
18-600 Recitation #10
Cache Lab

October 31, 2017

2

Outline
⬛ Memory organization

⬛ Caching
▪ Different types of locality

▪ Cache organization

⬛ Cache lab
▪ Part A Building Cache Simulator

▪ Part B Building Cache Simulator for Multi-Core (MSI)

▪ Part C Efficient Matrix Transpose

▪ Blocking

3

Memory Hierarchy

Registers

L1 cache
 (SRAM)

Main
memory
(DRAM)

Local secondary
storage

(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

4

⬛ Registers

⬛ SRAM

⬛ DRAM

⬛ Local Secondary storage

⬛ Remote Secondary storage

Memory Hierarchy

We will discuss this interaction

5

SRAM vs DRAM tradeoff
⬛ SRAM (cache)

▪ Faster (L1 cache: 1 CPU cycle)

▪ Smaller (Kilobytes (L1) or Megabytes (L2))

▪ More expensive and “energy-hungry”

⬛ DRAM (main memory)
▪ Relatively slower (hundreds of CPU cycles)

▪ Larger (Gigabytes)

▪ Cheaper

6

Locality
⬛ Temporal locality

▪ Recently referenced items are likely
to be referenced again in the near future

▪ After accessing address X in memory, save the bytes in cache for
future access

⬛ Spatial locality
▪ Items with nearby addresses tend

to be referenced close together in time

▪ After accessing address X, save the block of memory around X in
cache for future access

7

Find the type of locality?

for (int i = 0; i < size - 1; i++) {
arr[i] = arr[i+1];

}

A. Spatial

B. Temporal

C. Both A & B

D. Neither

8

Memory Address
⬛ 64-bit on shark machines

⬛ Block offset: b bits

⬛ Set index: s bits

⬛ Tag Bits: (Address Size – b – s)

9

Cache
- A cache is a set of S = 2^s cache sets

- A cache set is a set of E cache lines
- E is called associativity
- If E=1, it is called “direct-mapped”

- Each cache line stores a block of size B = 2^b
bytes

- Total Capacity = S*B*E

10

Visual Cache Terminology
E lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

11

General Cache Concepts

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

1010

12

General Cache Concepts: Miss

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
•Placement policy:
determines where b goes

•Replacement policy:
determines which block
gets evicted (victim)

13

Types of Cache Misses

- Cold (compulsory) miss
○ The first access to a block has to be a miss

- Conflict miss
○ Conflict misses occur when the level k cache is large enough, but multiple

data objects all map to the same level k block
● E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

○ You are required to minimize this in cache lab

- Capacity miss
○ Occurs when the set of active cache blocks (working set) is larger than

the cache

14

Cache Lab
- Part A Building Cache Simulator

- Part B Building Cache Simulator for Multi-Core (MSI)

- Part C Efficient Matrix Transpose

15

Part A : Cache simulator
- A cache simulator is NOT a cache!

○ Memory contents NOT stored.
○ Block offsets are NOT used – the b bits in your address don’t

matter.
○ Simply count hits, misses, and evictions.

- Your cache simulator needs to work for different s, b, E,
given at run time.

- Use LRU – Least Recently Used replacement policy
○ Evict the least recently used block from the cache to make room

for the next block.
○ Counters? Queues ? Time Stamps?

16

Part A : Hints
- A cache is just 2D array of cache lines:

○ struct cache_line_t cache[S][E];
○ S = 2^s, is the number of sets
○ E is associativity

- Each cache_line has:
○ Valid bit
○ Tag
○ LRU counter (only if you are not using a queue)

17

Part A : Malloc/free
- Use malloc to allocate memory on the heap.

- Always free what you malloc, otherwise may get
memory leak
○ some_pointer_you_malloced = malloc(sizeof(int));
○ free(some_pointer_you_malloced);

- Don’t free memory you didn’t allocate.

18

Part B : MSI

- Each core has it’s own cache.

- Each core needs to communicate with other cores for
every access (snooping).

19

Part B : MSI

Key point - Notice the
changes in the state
when same memory
locations are accessed
or written to by other
cores.

20

Code Resusability

- Look into cache.h, csim.h, and msim.h

- A lot of code can be reused for Part A and Part B

21

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Part C: Efficient Matrix Transpose
⬛ Matrix Transpose (A -> B)

Matrix A Matrix B

⬛ How do we optimize this operation for the cache?

