eight ector is sa pled fro  a ulti-dimensional gaussian 
normalized by its variance 

 

w = np.random.randn(n) * sqrt(1.0/n)  

where n is the number of its inputs 

 Based on: Understanding the difficulty of training deep feedforward neural 

networks 

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf


Weight initialization (under simplifying assumptions) 

Simplifying 

assumptions 

Zero mean 

Identically 

distributed 

Want:  Var(s) = Var(x) 

Need:  Var(w) = 1/n 

Var(aX) = a^2Var(X) 

So, draw w from unit Gaussian 

and scale by 1/sqrt(n) 



Weight initialization (under simplifying assumptions) 

Simplifying 

assumptions 

Zero mean 

Identically 

distributed 

Want:  Var(s) = Var(x) 

Need:  Var(w) = 1/n 

Var(aX) = a^2Var(X) 

So, draw w from unit Gaussian 

and scale by 1/sqrt(n) 



Bias initialization 

• Initialize biases to 0 



Outline 

• Setting up the data and the model 

• Data Preprocessing 

• Weight Initialization 

• Regularization  

 

 

• Loss functions 

 



Recall: loss function 



Regularization 

• L2 regularization 

 

For every weight      in the network, we add the term              to the 
objective, where     is the regularization strength 

 

• Encourages the network to use all of its inputs a little rather than 
some of its inputs a lot 

• During gradient descent parameter update, every weight is decayed 
linearly toward zero 



Regularization 

• L1 regularization 

 

For every weight      in the network, we add the term            to the 
objective, where     is the regularization strength 

 

• Encourages the network to use some of its inputs a lot (i.e. sparse 
weight vectors) 

• If explicit feature selection is not a goal, L2 regularization usually 
performs better than L1 regularization 



Regularization 

• Dropout 

• Sample a neural network within the full network and only update its 
parameters  

• Typically hidden units retained with p = 0.5, input units with p close to 1 

Dropout: A Simple Way to Prevent Neural Networks from 

Overfitting 

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf


Regularization: Dropout 



Regularization: Dropout 



Regularization: Inverted Dropout 



Regularization  

In practice  

 

It is most common to use a single, global L2 regularization strength that 
is cross-validated. It is also common to combine this with dropout 
applied after all layers. The value of p=0.5 is a reasonable default, but 
this can be tuned on validation data. 



Outline 

• Setting up the data and the model 

• Data Preprocessing 

• Weight Initialization 

• Regularization  

 

 

• Loss functions 

 



Loss functions for classification 

Data loss 

 

 

• SVM loss 

 

• Cross-entropy loss 



Learning and evaluation 



Outline 

• Gradient checks 

• Monitoring the learning process 

• Parameter updates 

• Hyperparameter Optimization 

• Evaluation 

• Model Ensembles 

 



Gradient checks 

• SGD uses gradients that we computed analytically using calculus  

• Issue: How do we check that we did not make errors? 

• Compare analytic gradient implementation to the numerical gradient 



Gradient checks: tip 

• Use centered formula 

Use Taylor expansion of f(x+h) and f −h : first for ula has a  error o  order of O(h), while the 

second formula only has error terms on order of O(h^2) 



Gradient checks:tip 

• Use relative error 

• Analytical gradient: 

• Numerical gradient: 

 

• In practice: 

• relative error > 1e-2 usually means the gradient is probably wrong 

• 1e-2 > relative error > 1e-4 should make you feel uncomfortable 

• 1e-4 > relative error is usually okay for objectives with kinks. But if there are 
no kinks (e.g. use of tanh nonlinearities and softmax), then 1e-4 is too high. 

• 1e-7 and less you should be happy. 



Gradient computation 

• Symbolic (analytical) differentiation available in deep learning libraries 



Monitoring during learning 

• Loss function 



Monitoring during learning 

• Train/Val accuracy 



Monitoring during learning 

• Ratio of updates:weights 

 

A rough heuristic is that this ratio should be somewhere around 1e-3.  

