
18-600 Recitation #12
Malloc Lab - Part 2
November 14th, 2017

1

Carnegie Mellon

2

REMINDER
⬛ Malloc Lab checkpoint is due on 11/17

▪ This is Friday (instead of the usual Thursday deadline)
▪ No late days available

⬛ Final submission is due on 11/27
▪ Two late days available

⬛ Remember:
▪ Revisit any assumptions you make in your code (e.g. initializations)
▪ Please follow proper style and header-comment guidelines.

Carnegie Mellon

3

AGENDA
⬛ Recap

▪ Basics
▪ Implicit lists, Explicit lists and Segregated lists

⬛ Design Considerations
▪ Internal and external fragmentation
▪ Coalescing
▪ Finding a fit

⬛ Debugging
▪ Heap Checker
▪ GDB and HProbe

⬛ Further Optimization Techniques

Carnegie Mellon

4

MALLOC: Basics

Carnegie Mellon

5

Basics of Memory Allocation
⬛ When is malloc(), free() used ?

▪ When amount of memory that needs to be used is not known at compile-time
▪ When you wish to free up chunks of memory after using them in the program

⬛ Why do we need a dynamic memory allocator ?
▪ Memory to be allocated is a contiguous chunk from the heap.
▪ The goal - fit a chunk of memory that can accommodate the size requested by

the user
▪ In a short span of time (speed optimization)
▪ While wasting minimal heap memory (space optimization)

Carnegie Mellon

6

Malloc - The big picture

User Application
User Application

User Application User App Library
malloc/free

Calls to lib functions

Kernel

Syscall for more memory
a.k.a sbrk(...)

HEAP (we are
allocating/freeing this)

STACK

.data/.bss

.text

0

sbrk()
pointer

rsp

Carnegie Mellon

7

MALLOC: Implementation Specifics

Carnegie Mellon

8

The Data Structure
⬛ Requirements:

▪ The data structure needs to tell us where the blocks are, how big they are,
and whether they’re free

▪ We need to be able to CHANGE the data structure during calls to malloc
and free

▪ We need to be able to find the next free block that is “a good fit for” a
given payload

▪ We need to be able to quickly mark a block as free/allocated

▪ We need to be able to detect when we’re out of blocks.

▪ What do we do when we’re out of blocks?

Carnegie Mellon

9

The data structure
⬛ The data structure IS your memory!

⬛ A start:

▪ <h1> <pl1> <h2> <pl2> <h3> <pl3>

▪ What goes in the header?

▪ Size ? Allocation status ? Anything else ?

▪ Let’s say somebody calls free(p2), how can I coalesce?

▪ Maybe you need a footer? Maybe not?

Carnegie Mellon

10

Keeping Track of Blocks
⬛ Implicit Lists

▪ Implementation - Simple
▪ Allocation time - Proportional to total blocks
▪ Free time - Constant
▪ Memory usage - Depends on implementation

7 8 3 10 4

Free Allocated

Root

Carnegie Mellon

11

Keeping Track of Blocks
⬛ Explicit Lists

▪ Implementation - Slightly more complicated
▪ Allocation time - Proportional to number of free blocks
▪ Free time - Depends upon implementation (constant/linear)
▪ Memory usage - Depends on implementation

7 8 3 10 4

Free Allocated

Root

Carnegie Mellon

12

Explicit Lists
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Do we therefore use more space than in implicit list implementation ?

Carnegie Mellon

13

Explicit Lists
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Do we therefore use more space than in implicit list implementation ?

▪ Perhaps not!

▪ What data is common between allocated block and free block ?

Carnegie Mellon

14

Explicit Lists
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Do we therefore use more space than in implicit list implementation ?

▪ Perhaps not!

▪ What data is common between allocated block and free block ?

– Header, Payload, Footer

▪ Does a free block need data to be stored in payload ? Can we reuse this
space ?

Carnegie Mellon

15

Explicit Lists
⬛ Improvement over implicit list implemented by mm-baseline.c

⬛ From a root, keep track of all free blocks in a (doubly) linked list

▪ Remember a doubly linked list has pointers to next and previous

▪ Do we therefore use more space than in implicit list implementation ?

▪ Perhaps not!

▪ What data is common between allocated block and free block ?

– Header, Payload, Footer

▪ Does a free block need data to be stored in payload ? Can we reuse this
space ?

– How can we overlap two different types of data at the same location ?

▪ Does an allocated block need next and previous pointers to be stored ?

▪ Does an allocated block need a footer ?

Carnegie Mellon

16

Keeping Track of Blocks
⬛ Segregated Lists

▪ Implementation - Extension of explicit lists
▪ Allocation time - Proportional to number of free blocks in the bin
▪ Free time - Depends upon implementation
▪ Memory usage - Better usage with less allocation time

Free Allocated

3 4

7 8 10Bin 2 root

Bin 1 root

Carnegie Mellon

17

Segregated Lists

⬛ Can be thought of as multiple explicit lists

▪ What should we group by?

⬛ Grouped by size – let’s quickly find a block of the size we want

⬛ What size/number of buckets should we use?

