
18-600 Recitation #11
Malloc Lab
November 7th, 2017

1

Carnegie Mellon

2

Important Notes about Malloc Lab
⬛ Malloc lab has been updated from previous years
⬛ Supports a full 64 bit address space rather than 32 bit
⬛ Encourages a new programming style

▪ Use structures instead of macros
▪ Study the baseline implementation of implicit allocator to get a better idea

⬛ Divided into two phases:
▪ Checkpoint 1: Due date: 11/17
▪ Final: Due date: 11/27

⬛ Try to finish Cache Lab by Thursday; it will help with Malloc and during a
much-needed Thanksgiving break!

⬛ Get a correct, reasonably performing malloc by checkpoint
⬛ Optimize malloc by final submission

Carnegie Mellon

3

Pointers: casting, arithmetic, and
dereferencing

Carnegie Mellon

4

Pointer casting
⬛ Cast from

▪ <type_a>* to <type_b>*

▪ Gives back the same value

▪ Changes the behavior that will happen when dereferenced

▪ <type_a>* to integer/ unsigned int / long

▪ Pointers are really just 8-byte numbers

▪ Taking advantage of this is an important part of malloc lab

▪ Be careful, though, as this can easily lead to errors

▪ integer/ unsigned int to <type_a>*

Carnegie Mellon

5

Pointer arithmetic
⬛ The expression ptr + a doesn’t mean the same thing

as it would if ptr were an integer.

⬛ Example:
type_a* pointer = …;
(void *) pointer2 = (void *) (pointer + a);

⬛ This is really computing:
▪ pointer2 = pointer + (a * sizeof(type_a))
▪ lea (pointer, a, sizeof(type_a)), pointer2;

⬛ Pointer arithmetic on void* is undefined

Carnegie Mellon

6

Pointer arithmetic
⬛ int * ptr = (int *)0x12341230;

int * ptr2 = ptr + 1;

⬛ char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1;

⬛ int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));

Carnegie Mellon

7

Pointer arithmetic
⬛ int * ptr = (int *)0x12341230;

int * ptr2 = ptr + 1; //ptr2 is 0x12341234

⬛ char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1; //ptr2 is 0x12341231

⬛ int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341231

Carnegie Mellon

8

Pointer dereferencing
⬛ Basics

▪ It must be a POINTER type (or cast to one) at the time of
dereference

▪ Cannot dereference expressions with type void*

▪ Dereferencing a t* evaluates to a value with type t

Carnegie Mellon

9

Pointer dereferencing
⬛ What gets “returned?”

int * ptr1 = (int *) malloc(sizeof(int));
*ptr1 = 0xdeadbeef;

int val1 = *ptr1;
int val2 = (int) *((char *) ptr1);

What are val1 and val2?

Carnegie Mellon

10

Pointer dereferencing
⬛ What gets “returned?”

int * ptr1 = (int *) malloc(sizeof(int));
*ptr1 = 0xdeadbeef;

int val1 = *ptr1;
int val2 = (int) *((char *) ptr1);

// val1 = 0xdeadbeef;
// val2 = 0xffffffef;
What happened??

Carnegie Mellon

11

Malloc basics
⬛ What is dynamic memory allocation?

⬛ Terms you will need to know

▪ malloc/ calloc / realloc

▪ free

▪ sbrk

▪ payload

▪ fragmentation (internal vs. external)

▪ coalescing

▪ Bi-directional

▪ Immediate vs. Deferred

Carnegie Mellon

12

Concept

⬛ Really, malloc only does three things:

1. Organize all blocks and store information about them in a
structured way.

2. Using the structure made in 1), choose an appropriate
location to allocate new memory.

3. Update the structure made in 1) when the user frees a
block of memory

Carnegie Mellon

13

Carnegie Mellon

14

Fragmentation
⬛ Internal fragmentation

▪ Result of payload being smaller than block size.

▪ void * m1 = malloc(3); void * m2 = malloc(3);
▪ m1, m2 both have to be aligned to 16 bytes…

⬛ External fragmentation

Carnegie Mellon

15

Carnegie Mellon

16

Goals
1. Run as fast as possible
2. Waste as little memory as possible

What kind of implementation to use?
⬛ Implicit list, explicit list, segregated lists, binary tree methods …etc
⬛ Can use specialized strategies depending on the size of allocations
⬛ Adaptive algorithms are fine, though not necessary to get 100%.

What fit algorithm to use?
⬛ Best fit: choose the smallest block that is big enough to fit the requested

allocation size
⬛ First fit / next fit: search linearly starting from some location, and pick the first

block that fits.
Which one’s faster, and which one uses less memory?

Carnegie Mellon

17

Implicit List
⬛ From the root, can traverse across blocks using headers

which store the size of the block

⬛ Can find a free block this way

⬛ Can take a while to find a free block
▪ How would you know when you have to call sbrk?