 

If it is lower than this then the learning rate might be too low. If it is higher then the 
learning rate is likely too high. 



Monitoring during learning 

• Activation / Gradient distributions per layer 

• plot activation/gradient histograms for all layers of the network 

• not a good sign to see any strange distributions  

• e.g. with tanh neurons we would like to see a distribution of neuron 
activations between the full range of [-1,1], instead of seeing all neurons 
outputting zero, or all neurons being completely saturated at either -1 or 1. 



Annealing the learning rate 

• Step decay  

• Reduce the learning rate by some factor every few epochs.  

• Typical values might be reducing the learning rate by a half every 5 epochs, or 
by 0.1 every 20 epochs. These numbers depend heavily on the type of 
problem and the model.  

• One heuristic you may see in practice is to watch the validation error while 
training with a fixed learning rate, and reduce the learning rate by a constant 
(e.g. 0.5) whenever the validation error stops improving. 

 



Monitoring during learning 

• First-layer Visualizations 

 



Parameter updates 

• Vanilla SGD 

where learning_rate is a hyperparameter - a fixed constant.  



Parameter updates 

• Momentum update 

A typical setting is to start with momentum of about 0.5 and 

anneal it to 0.99 or so over multiple epochs (cf. learning rate is 

decreased over time) 

Gra it  alo g 
slope 

Viscous drag 



Second-order methods 

• Ne to ’s ethod does ot scale earlier lecture  

• Computing inverse Hessian explicitly is too expensive 

 

• Quasi-newton method L-BFGS works quite well 

• Iteratively build up limited memory approximation of Hessian 

Dean et al. Large Scale Distributed Deep Networks 

http://research.google.com/archive/large_deep_networks_nips2012.html


Per-parameter adaptive learning rate 
methods 

• Adaptively tune learning rate per parameter (instead of single global 
learning rate) 

• Adagrad 

• RMSprop 



Adagrad 

• cache has size equal to the size of the gradient, and keeps track of per-parameter 
sum of squared gradients 

• Reduce effective learning rate for weights with high gradients;  increase for 
weights with small gradients 

• eps (usually set somewhere in range from 1e-4 to 1e-8) avoids division by zero 

• Monotonically decreasing learning rate may stop learning too early 



RMSprop 

• Adjusts Adagrad to reduce aggressive, monotonically decreasing learning 
rate 

• Uses a moving average of squared gradients 

•  decay_rate is a hyperparameter and typical values are [0.9, 0.99, 0.999] 

• Unlike Adagrad the updates do not get monotonically smaller 



Hyperparameter optimization 

• Some hyperparameters 

• the initial learning rate 

• learning rate decay schedule (such as the decay constant) 

• regularization strength (L2 penalty, dropout strength) 

 



Hyperparameter optimization 

• Hyperparameter ranges 

 

• Search for multiplicative hyperparameters (e.g., learning rate, regularization 
strength) on a log scale  

 

 

• Dropout parameter search on original scale  

learning_rate = 10 ** uniform(-6, 1) 

dropout = uniform(0,1) 



Hyperparameter optimization 

• Random search better than grid search 

Random Search for Hyper-Parameter Optimization 

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf


Hyperparameter optimization 

• Search from coarse to fine ranges 

 

• First search in coarse ranges (e.g. 10 ** [-6, 1]), and then depending on where 
the best results are turning up, narrow the range. 



Model ensembles 

• Approach 

• Train multiple independent models, and at test time average their predictions 

 

• Trai i g i depe de t  odels 

• Same model, different initializations 

• Top models discovered during cross-validation 

• Different checkpoints of a single model 

• Running average of parameters during training 

 

 
Hinton et al., Distilling the Knowledge in a Neural Network 

https://arxiv.org/abs/1503.02531
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Batch Normalization 

• Batch Normalization is a technique that alleviates problems with 
proper initialization of neural networks 

 

• We will discuss it in a later lecture  



Numerical gradient 

A problem of efficiency 


