
Carnegie Mellon

1

Concurrency & Proxy Lab

Recitation 13: November 28, 2017



Carnegie Mellon

2

Part A
⬛ Visualizing Concurrency: Progress Graphs



Carnegie Mellon

3

Assembly Code for Counter Loop

11/20/2017  (©J.P. Shen)



Carnegie Mellon

4

Visualizing Concurrency: Progress Graphs

● Incorrect ordering: two threads increment the counter, but the result is 1 instead of 2

H
1

L
1

U
1

H
2

L
2

S
1

T
1

U
2

S
2

T
2

1

1

1

2

2

1

1

2

2

2

-

0

1

-

-

1

1

-

-

-

0

0

0

0

0

1

1

1

1

1

i (thread) instr
i

cnt%rdx
1

-

-

-

-

0

-

-

1

1

1

%rdx
2

Oops!

11/20/2017  (©J.P. Shen)

⬛ Recall this ordering from yesterday’s lecture slide 10

⬛ We can analyze the behavior using a progress graph



Carnegie Mellon

5

Progress Graphs

A progress graph depicts
the discrete execution 
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst

1
, Inst

2
).

E.g., (L
1
, S

2
)  denotes state

where  thread 1 has
completed L

1
 and thread

2 has completed S
2
.

H
1

L
1

U
1

S
1

T
1

H
2

L
2

U
2

S
2

T
2

Thread 1

Thread 2

(L
1
, S

2
) 

11/20/2017  (©J.P. Shen)



Carnegie Mellon

6

Trajectories in Progress Graphs

A trajectory is a sequence of legal state 
transitions that describes one possible 
concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2,  S1, T1, U2, S2, T2

H
1

L
1

U
1

S
1

T
1

H
2

L
2

U
2

S
2

T
2

Thread 1

Thread 2

11/20/2017  (©J.P. Shen)



Carnegie Mellon

7

Critical Sections and Unsafe Regions

L, U, and S form a critical 
section with respect to the 
shared variable cnt

Instructions in critical sections 
(wrt some shared variable) 
should not be interleaved

Sets of states where such 
interleaving occurs form 
unsafe regions

H
1

L
1

U
1

S
1

T
1

H
2

L
2

U
2

S
2

T
2

Thread 1

Thread 2

critical section wrt cnt

critical 
section 

wrt 
cnt

Unsafe region

11/20/2017  (©J.P. Shen)



Carnegie Mellon

8

Trajectory safeness and correctness

Def: A trajectory is safe  iff it does 
not enter any unsafe region

Claim: A trajectory is correct (wrt 
cnt)  iff it is safe

H
1

L
1

U
1

S
1

T
1

H
2

L
2

U
2

S
2

T
2

Thread 1

Thread 2

critical section wrt cnt

critical 
section 

wrt 
cnt

Unsafe region

unsafe

safe

11/20/2017  (©J.P. Shen)



Carnegie Mellon

9

Deadlock Visualized in Progress Graph
Locking introduces  the
potential for deadlock: 
waiting for a condition that will never be 
true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for either s0 or s1 to 
become nonzero

Other trajectories luck out and skirt the 
deadlock region

Unfortunate fact: deadlock is often 
nondeterministic (race)

Thread 0

Thread 1

P(s
0
) V(s

0
)P(s

1
) V(s

1
)

V(s
1
)

P(s
1
)

P(s
0
)

V(s
0
) Forbidden region

for s
0

Forbidden region
for s

1

Deadlock
state

Deadlock
region

s
0
=s

1
=1

11/20/2017  (©J.P. Shen)



Carnegie Mellon

10

Avoided Deadlock in Progress Graph
No way for trajectory to get stuck

Processes acquire locks in same order

Order in which locks released 
immaterial

11/20/2017  (©J.P. Shen) 18-600   Lecture #23 10

Thread 0

Thread 1

P(s
0
) V(s

0
)P(s

1
) V(s

1
)

V(s
1
)

P(s
0
)

P(s
1
)

V(s
0
)

Forbidden region
for s

0

Forbidden region
for s

1

s
0
=s

1
=1



Carnegie Mellon

11

Part B
⬛ Getting content on the web: Telnet/cURL

▪ How the web really works

⬛ Networking Basics

⬛ Echo Client & Server Demo

⬛ Proxy
▪ Due Tuesday, December 12th

▪ Grace days allowed

⬛ String Manipulation in C



Carnegie Mellon

12

The Web in a Textbook
⬛ Client request page, server provides, transaction done.

