Logics for Security Protocols

Anupam Datta
Fall 2007-08
Protocol Analysis Techniques

- Crypto Protocol Analysis
 - Formal Models
 - Dolev-Yao (perfect cryptography)
 - Computational Models
 - Random oracle
 - Probabilistic process calculi
 - Probabilistic I/O automata
- Model Checking
 - Murphi, AVISPA
- Protocol Logics
 - BAN, PCL
- Process Calculi
 - Applied II-calculus
- Inductive Proofs
 - Paulson, MSR
Inductive Method: Pros & Cons

◆ Advantages
 • Reason about infinite runs, message spaces
 • Trace model close to protocol specification
 • Can “prove” protocol correct

◆ Disadvantages
 • Does not always give an answer
 • Failure does not always yield an attack
 • Still trace-based properties only
 • Labor intensive
 - Must be comfortable with higher-order logic
 • Proofs are very long
 - 4000 steps for Otway-Rees session key secrecy
Protocol Logics

◆ BAN Logic
 A Logic of Authentication by Michael Burrows, Martin Abadi, Roger Needham (1989)

◆ Historically, the first logic for reasoning about security protocols

◆ Syntax and proof system (axioms and rules) for proving authentication properties (semantics added in a later paper)
Advantages

- Proofs are relatively short (~ 2-3 pages)
 - cf. Paulson’s inductive proofs
- Proofs follow protocol design intuition
 - cf. model-checking, low-level theorem-proving
- Relatively easy to use
 - Still taught widely in security courses
- No explicit reasoning about traces and intruder
 - cf. Paulson’s inductive proofs
Disadvantages

- Not sound wrt now accepted model of protocol execution and attack
 - Protocols “proved” secure may be insecure
e.g. NS was proved secure using BAN
- Protocols are modeled using logical formulas (idealization step) as opposed to state machines or programs
- Many uses of non-standard logical concepts
 - Jurisdiction, control, “belief”, messages = propositions
- Only authentication properties, not secrecy
- Applicable to restricted classes of protocols

See Harper’s slides on BAN from 15-819 (linked from course web page)
Today

Protocol Composition Logic (PCL)
- Developed over the last few years (2001-07)
- Retain advantages of BAN; rectify deficiencies
- Semantic model similar to Paulson’s Inductive Method
- New proof techniques
 - Modular proofs
 - Cryptographic soundness

Reading tip
- Start from the example in Section 5 of the assigned reading
Protocol Composition Logic

- A logic for proving security of network protocols
- Illustrates use of programming language methods in computer security
 - Concurrency theory
 - Network protocols are concurrent programs
 - Floyd-Hoare style logic
 - Before-after assertions

15-812: Semantics of programming languages
Roadmap

◆ Intuition
◆ Formalism
 • Protocol programming language
 • Protocol logic
 • Proof System
◆ Example
 • Signature-based challenge-response
◆ Proof techniques

Formulated by Datta, Derek, Durgin, Mitchell, Pavlovic
Example: Challenge-Response

Alice reasons: if Bob is honest, then:
- only Bob can generate his signature
- if Bob generates a signature of the form \(\text{sig}_B\{m, n, A\} \),
 - he sends it as part of msg2 of the protocol, and
 - he must have received msg1 from Alice

Alice deduces: Received (B, msg1) ? Sent (B, msg2)
Formalizing the Approach

- Language for protocol description
 - Arrows-and-messages are informal.
- Protocol Operational Semantics
 - How does the protocol execute?
- Protocol logic
 - Stating security properties.
- Proof system
 - Formally proving security properties.
Protocol Programming Language

A protocol is described by specifying a "program" for each role
- Server = [receive x; new n; send {x, n}]

Building blocks
- Terms (think "messages")
 - names, nonces, keys, encryption, ...
- Actions (operations on terms)
 - send, receive, pattern match, ...
Terms

\[t ::= \begin{align*}
 & c & \quad \text{constant term} \\
 & x & \quad \text{variable} \\
 & N & \quad \text{name} \\
 & K & \quad \text{key} \\
 & t, t & \quad \text{tupling} \\
 & \text{sig}_K\{t\} & \quad \text{signature} \\
 & \text{enc}_K\{t\} & \quad \text{encryption}
\end{align*} \]