▪ This is up to you to decide

Carnegie Mellon

18

Fragmentation
⬛ Internal Fragmentation

▪ Occurs due to :
▪ Alignment requirement. Payload is not a multiple of block size (not

avoidable)

▪ Data structures used for allocation (avoidable)

Payload

Header Footer

3 <extra memory> Example: malloc(3) will return a
chunk of at least 16 bytes

Carnegie Mellon

19

Fragmentation
⬛ External Fragmentation

▪ Occurs due to total free heap memory being large enough, but no single free
block is big enough

▪ Depends on patterns of requests

Carnegie Mellon

20

Coalescing
⬛ How to reduce external fragmentation ? Coalescing !

▪ Group adjacent free blocks together to give larger chunks of free blocks
▪ Gets rid of false external fragmentation

7 8 3 10 4

7 21 4

Free Allocated

malloc(15) will call sbrk()

malloc(15) will succeed
without extending heap

Carnegie Mellon

21

Finding a fit
⬛ First-Fit / Next-Fit / Best-Fit

▪ The policy you choose is up to you ! There is no absolute right/wrong.
▪ Has space v/s allocation time tradeoffs
▪ Can customize/find a combination of them too

⬛ Free Block Ordering
▪ FIFO, LIFO or address-ordered ?

⬛ Memory requested at sbrk() call ?
▪ Smaller requests can result in multiple requests => more time
▪ Larger requests => can lead to space wastage

Carnegie Mellon

22

MALLOC: Debugging

Carnegie Mellon

23

Heap Checker
⬛ Heaper Checker is a graded part of the lab

▪ But write it first and use it. Don’t write it just before final submission!

⬛ Heap Checker tips :
▪ Is meant to be correct, not to be efficient.

▪ Heap checker should run silently until it finds an error

▪ Otherwise you will get more output than is useful

▪ You might find it useful to add a “verbose” flag, however

▪ Consider using a macro to turn the heap checker on and off

▪ This way you don’t have to edit all of the places you call it

▪ There is a built-in macro called __LINE__ that gets replaced with the line number it’s on

▪ You can use this to make the heap checker tell you where it failed

▪ Call the heap checker at places that have a logical end. Eg: End of malloc(), free(), coalesce()

▪ Call heap checker at the start and end of these functions

Carnegie Mellon

24

Debugging
⬛ Common Errors :

▪ Dereferencing invalid pointers / reading uninitialized memory
▪ Overwriting memory
▪ Freeing blocks multiple times (or not at all)
▪ Referencing freed blocks
▪ Incorrect pointer arithmetic

⬛ Debugging Tips using mm-baseline.c
▪ We have injected a small bug in mm-baseline.c
▪ We attempt to trace it using

▪ GDB
▪ heapchecker
▪ hprobes

Carnegie Mellon

25

Debugging using GDB

⬛ Set the optimization level to 0 before debugging
⬛ Reset the optimization level back after debugging

Carnegie Mellon

26

Bug Type I: Segmentation Faults

⬛ Recollect the recitation on debugging using GDB
⬛ Very useful to obtain the backtrace
⬛ Examine values of variables

Carnegie Mellon

27

Segmentation Fault

● Notice the footer value
● It is outside the range of the heap

Carnegie Mellon

28

Bug Type 2: Correctness error report by driver

Carnegie Mellon

29

Setting breakpoints

⬛ The tracefile contains a lot of allocations and few frees
⬛ Most likely mm_malloc() has the issue
⬛ Set breakpoint at every call to malloc

Carnegie Mellon

30

Setting breakpoints

Carnegie Mellon

31

Setting conditional breakpoints

Should have been:
asize = round_up(size, dsize) + dsize;

Carnegie Mellon

32

Heapchecker

⬛ The above problem is easy to identify using heap checker

Carnegie Mellon

33

Using Hprobes

⬛ Use hprobes as mentioned in the handout on the defaulting block
⬛ Useful to check the contents of the heap

Carnegie Mellon

34

(gdb) break place if block = 0x800000738

(gdb) print hprobes(block, 0, asize)

Examine header and footer

Carnegie Mellon

35

Using watchpoints

⬛ Now use watchpoints to observe when the header and footer values
change
▪ watch *0x800000e67, where 0x800000e67 is the address of the

header as shown by hprobes
▪ watch *0x800000738, where 0x800000738 is the address of the

footer as shown by hprobes

Carnegie Mellon

36

MALLOC: Optimizations

Carnegie Mellon

37

Basic Optimizations

⬛ Optimize step-by-step. Don’t go all in at once.

⬛ Basic optimizations -
▪ Segregated Lists

▪ Note: A decent implementation of explicit lists is enough to cross the
checkpoint.

▪ Optimizing the free block finding strategy
▪ Basic block splitting (when a larger size is requested than the size of the

free block)
▪ Coalescing of free blocks

Carnegie Mellon

38

Further Optimizations

⬛ Eliminate footers in allocated blocks
▪ But, you still need to be able to implement coalescing

⬛ Decrease the minimum block size
▪ You must then manage free blocks that are too small to hold the pointers for a

doubly linked free list
⬛ Reduce headers below 8 bytes

▪ But, you must support all possible block sizes.
▪ Must then be able to handle blocks with sizes that are too large to encode in

the header
⬛ Set up special regions of memory for small blocks

▪ Need to manage these and be able to free a block when given only the starting
address of its payload

Carnegie Mellon

39

SUMMARY

⬛ There is no definite optimal solution, everything has trade offs.

 Choose your pick !

⬛ Start early
⬛ Write the heapchecker as you go
⬛ Use gdb and the heapchecker generously
⬛ Modularise your code
⬛ Optimize gradually
⬛ Finish early and enjoy the Thanksgiving break :)