Carnegie Mellon

18

Explicit List
⬛ Improvement over implicit list

⬛ From a root, keep track of all free blocks in a (doubly)
linked list
▪ Remember a doubly linked list has pointers to next and previous

▪ Optimization: using a singly linked list instead (how could we do
this?)

⬛ When malloc is called, can now find a free block quickly
▪ What happens if the list is a bunch of small free blocks but we want a

really big one?

▪ How can we speed this up?

Carnegie Mellon

19

Segregated List
⬛ An optimization for explicit lists

⬛ Can be thought of as multiple explicit lists
▪ What should we group by?

⬛ Grouped by size – let us quickly find a block of the size we
want

⬛ What size/number of buckets should we use?
▪ This is up to you to decide

Carnegie Mellon

20

Implementation Hurdles
⬛ How do we know where the blocks are?

⬛ How do we know how big the blocks are?

⬛ How do we know which blocks are free?

⬛ Remember: can’t buffer calls to malloc and free… must deal with them
real-time.

⬛ Remember: calls to free only takes a pointer, not a pointer and a size.

⬛ Solution: Need a data structure to store information on the “blocks”

▪ Where do I keep this data structure?

▪ We can’t allocate a space for it, that’s what we are writing!

Carnegie Mellon

21

The data structure
⬛ Requirements:

▪ The data structure needs to tell us where the blocks are, how big
they are, and whether they’re free

▪ We need to be able to CHANGE the data structure during calls to
malloc and free

▪ We need to be able to find the next free block that is “a good fit
for” a given payload

▪ We need to be able to quickly mark a block as free/allocated

▪ We need to be able to detect when we’re out of blocks.

▪ What do we do when we’re out of blocks?

Carnegie Mellon

22

The data structure
⬛ Common types

▪ Implicit List

▪ Root -> block1 -> block2 -> block3 -> …
▪ Explicit List

▪ Root -> free block 1 -> free block 2 -> free block 3 -> …
▪ Segregated List

▪ Small-malloc root -> free small block 1 -> free small block 2 -> …
▪ Medium-malloc root -> free medium block 1 -> …
▪ Large-malloc root -> free block chunk1 -> …

Carnegie Mellon

23

Playing with structures

⬛ Consider the following structure, where a ‘block’ refers
to an allocation unit

⬛ Each block consists of some metadata (header) and the
actual data (payload)

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;Why is this
reasonable?

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
word_t header;
word_t alloc;
char payload[0];

} block_t;

Carnegie Mellon

24

Playing with structures

⬛ The contents of the header is populated as follows

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Pack size and allocation bit into single
word */

static word_t pack(size_t size, bool alloc) {

return size | alloc;

}

Carnegie Mellon

25

Playing with structures
⬛ How do we set the value in the header, given the block and values?

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Set fields in block header */

static void write_header(block_t *block,
size_t size, bool alloc) {

block->header = pack(size, alloc);

}

Carnegie Mellon

26

Playing with structures

⬛ How do we extract the value of the size, given the header?
⬛ How do we extract the value of the size, given pointer to block?

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Extract size from header */

static size_t extract_size(word_t word) {

return (word & ~(word_t) 0x7);

}

/* Get block size */

static size_t get_size(block_t *block) {

return extract_size(block->header);
}

Carnegie Mellon

27

Playing with structures
⬛ How do we write to the end of the block?

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Set fields in block footer */

static void write_footer(block_t *block,
size_t size,
bool alloc) {

word_t *footerp = (word_t *)((block->payload) +
get_size(block) - 2*wsize);

*footerp = pack(size, alloc);

}

Carnegie Mellon

28

Playing with structures
⬛ How do we get to the start of the block, given the pointer to the

payload?

/* Basic declarations */

typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);

typedef struct block {
 // Header contains size + allocation flag

word_t header;
char payload[0];

} block_t;

/* Locate start of block, given pointer to payload */

static block_t *payload_to_header(void *bp) {

return (block_t *)(((char *)bp) -
offsetof(block_t, payload));

}

Carnegie Mellon

29

GDB Practice
⬛ Using GDB well in Malloc lab can save you HOURS of

debugging time!
⬛ Turn off gcc optimization before running GDB (-O0)

▪ Don’t forget to turn it back on (-O3) for the benchmark!

5 commands to remember:
1. backtrace
2. frame
3. disassemble
4. print <reg>
5. watch

Carnegie Mellon

30

Words of Wisdom

⬛ Write a heap checker first. Please just do it and thank us later!
Check for conditions that you know your heap should have.

⬛ Printf <<<<< GDB
⬛ Use version control, otherwise you’ll regret it
⬛ Don’t feel bad about throwing away broken solutions!
⬛ Start early, read the handout carefully.
⬛ Warnings:

▪ Most existing Malloc literature from the book has slightly different
guidelines, they may be out of date