Example: \(x, \text{sig}_B\{m, x, A\} \) is a term
Actions

- send t; send a term t
- receive x; receive a term into variable x
- match $t/p(x)$; match term t against $p(x)$

- A program or cord is a sequence of actions

- Notation:
 - we often omit match actions
 - receive $\text{sig}_B\{A, n\} = \text{receive } x; \text{match } x/\text{sig}_B\{A, n\}$
Challenge-Response Programs

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_{X}{m, x, A}};
 send A, X, sig_{A}{m, x, X};
]

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_{B}{y, n, Y}};
 receive Y, B, sig_{Y}{y, n, B};
]
Protocol Execution

- **Initial configuration**
 - Protocol is a finite set of roles
 - Set of principals and keys
 - Assignment of ≥ 1 role to each principal

- **Run (trace)**

 A
 - new x
 - send $\{x\}_B$
 - receive $\{x\}_B$

 B
 - receive $\{x\}_B$
 - receive $\{z\}_B$
 - send $\{z\}_B$

 C
 - new z
 - send $\{z\}_B$

- Cord space is a multiset of cords
- Cords may react
 - via communication
 - via internal actions
- Sample reaction steps:
 - Communication:
 \[[\text{send } t; S]_x \mid [\text{receive } x; T]_y \Rightarrow [S]_x \mid [T(t/x)]_y \]
 - Matching:
 \[[\text{match } p(t)/p(x); S]_x \Rightarrow [S(t/x)]_x \]
Attacker capabilities

◆ Controls complete network
 • Can read, remove, inject messages
◆ Fixed set of operations on terms
 • Pairing
 • Projection
 • Encryption with known key
 • Decryption with known key
 • ...

Commonly referred to as “Dolev-Yao” attacker
PCL: Syntax

◆ Action formulas
 \[a ::= \text{Send}(P,t) \mid \text{Receive}(P,t) \mid \text{Verify}(P,T) \mid \ldots \]

◆ Formulas
 \[\varphi ::= a \mid \text{Has}(P,t) \mid \text{Honest}(N) \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \exists x \varphi \mid a < a \mid \ldots \]

◆ Modal formula
 \[\varphi [\text{actions}]_P \varphi \]

◆ Example
 \[\text{Has}(X, \text{secret}) \supset (X = A \lor X = B) \]

Specifying secrecy
Challenge-Response Property

Specifying authentication for Initiator

\[
\text{true \ } [\text{InitCR}(A, B)]_A \text{ Honest}(B) \supset \\
(\\
\text{Send}(A, \{A,B,m\}) < \\
\text{Receive}(B, \{A,B,m\}) < \\
\text{Send}(B, \{B,A,{n, \text{sig}_B \{m, n, A}\}}) < \\
\text{Receive}(A, \{B,A,{n, \text{sig}_B \{m, n, A}\}}) \\
) \\
\]

Semantics: Property must hold in all protocol traces (similar to Paulson’s Inductive Method)
PCL: Semantics

- **Protocol Q**
 - Defines set of roles (e.g., initiator, responder)
 - Run R of Q is sequence of actions by principals following roles, plus attacker

- **Satisfaction**
 - \(Q, R \models \theta[\text{actions}]_P \phi \)
 - If some role of P in R does exactly actions starting from state where \(\theta \) is true, then \(\phi \) is true in state after actions completed irrespective of actions executed by other agents concurrently
 - \(Q \models \theta[\text{actions}]_P \phi \)
 - \(Q, R \models \theta[\text{actions}]_P \phi \) for all runs R of Q
Proof System

- **Goal:** formally prove security properties
- **Axioms**
 - Simple formulas provable by hand
- **Inference rules**
 - Proof steps
- **Theorem**
 - Formula obtained from axioms by application of inference rules
Sample axioms about actions

- **New data**
 - true [new x]_p Has(P,x)
 - true [new x]_p Has(Y,x) ⊃ Y=P

- **Actions**
 - true [send m]_p Send(P,m)