⬛ A sequential server can handle this. We just need to serve 
one page at a time.

⬛ This works great for simple text pages with embedded 
styles.

Web
server

Web
client

(browser) 



Carnegie Mellon

13

Telnet/Curl
⬛ Telnet

▪ Interactive remote shell – like ssh without security

▪ Must build HTTP request manually

▪ This can be useful if you want to test response to malformed headers

[rjaganna@makoshark ~]% telnet www.cmu.edu 80
Trying 128.2.42.52...
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu (128.2.42.52).
Escape character is '^]'.
GET http://www.cmu.edu/ HTTP/1.0

HTTP/1.1 301 Moved Permanently
Date: Sat, 11 Apr 2015 06:54:39 GMT
Server: Apache/1.3.42 (Unix) mod_gzip/1.3.26.1a mod_pubcookie/3.3.4a mod_ssl/2.8.31 OpenSSL/0.9.8e- fips-rhel5
Location: http://www.cmu.edu/index.shtml
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved <A HREF="http://www.cmu.edu/index.shtml">here</A>.<P>
<HR>
<ADDRESS>Apache/1.3.42 Server at <A HREF="mailto:webmaster@andrew.cmu.edu">www.cmu.edu</A> Port 80</ADDRESS>
</BODY></HTML>
Connection closed by foreign host.



Carnegie Mellon

14

Telnet/cURL
⬛ cURL

▪ “URL transfer library” with a command line program

▪ Builds valid HTTP requests for you!

▪ Can also be used to generate HTTP proxy requests:

[prodney@makoshark ~]% curl http://www.cmu.edu/   
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved <A HREF="http://www.cmu.edu/index.shtml">here</A>.<P>
<HR>
<ADDRESS>Apache/1.3.42 Server at <A HREF="mailto:webmaster@andrew.cmu.edu">www.cmu.edu</A> Port 80</ADDRESS>
</BODY></HTML>

[prodney@makoshark ~]% curl --proxy lemonshark.ics.cs.cmu.edu:3092 http://www.cmu.edu/
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved <A HREF="http://www.cmu.edu/index.shtml">here</A>.<P>
<HR>
<ADDRESS>Apache/1.3.42 Server at <A HREF="mailto:webmaster@andrew.cmu.edu">www.cmu.edu</A> Port 80</ADDRESS>
</BODY></HTML>



Carnegie Mellon

15

How the Web Really Works
⬛ In reality, a single HTML page today may depend on 10s or 100s of support 

files (images, stylesheets, scripts, etc.)

⬛ Builds a good argument for concurrent servers

▪ Just to load a single modern webpage, the client would have to wait for 
10s of back-to-back request

▪ I/O is likely slower than processing, so back

⬛ Caching is simpler if done in pieces rather than whole page

▪ If only part of the page changes, no need to fetch old parts again

▪ Each object (image, stylesheet, script) already has a unique URL that can 
be used as a key



Carnegie Mellon

16

Sequential Proxy



Carnegie Mellon

17

Sequential Proxy
⬛ Note the sloped shape of when requests finish

▪ Although many requests are made at once, the proxy does not 
accept a new job until it finishes the current one

▪ Requests are made in batches. This results from how HTML is 
structured as files that reference other files.

⬛ Compared to the concurrent example (next), this page 
takes a long time to load with just static content



Carnegie Mellon

18

Concurrent Proxy



Carnegie Mellon

19

Concurrent Proxy
⬛ Now, we see much less purple (waiting), and less time 

spent overall.

⬛ Notice how multiple green (receiving) blocks overlap in 
time
▪ Our proxy has multiple connections open to the browser to handle 

several tasks at once



Carnegie Mellon

20

Part B
⬛ Getting content on the web: Telnet/cURL Demo

▪ How the web really works

⬛ Networking Basics

⬛ Echo Client & Server Demo

⬛ Proxy
▪ Due Tuesday, December 12th

▪ Grace days allowed

⬛ String Manipulation in C



21

Carnegie Mellon

Sockets
⬛ What is a socket?

