Contextual Integrity and its Formalization

Anupam Datta

CMU

Fall 2007-08
Problem Statement

» Is an organization’s business process compliant with privacy regulations and internal policies?

» Examples of organizations
 • Hospitals, financial institutions, other enterprises handling sensitive information

» Examples of privacy regulations
 • HIPAA, GLBA, COPPA, SB1386

Goal: Develop methods and tools to answer this question
Contextual Integrity

◆ Philosophical framework for privacy
◆ Central concept: Context
 • Examples: Healthcare, banking, education
◆ What is a context?
 • Set of interacting agents in roles
 - Roles in healthcare: doctor, patient, ...
 • Norms of transmission
 - Doctors should share patient health information as per the HIPAA rules
 • Purpose
 - Improve health
Outline

1. Motivating Example
2. Framework
 - Model
 - Logic of Privacy and Utility
3. Workflows and Responsibility
4. Algorithmic Results
 - Workflow Design assuming agents responsible
 - Auditing logs when agents irresponsible
5. Conclusions
Now that I have cancer, Should I eat more vegetables?

Yes! except broccoli
Possible Enhancement

◆ Secretary handles every message
 • Privacy
 • Efficiency
 • Robustness

◆ Messages opaque to MyHealth
 • Unable to help secretary route messages
 • Hinders adding features like delegation

◆ Suggestion: add short tags to messages
Now that I have cancer, Should I eat more vegetables?

Yes! except broccoli
Now that I have cancer, should I eat more vegetables?

Yes! except broccoli
Workflow Design Goals

- **Privacy**
 - Secretary does not get sensitive info

- **Utility**
 - Health question eventually answered

- **Robustness**
 - Properties hold even with mistakes
Recommendations

◆ Add short tags to messages
 - Enhances privacy
 - Increases efficiency
 - Scales with added functionality

◆ Assign responsibilities
 - Example: secretary should tag messages with “health question” if needed
Outline

1. Motivating Example
2. Framework
 ◆ Model
 ◆ Logic of Privacy and Utility
3. Workflows and Responsibility
4. Algorithmic Results
 ◆ Workflow Design assuming agents responsible
 ◆ Auditing logs when agents irresponsible
5. Conclusions
Informational Norms

“In a context, the flow of information of a certain type about a subject (acting in a particular capacity/role) from one actor (could be the subject) to another actor (in a particular capacity/role) is governed by a particular transmission principle.”

Contextual Integrity [N2004]
Model

- **Communication via send actions:**
 - **Sender:** Bob in role Patient
 - **Recipient:** Alice in role Nurse
 - **Subject of message:** Bob
 - **Tag:** Health Question
 - **Message:** Now that I have cancer, Should I eat more vegetables?

- **Data model & knowledge evolution:**
 - Agents acquire knowledge by:
 - receiving messages
 - deriving additional attributes based on data model
 - Health Question \leq Protected Health Information

contents(msg) vs. tags (msg)
Model

- State determined by knowledge of each agent
- Transitions change state
 - Set of concurrent send actions
 - Send(p,q,m) possible only if agent p knows m

Concurrent Game Structure

\[G = \langle k, Q, \Pi, \pi, d, \delta \rangle \]
Logic of Privacy and Utility

◆ Syntax

\[\varphi ::= \text{send}(p_1, p_2, m) \]
\[\quad | \text{contains}(m, q, t) \quad \text{p}_1 \text{ sends p}_2 \text{ message m} \]
\[\quad | \text{tagged}(m, q, t) \quad \text{m contains attrib t about q} \]
\[\quad | \text{inrole}(p, r) \quad \text{m tagged attrib t about q} \]
\[\quad | t \leq t' \quad \text{p is active in role r} \]
\[\quad | \varphi \land \varphi \quad \text{Attrib t is part of attrib t'} \]
\[\quad | \neg \varphi \quad \text{Classical operators} \]
\[\quad | \exists x. \varphi \quad \text{Temporal operators} \]
\[\quad | \varphi U \varphi \quad \text{Strategy quantifier} \]
\[\quad | \varphi S \varphi \quad \text{Strategy quantifier} \]
\[\quad | O \varphi \]
\[\quad | <<p>> \varphi \]

◆ Semantics

Formulas interpreted over concurrent game structure
Specifying Privacy

- MyHealth@Vanderbilt

In all states, only nurses and doctors receive health questions

\[G \forall p1, p2, q, m \\]
\[\text{send}(p1, p2, m) \land \text{contains}(m, q, \text{health-question}) \]
\[\Rightarrow \text{inrole}(p2, \text{nurse}) \lor \text{inrole}(p2, \text{doctor}) \]