- **Verify**
 - true [match x/sig_x{m}]_p Verify(P,m)
Reasoning about knowledge

◆ Pairing
 • $\text{Has}(X, \{m,n\}) \supset \text{Has}(X, m) \land \text{Has}(X, n)$

◆ Encryption
 • $\text{Has}(X, \text{enc}_K(m)) \land \text{Has}(X, K^{-1}) \supset \text{Has}(X, m)$
Encryption and signature

- Public key encryption
 \(\text{Honest}(X) \land \text{Decrypt}(Y, \text{enc}_X\{m\}) \supset X=Y \)

- Signature
 \(\text{Honest}(X) \land \text{Verify}(Y, \text{sig}_X\{m\}) \supset \exists m' (\text{Send}(X, m') \land \text{Contains}(m', \text{sig}_X\{m\})) \)
Sample inference rules

◆ First-order logic rules
\[
\begin{array}{c}
\varphi \\
\hline
\varphi \supset \theta \\
\hline
\theta
\end{array}
\]

◆ Generic rules
\[
\begin{array}{c}
\theta \left[\text{actions} \right]_p \psi \\
\hline
\theta \left[\text{actions} \right]_p \varphi
\end{array}
\]
\[
\begin{array}{c}
\theta \left[\text{actions} \right]_p \psi \land \varphi
\end{array}
\]
Honesty rule

∀ roles R of Q. ∀ protocol steps A of R.

\[
\begin{align*}
\text{Start}(X) \ [\]_X \phi & \quad \phi \ [\ A \]_X \phi \\
\hline
Q \models \text{Honest}(X) \supset \phi
\end{align*}
\]

• Example use:
 - If Y receives a message m from X, and
 - Honest(X) \supset (Sent(X,m) \supset Received(X,m'))
 - then Y can conclude
 Honest(X) \supset Received(X,m'))
Correctness of CR

\[
\text{InitCR}(A, X) = \left[\begin{array}{l}
\text{new } m; \\
\text{send } A, X, \{m, A\}; \\
\text{receive } X, A, \{x, \text{sig}_X\{m, x, A\}\}; \\
\text{send } A, X, \text{sig}_A\{m, x, X\}; \\
\end{array} \right]
\]

\[
\text{RespCR}(B) = \left[\begin{array}{l}
\text{receive } Y, B, \{y, Y\}; \\
\text{new } n; \\
\text{send } B, Y, \{n, \text{sig}_B\{y, n, Y\}\}; \\
\text{receive } Y, B, \text{sig}_Y\{y, n, B\}; \\
\end{array} \right]
\]

\[
\text{CR |- true} \ [\text{InitCR}(A, B)]_A \text{ Honest}(B) \Rightarrow
\begin{align*}
\text{Send}(A, \{A,B,m\}) < \\
\text{Receive}(B, \{A,B,m\}) < \\
\text{Send}(B, \{B,A,\{n, \text{sig}_B\{m, n, A\}\}\}) < \\
\text{Receive}(A, \{B,A,\{n, \text{sig}_B\{m, n, A\}\}\})
\end{align*}
\]
Correctness of CR – step 1

\[\text{InitCR}(A, X) = [\]
\[
\begin{align*}
&\quad \text{new } m; \\
&\quad \text{send } A, X, \{m, A\}; \\
&\quad \text{receive } X, A, \{x, \text{sig}_X\{m, x, A\}\}; \\
&\quad \text{send } A, X, \text{sig}_A\{m, x, X\}; \\
\end{align*}
\]

\[\text{RespCR}(B) = [\]
\[
\begin{align*}
&\quad \text{receive } Y, B, \{y, Y\}; \\
&\quad \text{new } n; \\
&\quad \text{send } B, Y, \{n, \text{sig}_B\{y, n, Y\}\}; \\
&\quad \text{receive } Y, B, \text{sig}_y\{y, n, B\}; \\
\end{align*}
\]