▪ To an application, a socket is a file descriptor that lets the application read/write from/to the 
network

▪ (all Unix I/O devices, including networks, are modeled as files)

⬛ Clients and servers communicate with each other by reading from and writing to socket descriptors

⬛ The main difference between regular file I/O and socket I/O is how the application “opens” the 
socket descriptors



2
2

Carnegie Mellon

Overview of the Sockets Interface

Client / 
Server
Session

Client Server

socket socket

bind

listen

rio_readlin
eb

rio_writen
rio_readlin

eb

rio_writen

Connection
request

rio_readlin
eb

close

close
EOF

Await connection
request from

next client

open_listenfd
open_clientfd

acceptconnect

getaddrinfogetaddrinfo



Carnegie Mellon

23

Host and Service Conversion: getaddrinfo
⬛ getaddrinfo is the modern way to convert string representations of host, ports, 

and service names to socket address structures. 

▪ Replaces obsolete gethostbyname - unsafe because it returns a pointer to a 
static variable

⬛ Advantages:

▪ Reentrant (can be safely used by threaded programs).

▪ Allows us to write portable protocol-independent code(IPv4 and IPv6)

▪ Given host and service, getaddrinfo returns result that points to a 
linked list of addrinfo structs, each pointing to socket address struct, which 
contains arguments for sockets APIs.

⬛ getnameinfo is the inverse of getaddrinfo, converting a socket address to the 
corresponding host and service.



Sockets API
⬛ int socket(int domain, int type, int protocol);

▪ Create a file descriptor for network communication

▪ used by both clients and servers

▪ int sock_fd = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

▪ One socket can be used for two-way communication

⬛ int bind(int socket, const struct sockaddr *address, socklen_t address_len);

▪ Associate a socket with an IP address and port number

▪ used by servers

▪ struct sockaddr_in sockaddr – family, address, port

24

Carnegie Mellon



Sockets API
⬛ int listen(int socket, int backlog);

▪ socket: socket to listen on

▪ used by servers

▪ backlog: maximum number of waiting connections

▪ err = listen(sock_fd, MAX_WAITING_CONNECTIONS);

⬛ int accept(int socket, struct sockaddr *address, socklen_t *address_len);

▪ used by servers

▪ socket: socket to listen on

▪ address: pointer to sockaddr struct to hold client information after accept 
returns

▪ return: file descriptor
25

Carnegie Mellon



Sockets API
⬛ int connect(int socket, struct sockaddr *address, socklen_t address_len);

▪ attempt to connect to the specified IP address and port described in address

▪ used by clients

⬛ int close(int fd);

▪ used by both clients and servers

▪ (also used for file I/O)

▪ fd: socket fd to close

26

Carnegie Mellon



Sockets API
⬛ ssize_t read(int fd, void *buf, size_t nbyte);

▪ used by both clients and servers

▪ (also used for file I/O)

▪ fd: (socket) fd to read from

▪ buf: buffer to read into

▪ nbytes: buf length

⬛ ssize_t write(int fd, void *buf, size_t nbyte);

▪ used by both clients and servers

▪ (also used for file I/O)

▪ fd: (socket) fd to write to

▪ buf: buffer to write

▪ nbytes: buf length 27

Carnegie Mellon



Carnegie Mellon

28

Part B
⬛ Getting content on the web: Telnet/cURL

▪ How the web really works

⬛ Networking Basics

⬛ Echo Client & Server Demo

⬛ Proxy
▪ Due Tuesday, December 12th

▪ Grace days allowed

⬛ String Manipulation in C



Carnegie Mellon

29

Byte Ordering Reminder
⬛ So, how are the bytes within a multi-byte word ordered in 

memory?

⬛ Conventions
▪ Big Endian: Sun, PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and 
Windows

▪ Least significant byte has lowest address



Carnegie Mellon

30

Byte Ordering Reminder
⬛ So, how are the bytes within a multi-byte word ordered in 

memory?

⬛ Conventions

▪Big Endian: Sun, PPC Mac, Internet
▪ Least significant byte has highest address

⬛ Make sure to use correct endianness



Carnegie Mellon

31

Proxy - How
⬛ Proxies are a bit special - they are a server and a client at the same time.

⬛ They take a request from one computer (acting as the server), and make it on 
their behalf (as the client).

⬛ Ultimately, the control flow of your program will look like a server, but will 
have to act as a client to complete the request

⬛ Start small

▪ Grab yourself a copy of the echo server (pg. 946) and client (pg. 947) in the 
book

▪ Also review the tiny.c basic web server code to see how to deal with HTTP 
headers

▪ Note that tiny.c ignores these; you may not



Carnegie Mellon

32

Proxy - How
⬛ What you end up with will resemble:

Server
(port 
80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Proxy

Proxy server socket address
128.2.194.34:15213

Proxy client socket address
128.2.194.34:52943



Carnegie Mellon

33

Proxy - Functionality
⬛ Should work on vast majority of sites

▪ Twitch, CNN, NY Times, etc.

