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Story so far

* Image classification problem

* Linear models
* Score function
* Loss function
* Learning

* Learning as optimization
* Gradient descent (batch, mini-batch, stochastic)
* Second-order methods (Newton’s method)



Today

* Learning as optimization
* Gradient descent (batch, mini-batch, stochastic)
e Second-order methods (Newton’s method)
* Require computing gradients

* Backpropagation
* Technique for computing gradients recursively
» Key technique for training deep networks



Gradients
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eConsider f(X) = f(xq, x5, ..., Xp)
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Computing gradients analytically
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Derivatives measure sensitivity

r=4,y=-3 flx,y) = —12 %:_3

If we were to increase by a tiny amount, the effect on the
whole expression would be to decrease it (due to the negative
sign), and by three times that amount.



A composed function

f(r,y,2) = (x +y)z

¢=r+y [f=qz



Chain rule
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g=r+y f=qz
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Backpropagation on example function

# set some inputs

X ==2; y=05; z= -4

# perform the forward pass

= x +y # q becomes 3

H Q

=q * z # f becomes -12

# perform the backward pass (backpropagation) in reverse order:

# first backprop through f = g * z

dfdz = q # df/dz = q, so gradient on z becomes 3

dfdq = z # df/dg = z, so gradient on q becomes -4

# now backprop through q = x + y

dfdx = 1.0 * dfdq # dq/dx = 1. And the multiplication here is the chain rule!
dfdy = 1.0 * dfdqg # dg/dv = 1



Backpropagation illustrated

Forward pass

Backward pass
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Backpropagation: key local step
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Backpropagation: key ideas

* Gradients computed locally
* Gradient of interest computed by recursive applications of chain rule



Backpropagation in practice

e Staged computation
e Carefully decompose complex function to easily compute gradients



Backpropagation in practice
e Staged computation example

fla,y) = —— 7)

o(z) + (z +y)°



Backpropagation in practice

e Staged computation example:
decomposing for forward pass
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Backpropagation in practice

e Staged computation example:
backward pass
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Backward pass reuses variables computed in
forward pass (cache them!)



Backpropagation in practice

» Staged computation example: forward pass code
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sigy = 1.0 / (1 + math.exp(-y))
num = X + sigy

sigx = 1.0 / (1 + math.exp(-x))
Xpy = X +y

Xpysgr = Xpy**2

den = sigx + Xpysqr

invden = 1.0 / den

f = num * invden



Backpropagation in practice

e Staged computation example: backward pass code

dw in code
denotes

of
ow

dnum = invden
dinvden = num

dden = (-1.0 / (den**2)) * dinvden

dsigx = (1) * dden
dxpysgr = (1) * dden

dxpy = (2 * xpy) * dxpysqr

dx = (1) * dxpy
dy = (1) * dxpy

dx += ((1 - sigx) * sigx) * dsigx

dx += (1) * dnum
dsigy = (1) * dnum

dy += ((1 - sigy) * sigy) * dsigy



Gradients for vectorized code

(X,y,Zz are now This is now the
vectors) Jacobian matrix
T (derivative of each

element of z w.r.t. each

element of x)
“local gradient”
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Gradients for vectorized code

e Details of
e Jacobian matrix
e Chain rule with vectors and matrices

* Work out on paper

e Review notes: http://cs231n.stanford.edu/vecDerivs.pdf



http://cs231n.stanford.edu/vecDerivs.pdf
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Patterns in backward flow
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* add gate: distributes gradient equally to its inputs
* max gate: routes gradient of output to max input
* mul gate: swaps input activations and multiplies by gradient