LTL fragment can express HIPAA, GLBA, COPPA [BDMN2006]
Specifying Utility

MyHealth@Vanderbilt

Patients have a strategy to get their health questions answered

\[\forall p \text{ inrole}(p, \text{patient}) \Rightarrow \]
\[[p] F \exists q, m. \]
\[\text{send}(q, p, m) \wedge \text{contains}(m, p, \text{health-answer}) \]
Expressing Privacy

Allow message transmission if:

- at least one positive norm is satisfied; and
- all negative norms are satisfied

Figure 1. Norms of Transmission Represented as a Temporal Formula
• HIPAA consists primarily of positive norms: share phi if some rule explicitly allows it (2), (3), (5), (6)
• Exception: negative norm about psychotherapy notes (4)
COPPA – Children Online Privacy

COPPA consists primarily of negative norms

- Children can share their protected info only if parents consent (7) (condition)

- (8) (obligation – future requirements)
Financial institutions must notify consumers if they share their non-public personal information with non-affiliated companies, but the notification may occur either before or after the information sharing occurs.

\[
\text{inrole}(p_1, \text{institution}) \land \text{inrole}(p_2, \text{non-affiliate}) \land \text{inrole}(q, \text{consumer}) \land (t \in \text{npi}) \rightarrow \\
\diamond \text{send}(p_1, q, \text{privacy-notice}) \lor \diamond \text{send}(p_1, q, \text{privacy-notice})
\]
Outline

1. Motivating Example
2. Framework
 - Model
 - Logic of Privacy and Utility
3. Workflows and Responsibility
4. Algorithmic Results
 - Workflow Design assuming agents responsible
 - Auditing logs when agents irresponsible
5. Conclusions
MyHealth@Vanderbilt Improved

Doctor should answer health questions

Assign responsibilities to roles & workflow engine

Now that I have cancer, Should I eat more vegetables?

Yes! except broccoli
Graph-based Workflow

- **Graph**

 \((R, R \times R)\), where \(R\) is the set of roles

- **Edge-labeling function**

 \(\text{permit}: R \times R \rightarrow 2^T\), where \(T\) is the set of attributes

- **Responsibility of workflow engine**

 Allow msg from role \(r_1\) to role \(r_2\) iff \(\text{tags}(msg) \subseteq \text{permit}(r_1, r_2)\)

- **Responsibility of human agents in roles**

 Tagging responsibilities
 - ensure messages are correctly tagged
 Progress responsibilities
 - ensure messages proceed through workflow
MyHealth Responsibilities

◆ Tagging
Nurses should tag health questions
\[G \ \forall p, q, s, m. \text{inrole}(p, \text{nurse}) \land \text{send}(p, q, m) \land \text{contains}(m, s, \text{health-question}) \Rightarrow \text{tagged}(m, s, \text{health-question}) \]

◆ Progress
• Doctors should answer health questions
\[G \ \forall p, q, s, m. \text{inrole}(p, \text{doctor}) \land \text{send}(q, p, m) \land \text{contains}(m, s, \text{health-question}) \Rightarrow \neg \exists m'. \text{send}(p, s, m') \land \text{contains}(m', s, \text{health-answer}) \]
Abstract Workflow

◆ Responsibility of workflow engine
 • LTL formula φ
 • Feasible (enforceable) if φ is a safety formula without the contains() predicate

◆ Responsibility of each role r
 • LTL formula φ_r
 • Feasible if agents have a strategy to discharge their responsibilities
 \[\forall p. \varphi \land \text{inrole}(p, r) \Rightarrow \ll p \gg \varphi_r \]

Graph-based workflows are a special case
Outline

1. Motivating Example
2. Framework
 - Model
 - Logic of Privacy and Utility
3. Workflows and Responsibility
4. Algorithmic Results
 - Workflow Design assuming agents responsible
 - Abstract workflows
 - Auditing logs when agents irresponsible
 - Only graph-based workflows
5. Conclusions
Now that I have cancer, should I eat more vegetables?

Yes! Except broccoli.