▪ Some features of sites which require the POST operation (sending data to the website), will not 
work
− Logging into websites, sending Facebook message

▪ HTTPS is not expected to work

− Google,  YouTube (and some other popular websites) now try to push users to HTTPs by 
default; watch out for that

⬛ Cache previous requests

▪ Use LRU eviction policy

▪ Must allow for concurrent reads while maintaining consistency

▪ Details in write up



Carnegie Mellon

34

Proxy - Functionality
⬛ Why a multi-threaded cache?

■ Sequential cache would bottleneck parallel proxy

■ Multiple threads can read cached content safely

■ Search cache for the right data and return it

■ Two threads can read from the same cache block

■ But what about writing content?

■ Overwrite block while another thread reading?

■ Two threads writing to same cache block?



Carnegie Mellon

35

Summary
⬛ Step 1: Sequential Proxy

▪ Works great for simple text pages with embedded styles

⬛ Step 2: Concurrent Proxy

▪ multi-threading

⬛ Step 3 : Cache Web Objects

▪ Cache individual objects, not the whole page

▪ Use an LRU eviction policy

▪ Your caching system must allow for concurrent reads while maintaining 
consistency. Concurrency? Shared Resource?



Carnegie Mellon

36

Proxy – Testing & Grading
⬛ Autograder

▪ ./driver.sh will run the same tests as autolab:

▪ Ability to pull basic web pages from a server

▪ Handle a (concurrent) request while another request is still 
pending

▪ Fetch a web page again from your cache after the server has 
been stopped

▪ This should help answer the question “is this what my proxy is 
supposed to do?”

▪ Please don’t use this grader to definitively test your proxy; there 
are many things not tested here



Carnegie Mellon

37

Proxy – Testing & Grading
⬛ Test your proxy liberally

▪ The web is full of special cases that want to break your proxy (think 
small images, large images, videos, etc.)

▪ Generate a port for yourself with ./port-for-user.pl [andrewid]

▪ Generate more ports for web servers and such with ./free-port.sh

⬛ Create a handin file with make handin
▪ Will create a tar file for you with the contents of your 

proxylab-handin folder



Carnegie Mellon

38

Part B
⬛ Getting content on the web: Telnet/cURL

▪ How the web really works

⬛ Networking Basics

⬛ Echo Client & Server Demo

⬛ Proxy
▪ Due Tuesday, December 12th

▪ Grace days allowed

⬛ String Manipulation in C



Carnegie Mellon

39

String manipulation in C
⬛ sscanf: Read input in specific format

int sscanf(const char *str, const char *format, …);

Example:

buf = “213 is awesome”

// Read integer and string separated by white space from buffer ‘buf’ 

// into passed variables

ret = sscanf(buf, “%d  %s  %s”, &course, str1, str2);

This results in:

course = 213,  str1 = is,  str2 = awesome,  ret = 3



Carnegie Mellon

40

String manipulation (cont)
⬛ sprintf: Write input into buffer in specific format

int sprintf(char *str, const char *format, …);

Example:

buf[100];

str = “213 is awesome”

// Build the string in double quotes (“”) using the passed arguments

// and write to buffer ‘buf’

sprintf(buf, “String (%s)  is of length %d”, str, strlen(str));

This results in:

buf = String (213 is awesome) is of length 14



Carnegie Mellon

41

String manipulation (cont)
Other useful string manipulation functions:

⬛ strcmp, strncmp, strncasecmp

⬛ strstr

⬛ strlen

⬛ strcpy, strncpy



Carnegie Mellon

42

String Manipulation (cont)

⬛ Beware: String operations will NOT work properly with 
binary data
▪ E.g. images, videos, etc

▪ Think about the null terminator string operations check for

▪ Remember this when caching data objects

⬛ Solution: use memcpy instead
▪ void *memcpy(void *dest, const void *src, size_t n);



Carnegie Mellon

43

Aside: Setting up Firefox to use a proxy
⬛ You may use any browser, 

but we’ll be grading with 
Firefox

⬛ Preferences > Advanced > 
Network > Settings… 
(under Connection)

⬛ Check “Use this proxy for 
all protocols” or your proxy 
will appear to work for 
HTTPS traffic.



Carnegie Mellon

44

Questions?


