
Backpropagation
Anupam Datta

CMU

Spring 2018

Security and Fairness of Deep Learning

Story so far

• Image classification problem

• Linear models

• Score function

• Loss function

• Learning

• Learning as optimization

• Gradient descent (batch, mini-batch, stochastic)

• Second-order ŵethods ;NewtoŶ’s ŵethodͿ

HW1

Today

• Learning as optimization

• Gradient descent (batch, mini-batch, stochastic)

• Second-order ŵethods ;NewtoŶ’s ŵethodͿ
• Require computing gradients

• Backpropagation

• Technique for computing gradients recursively

• Key technique for training deep networks

Gradients

•Consider 𝑓 𝑋 = 𝑓 𝑥ଵ, 𝑥ଶ, … , 𝑥𝑛 •𝛻𝑓ሺ𝑋ሻ = 𝜕𝑓 𝑋𝜕𝑥భ 𝜕𝑓 𝑋𝜕𝑥మ ⋯ 𝜕𝑓 𝑋𝜕𝑥𝑛

Computing gradients analytically

Derivatives measure sensitivity

If we were to increase by a tiny amount, the effect on the
whole expression would be to decrease it (due to the negative
sign), and by three times that amount.

A composed function

Chain rule

Chain rule applied

Backpropagation on example function

Backpropagation illustrated
Forward pass

Backward pass

Backpropagation: key local step

Backpropagation: key ideas

• Gradients computed locally

• Gradient of interest computed by recursive applications of chain rule

Backpropagation in practice

• Staged computation

• Carefully decompose complex function to easily compute gradients

Backpropagation in practice

• Staged computation example

Backpropagation in practice

• Staged computation example:

 decomposing for forward pass

Backpropagation in practice

• Staged computation example:

 backward pass

Backward pass reuses variables computed in

forward pass (cache them!)

Backpropagation in practice

• Staged computation example: forward pass code

Backpropagation in practice

• Staged computation example: backward pass code

dw in code

denotes

Gradients for vectorized code

Gradients for vectorized code

• Details of

• Jacobian matrix

• Chain rule with vectors and matrices

• Work out on paper

• Review notes: http://cs231n.stanford.edu/vecDerivs.pdf

http://cs231n.stanford.edu/vecDerivs.pdf

Acknowledgment

Based in part on material from Stanford CS231n
http://cs231n.github.io/

http://cs231n.github.io/
http://cs231n.github.io/

Patterns in backward flow

• add gate: distributes gradient equally to its inputs

• max gate: routes gradient of output to max input

• mul gate: swaps input activations and multiplies by gradient