• Minimal disclosure
• Privacy: HIPAA compliance+
• Utility: Schedule appointments, obtain health answers

• Responsibility: Doctor should answer health questions
Workflow Design Results

- **Theorems:**
 - Assuming all agents act responsibly, checking whether workflow achieves
 - Privacy is in PSPACE (in the size of the formula describing the workflow)
 - Utility is decidable

- **Definition and construction of minimal disclosure workflow**

Algorithms implemented in model-checkers, e.g. SPIN, MOCHA
Deciding Privacy

◆ PLTL model-checking problem is PSPACE decidable

\[G \models \text{tags-correct} \cup \text{agents-responsible} \Rightarrow \text{privacy-policy} \]

\(G \): concurrent game structure

Result applies to finite models (\#agents, msgs,...)
MyHealth Privacy

- MyHealth@Vanderbilt workflow satisfies this privacy condition

In all states, only nurses and doctors receive health questions

\[G \forall p_1, p_2, q, m \]
\[\text{send}(p_1, p_2, m) \land \text{contains}(m, q, \text{health-question}) \Rightarrow \text{inrole}(p_2, \text{nurse}) \lor \text{inrole}(p_2, \text{doctor}) \]

- Run LTL model-checker, e.g. SPIN
Deciding Utility

◆ ATL* model-checking of concurrent game structures is
 • Decidable with perfect information
 • Undecidable with imperfect information

◆ Theorem:
 There is a sound decision procedure for deciding whether workflow achieves utility

◆ Intuition:
 • Translate imperfect information into perfect information by considering possible actions from one player’s point of view
MyHealth Utility

MyHealth@Vanderbilt workflow satisfies this utility condition

Patients have a strategy to get their health questions answered

\[\forall p \text{ inrole}(p, \text{patient}) \Rightarrow \exists q, m. \text{send}(q, p, m) \land \text{contains}(m, p, \text{health-answer}) \]

Run ATL* model-checker, e.g. MOCHA
Minimal Disclosure Workflow

◆ Abstract workflows:
 \[W_1(\varphi_1, \varphi_R) \leq W_2(\varphi_2, \varphi_R) \text{ if } G \text{ satisfies } \varphi_1 \Rightarrow \varphi_2 \]

◆ Graph-based workflows:
 \[W_1(R, \text{permit}_1) \leq W_2(R, \text{permit}_2) \text{ if } \forall r_1, r_2 \in R. \text{permit}_1(r_1, r_2) \subseteq \text{permit}_2(r_1, r_2) \]

◆ Lemma:
 If \(W_1 \leq W_2 \) and \(W_2 \) achieves a privacy goal, then so does \(W_1 \)

◆ Minimal Disclosure Workflow:
 \(W \) is minimal wrt to a utility goal if \(W \) achieves the goal and all feasible \(W' < W \) fails to achieve the goal
Now that I have cancer, Should I eat more vegetables?

Yes! except broccoli
Now that I have cancer, should I eat more vegetables?

Yes! except broccoli.
Outline

1. Motivating Example
2. Framework
 ◆ Model
 ◆ Logic of Privacy and Utility
3. Workflows and Responsibility
4. Algorithmic Results
 ◆ Workflow Design assuming agents responsible
 ◆ Abstract workflows
 ◆ Auditing logs when agents irresponsible
 ◆ Only graph-based workflows
5. Conclusions
Auditing Results

 Definitions
 - Policy compliance, locally compliant
 - Causality, accountability

 Design of audit log

 Algorithms
 - Finding agents accountable for locally-compliant policy violation in graph-based workflows using audit log
 - Finding agents who act irresponsibly using audit log

 Algorithms use oracle:
 - $O(\text{msg}) = \text{contents}(\text{msg})$
 - Minimize number of oracle calls
Policy compliance/violation

- **Strong compliance**
 - Action does not violate current policy requirements
 - Future policy requirements after action can be met

- **Locally compliant policy**
 - Agents can determine strong compliance based on their local view of history
Definition. The relation “⇒” on the set of events of a system is the smallest relation satisfying the following three conditions: (1) If a and b are events in the same process, and a comes before b, then $a \Rightarrow b$. (2) If a is the sending of a message by one process and b is the receipt of the same message by another process, then $a \Rightarrow b$. (3) If $a \Rightarrow b$ and $b \Rightarrow c$ then $a \Rightarrow c$. Two distinct events a and b are said to be concurrent if $a \leftrightarrow b$ and $b \leftrightarrow a$.

