
HW1 18739

Due Date: Feb 15 Before Class

1 Introduction

In this homework, you will be implementing a simple logistic regression in
Python to classify images of hand-written digits in the MNIST dataset. In
this dataset, each input image is of size 28× 28 and reshaped into a size 784× 1
vector. The output is a number from 0 to 9 representing the image class. You
will be solving the same problem in three levels of implementation:
First, you will be using Keras, which is a high-level neural-network API. Sec-
ondly, you will be using Theano, which is a popular deep learning library in
Python, and finally, you will be implementing the the algorithm from ground
up by deriving the gradient formulas yourself using only simple packages such
as numpy.

You can load the data by running the corresponding section in the starter
code. You can find the data file is split into training set, validation set and
testing set. The training set is used to train a model and the validation set
is used to tune the hyper-parameters used in the model. The test set is only
used to report a final score/accuracy. In this problem, we have only two hyper-
parameters: learning rate and batch size. Learning rate determines the size of
step to take for each gradient update. Batch size determines the amount of
data to use in one gradient update step. Number of epochs(1 epoch means go-
ing through all of the training data set once) is usually determined using early
stopping mechanism, but in this homework you can treat it as a parameter and
specify it yourself.

You will be using Jupyter Notebook for your homework. It is a web ap-
plication where you can edit/run code, write text/equations as well as visual-
ize plots, all in one place. You can install and consult the documentation at
http://jupyter.org/.

2 Problem Description

Logistic regression is a probabilistic, linear classifier. It is parametrized by a
weight matrix W and a bias vector b. Classification is done by projecting data
points onto a set of hyperplanes, the distance to which is used to determine a
class membership probability. X is the input matrix consisting of all the images

1



in one training batch, Xi is the i-th image represented by the i-th column. Y′

is the ground truth,Y is the estimation, L() is the loss function. N is the batch
size, (for one batch of 100 images of size 28*28 in 10 classes, the dimensions
of X,Y are (784,100) and (10,100),respectively). Loss function for a batch is
defined as (� means elementwise multiplication):

L(X,Y;W,b) = − 1

N
Y′ � logY

= − 1

N

∑
j

∑
i

Y′j,ilogYj,i

for each x, y in X,Y:

L(x, y;W,b) =
∑
j

y′j logyj

The conditional probability for each image (Xi) x is calculated using the Soft-
max function:

yj = P (y = j|x,W,b) = softmax(WT
j x + bj)

=
eW

T
j x+bj∑

k e
WT

k x+bk

Now we have the relationship between L and W,b, by using the chain rule, we
can derive the gradient ∂L

∂W and ∂L
∂b . Most deep learning software calculates the

gradients automatically for you. In Level 3 of this homework, you will need
to derive it by yourself. After deriving the gradient values, we can perform
stochastic gradient descent to find the optimal W and b.
After you find the optimal W and b, you can predict on unseen data :

ypred = argmaxiP (y = i|x,W,b)

3 Before You Start

3.1 Software requirement

You should install Python(2 or 3), numpy, gzip, keras, Theano and matplotlib

by either using pip, Anaconda or Docker;

2



3.2 Dataset and Loading

The dataset is included in hw1.zip. The starter code for loading the dataset is
included in hw1.ipynb. It loads the dataset into three separate sets: training
set, validation set and test set.

4 Level 1 - Keras Implementation(10 pts)

Keras is a high level neural network API which runs on top of Tensorflow, CNTK
or Theano backend. Before you import Keras, make sure you also have one of
these backends installed. You can choose among these backends if you have
more than one installed.

4.1 Implementation

Complete the code in corresponding section of hw1.ipynb, you may want to
to consult the documentation for Keras on https://keras.io/. In principle, your
program should contain the following parts with each no more than a line or
two:

• Preprocess your data and initialize your model;

• Add one layer to your model with a specified score/activation function;

• Compile your model with the desired loss function, optimizer and metrics;

• Fit your training data (You can also specify your validation data using
the validation set here);

• Predict on the test data and report the test accuracy(the percentage of
images correctly predicted);

In this section, you can choose your parameters(batch size, learning rate, epoch)
by just playing around with the parameters. Run the code and report the
following in a separate markdown cell in the notebook:

• The parameters you chose;

• The test accuracy;

• The run time for training;

5 Level 2 - Theano Implementation(30 pts)

Theano is a deep learning framework which let you to build a computational
graph easily. Complete the code in the corresponding section in hw1.ipynb, you
may want to to consult the documentation for Theano at http://deeplearning.net/software/theano/.
In principle, your program should contain the following parts:

3



• The LogisticRegression class with functions score() and test accuracy(),
you don’t have to use the starter code, though.

• In your main() function, you will implement the following:

– Initialize symbolic variables;

– Initialize cost function, score function using the symbolic variables;

– Define gradients and update rules;

– Define your training function;

– Train your model and report your accuracy on the test set.

• Note:

– You should make use of Theano’s ”numpy-like” functions such as
theano.tensor.log() or theano.tensor.nnet.softmax() and have
as much of your operations using Theano operations and data struc-
tures as possible.

– You program in this section should be self contained and independent
from other sections;

– You don’t have to use the validation set for this section, you may use
the same parameters you used in section I.

• Report the parameters of choosing, test accuracy and run time for training
in a separate markdown cell.

6 Level 3 - Python Implementation(55 pts)

In this section, you are going to solve the same problem using only numpy. You
will actually derive the gradient expressions and hard code it into the program.
Also, you are going to use the validation set to select the best learning rate.
You can choose your own epoch and batch size.

6.1 Derivation(20 pts)

Derive the Gradients for W and b: ∂L
∂W and ∂L

∂b , include all the necessary com-
putation steps. Make sure your the dimensions of your vectors are consistent
with the ones in the problem description.

6.2 Implementation(35 pts)

You program in this section should be self contained and independent from other
sections; Please don’t make use of any functions other than numpy functions. (No
Keras or Theano function is allowed in this section.) Since your gradient com-
putation is based on Y being a categorical matrix, you will need to convert the
labels in Y′. For example, label 8 will be converted into [0, 0, 0, 0, 0, 0, 0, 0, 1, 0].

4



6.2.1 SGD(20 pts)

Complete functions softmax(), sgd() and evaluate() based on your deriva-
tions. Again, you don’t have to use the starter code at all and feel free to write
helper functions.

6.2.2 Parameter Tuning(15 pts)

In this section, you will find the best learning rate by using the validation set.
Train the model using each learning rate in vector Lr = [10−10, 10−9 · · · , 102]
and evaluate the model using the validation set. Plot the validation accuracy
against learning rate. Report the following in a separate markdown cell:

• Best learning rate and the corresponding test accuracy using the test set.

• Your run time for training using that learning rate.

7 Comparison(5 pts)

Compare the accuracy, run time among the three implementations. Of the two
deep learning softwares(Keras and Theano), what are the pros and cons of each?

Submission

You have to submit the files according to the following procedures:

1. Put your derivation of 6.1 into a single pdf file 〈your andrew id〉 hw1 derivation.pdf.
It is strongly suggested that you use Latex.

2. Rename the program file (hw1.ipynb) as
〈your andrew id〉 hw1.ipynb.

3. Make sure that you have run all your program in all the cells before you
submit so that the results/plots can be seen by simply opening the file. In
other words, the grader won’t have to run the program to see your results.

Put these two files into 〈your andrew id〉 HW1 folder, zip the folder into 〈your andrew id〉 HW1.zip
and submit the zip file on Canvas.

5


