Security and Fairness of Deep Learning

Backpropagation

Anupam Datta
CMU

Spring 2018

Story so far

* Image classification problem

* Linear models
* Score function
* Loss function
* Learning

* Learning as optimization
* Gradient descent (batch, mini-batch, stochastic)
* Second-order methods (Newton’s method)

Today

* Learning as optimization
* Gradient descent (batch, mini-batch, stochastic)
e Second-order methods (Newton’s method)
* Require computing gradients

* Backpropagation
* Technique for computing gradients recursively
» Key technique for training deep networks

Gradients

XX
‘0‘0 0'0"0": %
SENXIKD
RS EL

eConsider f(X) = f(xq, x5, ..., Xp)

2
oo

/S

%

i,

{7
(ORI,
7

L7777

ofx) ofx) of(X) A
.Vf(X) L axy dx, 0Xp |

Computing gradients analytically

of _ of _
or oy

flz,y) = xy — x

of of
8:13’(9y]_ [y,ﬂf]

VS

| — |

Derivatives measure sensitivity

r=4,y=-3 flx,y) = —12 %:_3

If we were to increase by a tiny amount, the effect on the
whole expression would be to decrease it (due to the negative
sign), and by three times that amount.

A composed function

f(r,y,2) = (x +y)z

¢=r+y [f=qz

Chain rule

g_c?fé’q
Or Oq Ox

| af Of dq
Chain rule applied or 0q Ox

g=r+y f=qz

of _ 94 _ 4 = =

Backpropagation on example function

set some inputs

X ==2; y=05; z= -4

perform the forward pass

= x +y # q becomes 3

H Q

=q * z # f becomes -12

perform the backward pass (backpropagation) in reverse order:

first backprop through f = g * z

dfdz = q # df/dz = q, so gradient on z becomes 3

dfdq = z # df/dg = z, so gradient on q becomes -4

now backprop through q = x + y

dfdx = 1.0 * dfdq # dq/dx = 1. And the multiplication here is the chain rule!
dfdy = 1.0 * dfdqg # dg/dv = 1

Backpropagation illustrated

Forward pass

Backward pass

_ of _9fdq
9
X -2 q
q=2x+1Y @:1 @:1
Ox oy

_ of _ of _
f =gz 6_q_z 5z ¢

of of of
ox’ dy’ 0z

C'ompute :

Backpropagation: key local step

<

/ — activations
“local gradient”
X 9
aL
0
% Z
oL

gradients

Backpropagation: key ideas

* Gradients computed locally
* Gradient of interest computed by recursive applications of chain rule

Backpropagation in practice

e Staged computation
e Carefully decompose complex function to easily compute gradients

Backpropagation in practice
e Staged computation example

fla,y) = —— 7)

o(z) + (z +y)°

Backpropagation in practice

e Staged computation example:
decomposing for forward pass

r+ o(y)
o(z) + (x+y)?

flz,y) =

+ 0 L/")
). (4) — e
(*) +(x+4) [+¢™
L
ff(b)’—;;_e'
f()():: | O
[

Backpropagation in practice

e Staged computation example:
backward pass

$—|—O'(y) Ql‘nv‘
flz,y) =)795_: _57:“‘:).

o) + (z +y)?

Backward pass reuses variables computed in
forward pass (cache them!)

Backpropagation in practice

» Staged computation example: forward pass code

g
nn
|

S

sigy = 1.0 / (1 + math.exp(-y))
num = X + sigy

sigx = 1.0 / (1 + math.exp(-x))
Xpy = X +y

Xpysgr = Xpy**2

den = sigx + Xpysqr

invden = 1.0 / den

f = num * invden

Backpropagation in practice

e Staged computation example: backward pass code

dw in code
denotes

of
ow

dnum = invden
dinvden = num

dden = (-1.0 / (den**2)) * dinvden

dsigx = (1) * dden
dxpysgr = (1) * dden

dxpy = (2 * xpy) * dxpysqr

dx = (1) * dxpy
dy = (1) * dxpy

dx += ((1 - sigx) * sigx) * dsigx

dx += (1) * dnum
dsigy = (1) * dnum

dy += ((1 - sigy) * sigy) * dsigy

Gradients for vectorized code

(X,y,Zz are now This is now the
vectors) Jacobian matrix
T (derivative of each

element of z w.r.t. each

element of x)
“local gradient”
X~
e
&
aL
0z

Gradients for vectorized code

e Details of
e Jacobian matrix
e Chain rule with vectors and matrices

* Work out on paper

e Review notes: http://cs231n.stanford.edu/vecDerivs.pdf

http://cs231n.stanford.edu/vecDerivs.pdf

Acknowledgment

Based in part on material from Stanford CS231n
http://cs231n.github.io/

http://cs231n.github.io/
http://cs231n.github.io/

Patterns in backward flow

x 3.00

0.00

* add gate: distributes gradient equally to its inputs
* max gate: routes gradient of output to max input
* mul gate: swaps input activations and multiplies by gradient