1. A reasons about her own actions

\[\text{CR} \vdash \text{true [InitCR}(A, B)]_A \]

\[\text{Verify}(A, \text{sig}_B \{m, n, A\})\]
Correctness of CR - step 2

\[\text{InitCR}(A, X) = [\]
\[\text{new } m; \]
\[\text{send } A, X, \{m, A\}; \]
\[\text{receive } X, A, \{x, \text{sig}_X\{m, x, A\}\}; \]
\[\text{send } A, X, \text{sig}_A\{m, x, X\}; \]
\[] \]

\[\text{RespCR}(B) = [\]
\[\text{receive } Y, B, \{y, Y\}; \]
\[\text{new } n; \]
\[\text{send } B, Y, \{n, \text{sig}_B\{y, n, Y\}\}; \]
\[\text{receive } Y, B, \text{sig}_Y\{y, n, B\}; \]
\[] \]

2. Properties of signatures

\[\text{CR} |- \text{true } [\text{InitCR}(A, B)]_A \text{ Honest}(B) \supset \]
\[\exists m' (\text{Send}(B, m') \land \text{Contains}(m', \text{sig}_B \{m, n, A\}) \]

Recall signature axiom
Correctness of CR - Honesty

\[
\begin{align*}
\text{InitCR}(A, X) &= [\\
&\quad \text{new } m; \\
&\quad \text{send } A, X, \{m, A\}; \\
&\quad \text{receive } X, A, \{x, \text{sig}_X \{m, x, A\}\}; \\
&\quad \text{send } A, X, \text{sig}_A \{m, x, X\}; \\
&\quad] \nonumber
\end{align*}
\]

\[
\begin{align*}
\text{RespCR}(B) &= [\\
&\quad \text{receive } Y, B, \{y, Y\}; \\
&\quad \text{new } n; \\
&\quad \text{send } B, Y, \{n, \text{sig}_B \{y, n, Y\}\}; \\
&\quad \text{receive } Y, B, \text{sig}_y \{y, n, B\}; \\
&\quad] \nonumber
\end{align*}
\]

Invariant proved with Honesty rule

\[
\begin{align*}
\text{CR} \vdash \& \text{Honest}(X) \land \\
&\text{Send}(X, m') \land \text{Contains}(m', \text{sig}_X \{y, x, Y\}) \land \neg \text{New}(X, y) \Rightarrow \\
m = X, Y, \{x, \text{sig}_B \{y, x, Y\}\} \land \text{Receive}(X, \{Y, X, \{y, Y\}\})
\end{align*}
\]

Induction over protocol steps
Correctness of CR - step 3

\[
\text{InitCR}(A, X) = [\\
\quad \text{new } m; \\
\quad \text{send } A, X, \{m, A\}; \\
\quad \text{receive } X, A, \{x, \text{sig}_X\{m, x, A\}\}; \\
\quad \text{send } A, X, \text{sig}_A\{m, x, X\}; \\
\]
\]

\[
\text{RespCR}(B) = [\\
\quad \text{receive } Y, B, \{y, Y\}; \\
\quad \text{new } n; \\
\quad \text{send } B, Y, \{n, \text{sig}_B\{y, n, Y\}\}; \\
\quad \text{receive } Y, B, \text{sig}_Y\{y, n, B\}; \\
\]
\]

3. Use Honesty invariant

\[
\text{CR} \vdash \text{true } [\text{InitCR}(A, B)]_A \text{ Honest}(B) \supset \text{Receive}(B, \{A, B, m\}), ...
\]
Correctness of CR - step 4

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_X{m, x, A}};
 send A, X, sig_A{m, x, X};
]

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_Y{y, n, B};
]

4. Use properties of nonces for temporal ordering

\[CR \vdash true [\text{InitCR}(A, B)]_A \quad \text{Honest}(B) \Rightarrow \text{Auth} \]

Nonces are “fresh” random numbers
We have a proof. So what?

◆ Soundness Theorem:
 • if Q |- φ then Q |= φ
 • If φ is a theorem then φ is a valid formula
◆ φ holds in any step in any run of protocol Q
 • Unbounded number of participants
 • Dolev-Yao intruder
Thanks!

Questions?