22

Part C : Blocking

⬛ Blocking: divide matrix into submatrices.

⬛  Size of sub-matrix depends on cache block size,
cache size, input matrix size.

⬛  Try different sub-matrix sizes.

23

Part (b) : Efficient Matrix Transpose

⬛ Access A[0][0] cache miss

⬛ Access B[0][0] cache miss

⬛ Access A[0][1] cache hit

⬛ Access B[1][0] cache miss

⬛ Suppose Block size is 8 bytes, S is large, and E = 2

Should we handle 3 & 4

next or 5 & 6 ?

⬛ Access A[1][0] cache miss

⬛ Access B[0][1] cache hit

⬛ Access A[1][1] cache hit

⬛ Access B[1][1] cache hit

24

Part (b) : Efficient Matrix Transpose
⬛ Now lets try for E = 1 (direct mapped), assume matrices are

aligned such that index 1 from both maps to same set

⬛ Access A[0][0] cache miss

⬛ Access B[0][0] cache miss evict

⬛ Access A[0][1] cache miss evict

⬛ Access B[1][0] cache miss

⬛ Access A[1][0] cache miss evict

⬛ Access B[0][1] cache miss evict

⬛ Access A[1][1] cache hit

⬛ Access B[1][1] cache miss evict

25

Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)

 c[i*n + j] += a[i*n + k] * b[k*n + j];
}

26

Cache Miss Analysis
⬛ Assume:

▪ Matrix elements are doubles, size of array n is arbitrary

▪ Cache block = 8 doubles

▪ Cache size C << n (much smaller than n)

⬛ First iteration:
▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

*=

n

*=
8 wide

27

Cache Miss Analysis
⬛ Assume:

▪ Matrix elements are doubles

▪ Cache block = 8 doubles

▪ Cache size C << n (much smaller than n)

⬛ Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

⬛ Total misses:
▪ 9n/8 * n2 = (9/8) * n3

n

*=
8 wide

28

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)

 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i1++)
 for (j1 = j; j1 < j+B; j1++)
 for (k1 = k; k1 < k+B; k1++)

 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*
c

=

Block size B x B

29

Cache Miss Analysis
⬛ Assume:

▪ Cache block = 8 doubles

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3B2 < C

⬛ First (block) iteration:
▪ B2/8 misses for each block

▪ 2n/B * B2/8 = nB/4
(omitting matrix c)

▪ Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks

30

Cache Miss Analysis
⬛ Assume:

▪ Cache block = 8 doubles

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3B2 < C

⬛ Second (block) iteration:
▪ Same as first iteration

▪ 2n/B * B2/8 = nB/4

⬛ Total misses:
▪ nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

31

Part C : Blocking Summary
⬛ No blocking: (9/8) * n3

⬛ Blocking: 1/(4B) * n3

⬛ Suggest largest possible block size B, but limit 3B2 < C!

⬛ Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly

⬛ For a detailed discussion of blocking:
▪ http://csapp.cs.cmu.edu/public/waside.html

32

Part C : Specs
- Cache:

- You get 1 kilobytes of cache
- Directly mapped (E=1)
- Block size is 32 bytes (b=5)
- There are 32 sets (s=5)

- Test Matrices:
- 32 by 32
- 64 by 64

33

Part C
- Things you’ll need to know:

- Warnings are errors
- Header files
- Eviction policies in the cache

34

Eviction policies of Cache
- The first row of Matrix A evicts the first row of Matrix B

○ Caches are memory aligned.

○ Matrix A and B are stored in memory at addresses such that both
the first elements align to the same place in cache!

○ Diagonal elements evict each other.

- Matrices are stored in memory in a row major order.
○ If the entire matrix can’t fit in the cache, then after the cache is

full with all the elements it can load. The next elements will evict
the existing elements of the cache.

○ Example:- 4x4 Matrix of integers and a 32 byte cache.
● The third row will evict the first row!

35

Style
- Document your code

- Header comments

- High-level description of big chunks of code

- Check for failures
- Write modular code
- 80 characters per line
- Consistent braces and whitespace
- No memory or file descriptor leaks

36

Questions?