Causality

Lamport Causality [1978]
Accountability & Audit Log

◆ Accountability
 • Causality + Irresponsibility

◆ Audit log design
 • Records all Send(p,q,m) and Receive(p,q,m) events executed
 • Maintains causality structure
 - $O(1)$ operation per event logged
Auditing Algorithm

◆ **Goal**
Find agents accountable for a policy violation

◆ **Algorithm**(Audit log A, Violation v)
1. Construct G, the causality graph for v in A
2. Run BFS on G.
 At each Send(p, q, m) node, check if tags(m) = $O(m)$. If not, and p missed a tag, output p as accountable

◆ **Theorem:**
- The algorithm outputs at least one accountable agent for every violation
 - of a locally compliant policy in an audit log
 - of a graph-based workflow that achieves the policy in the responsible model
Proof Idea

- **Causality graph G includes all accountable agents**
 - Accountability = Causality + Irresponsibility

- **There is at least one irresponsible agent in G**
 - Policy is satisfied if all agents responsible
 - Policy is locally compliant

- **In graph-based workflows, safety responsibilities violated only by mistagging**
 - $O(\text{msg}) = \text{tags}(\text{msg})$ check identifies all irresponsible actions
1. Policy violation:
 Secretary Candy receives health-question mistagged as appointment-request

2. Construct causality graph G and search backwards using BFS
 Candy received message m from Patient Jorge.
 - $O(m) = \text{health-question}$, but $\text{tags}(m) = \text{appointment-request}$.
 - Patient responsible for health-question tag.
 - Jorge identified as accountable
Conclusions

1. Framework
 - Concurrent game model
 - Logic of Privacy and Utility
 - Temporal logic (LTL, ATL*)

2. Business Process as Workflow
 - Role-based responsibility for human and mechanical agents

3. Algorithmic Results
 - Workflow design assuming agents responsible
 - Privacy, utility decidable (model-checking)
 - Minimal disclosure workflow constructible
 - Auditing logs when agents irresponsible
 - From policy violation to accountable agents
 - Finding irresponsible agents

 Using oracle
 Automated
Thanks

Questions?
Local communication game

◆ Quotient structure under invisible actions, G_p

 • States: Smallest equivalence relation

 $K_1 \sim_p K_2$ if $K_1 \xrightarrow{a} K_2$ and a is invisible to p

 • Actions: $[K] \xrightarrow{a} [K']$ if there exists K_1 in $[K]$ and K_2 in $[K']$

 s.t. $K_1 \xrightarrow{a} K_2$

◆ Lemma: For all LTL formulas φ visible to p, $G_p \models \langle\langle p\rangle\rangle \varphi$ implies $G \models \langle\langle p\rangle\rangle \varphi$
Refinement and Combination

◆ Policy refinement
 • Basic policy relation
 • Does hospital policy enforce HIPAA?

◆ P_1 refines P_2 if $P_1 \rightarrow P_2$
 • Requires careful handling of attribute inheritance
 • PSPACE decidable

◆ Combination becomes logical conjunction
 • Defined in terms of refinement
Related Languages

<table>
<thead>
<tr>
<th>Model</th>
<th>Sender</th>
<th>Recipient</th>
<th>Subject</th>
<th>Attributes</th>
<th>Past</th>
<th>Future</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBAC</td>
<td>Role</td>
<td>Identity</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
<td>•</td>
</tr>
<tr>
<td>XACML</td>
<td>Flexible</td>
<td>Flexible</td>
<td>Flexible</td>
<td></td>
<td>0</td>
<td>×</td>
<td>0</td>
</tr>
<tr>
<td>EPAL</td>
<td>Fixed</td>
<td>Role</td>
<td>Fixed</td>
<td></td>
<td>•</td>
<td>×</td>
<td>0</td>
</tr>
<tr>
<td>P3P</td>
<td>Fixed</td>
<td>Role</td>
<td>Fixed</td>
<td></td>
<td>•</td>
<td>0</td>
<td>×</td>
</tr>
<tr>
<td>LPU</td>
<td>Role</td>
<td>Role</td>
<td>Role</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

◆ Legend:
- × unsupported
- o partially supported
- • fully supported

◆ LPU fully supports attributes, combination, temporal conditions
Why Not Use P3P?

Different application
- P3P understood by web browsers
- LPU intended for internal policy enforcement

Not expressive enough
- P3P cannot express HIPAA, GLBA, COPPA
- Each policy only has one sender and one subject
- Missing temporal conditions; only has simple opt-in / opt-out
Heath care providers can tell patients their health information

Sender role Recipient role Subject role Attribute

Heath care providers can tell patients their psychotherapy notes *only if a psychiatrist has approved*