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Outline
⬛ Memory organization

⬛ Caching
▪ Different types of locality

▪ Cache organization

⬛ Cache lab
▪ Part A Building Cache Simulator

▪ Part B Building Cache Simulator for Multi-Core (MSI) 

▪ Part C Efficient Matrix Transpose

▪ Blocking
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Memory Hierarchy

Registers

L1 cache
 (SRAM)

Main 
memory
(DRAM)

Local secondary 
storage

(local disks)

Larger,  
slower, 
cheaper 
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files 
retrieved from disks on 
remote network servers

Main memory holds disk blocks 
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from 
L2 cache

CPU registers hold words retrieved from L1 
cache

L2 cache holds cache lines retrieved 
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte
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⬛ Registers

⬛ SRAM

⬛ DRAM

⬛ Local Secondary storage

⬛ Remote Secondary storage

Memory Hierarchy

We will discuss this interaction
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SRAM vs DRAM tradeoff
⬛ SRAM (cache)

▪ Faster (L1 cache: 1 CPU cycle)

▪ Smaller (Kilobytes (L1) or Megabytes (L2))

▪ More expensive and “energy-hungry”

⬛ DRAM (main memory)
▪ Relatively slower (hundreds of CPU cycles)

▪ Larger (Gigabytes)

▪ Cheaper
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Locality
⬛ Temporal locality

▪ Recently referenced items are likely 
to be referenced again in the near future

▪ After accessing address X in memory, save the bytes in cache for 
future access

⬛ Spatial locality
▪ Items with nearby addresses tend 

to be referenced close together in time

▪ After accessing address X, save the block of memory around X in 
cache for future access
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Find the type of locality?

for (int i = 0; i < size - 1; i++) {
arr[i] = arr[i+1];

}

A. Spatial

B. Temporal

C. Both A & B

D. Neither
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Memory Address
⬛ 64-bit on shark machines

⬛ Block offset:  b bits

⬛ Set index:  s bits

⬛ Tag Bits: (Address Size – b – s) 
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Cache
- A cache is a set of S = 2^s cache sets

- A cache set is a set of E cache lines
- E is called associativity
- If E=1, it is called “direct-mapped” 

- Each cache line stores a block of size B = 2^b       
bytes

- Total Capacity = S*B*E
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Visual Cache Terminology
E lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset
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General Cache Concepts

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

1010
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General Cache Concepts: Miss

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
•Placement policy:
determines where b goes

•Replacement policy:
determines which block
gets evicted (victim)
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Types of Cache Misses

- Cold (compulsory) miss
○ The first access to a block has to be a miss

- Conflict miss
○ Conflict misses occur when the level k cache is large enough, but multiple 

data objects all map to the same level k block
● E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

○ You are required to minimize this in cache lab

- Capacity miss
○ Occurs when the set of active cache blocks (working set) is larger than 

the cache
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Cache Lab
- Part A Building Cache Simulator

- Part B Building Cache Simulator for Multi-Core (MSI) 

- Part C Efficient Matrix Transpose
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Part A : Cache simulator
- A cache simulator is NOT a cache! 

○ Memory contents NOT stored.
○ Block offsets are NOT used – the b bits in your address don’t 

matter.
○ Simply count hits, misses, and evictions.

- Your cache simulator needs to work for different s, b, E, 
given at run time.

- Use LRU – Least Recently Used replacement policy
○ Evict the least recently used block from the cache to make room 

for the next block.
○ Counters? Queues ? Time Stamps?
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Part A : Hints
- A cache is just 2D array of cache lines:

○ struct cache_line_t cache[S][E];
○ S = 2^s,  is the number of sets
○ E is associativity

- Each cache_line has:
○ Valid bit
○ Tag
○ LRU counter ( only if you are not using a queue ) 
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Part A : Malloc/free
- Use malloc to allocate memory on the heap. 

-  Always free what you malloc, otherwise may get 
memory leak
○ some_pointer_you_malloced = malloc(sizeof(int));
○ free(some_pointer_you_malloced);

-  Don’t free memory you didn’t allocate.
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Part B : MSI

- Each core has it’s own cache.

- Each core needs to communicate with other cores for 
every access (snooping). 
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Part B : MSI

Key point - Notice the 
changes in the state 
when same memory 
locations are accessed 
or written to by other 
cores.
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Code Resusability

- Look into cache.h, csim.h, and msim.h

- A lot of code can be reused for Part A and Part B
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1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Part C: Efficient Matrix Transpose
⬛ Matrix Transpose  (A  ->  B)

Matrix A Matrix B

⬛ How do we optimize this operation for the cache?
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Part C : Blocking

⬛ Blocking: divide matrix into submatrices. 

⬛  Size of sub-matrix depends on cache block size, 
cache size, input matrix size.

⬛  Try  different sub-matrix sizes.
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Part (b) : Efficient Matrix Transpose

⬛ Access A[0][0] cache miss  

⬛ Access B[0][0] cache miss

⬛ Access A[0][1] cache hit

⬛ Access B[1][0] cache miss

⬛ Suppose Block size is 8 bytes, S is large, and E = 2

Should we handle 3 & 4  

next or 5 & 6 ?

⬛ Access A[1][0] cache miss  

⬛ Access B[0][1] cache hit

⬛ Access A[1][1] cache hit

⬛ Access B[1][1] cache hit
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Part (b) : Efficient Matrix Transpose
⬛ Now lets try for E = 1 (direct mapped), assume matrices are 

aligned such that index 1 from both maps to same set

⬛ Access A[0][0] cache miss   

⬛ Access B[0][0] cache miss evict

⬛ Access A[0][1] cache miss evict

⬛ Access B[1][0] cache miss

⬛ Access A[1][0] cache miss evict

⬛ Access B[0][1] cache miss evict

⬛ Access A[1][1] cache hit

⬛ Access B[1][1] cache miss evict
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Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)

    for (j = 0; j < n; j++)
             for (k = 0; k < n; k++)

         c[i*n + j] += a[i*n + k] * b[k*n + j];
}
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Cache Miss Analysis
⬛ Assume: 

▪ Matrix elements are doubles, size of array n is arbitrary

▪ Cache block = 8 doubles

▪ Cache size C << n (much smaller than n)

⬛ First iteration:
▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

*=

n

*=
8 wide
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Cache Miss Analysis
⬛ Assume: 

▪ Matrix elements are doubles

▪ Cache block = 8 doubles

▪ Cache size C << n (much smaller than n)

⬛ Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

⬛ Total misses:
▪ 9n/8 * n2 = (9/8) * n3 

n

*=
8 wide
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
             for (k = 0; k < n; k+=B)

 /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i1++)
                      for (j1 = j; j1 < j+B; j1++)
                          for (k1 = k; k1 < k+B; k1++)

                      c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*
c

=

Block size B x B
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Cache Miss Analysis
⬛ Assume: 

▪ Cache block = 8 doubles

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3B2 < C

⬛ First (block) iteration:
▪ B2/8 misses for each block

▪ 2n/B * B2/8 = nB/4
(omitting matrix c)

▪ Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks
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Cache Miss Analysis
⬛ Assume: 

▪ Cache block = 8 doubles

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3B2 < C

⬛ Second (block) iteration:
▪ Same as first iteration

▪ 2n/B * B2/8 = nB/4

⬛ Total misses:
▪ nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks
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Part C : Blocking Summary
⬛ No blocking: (9/8) * n3

⬛ Blocking: 1/(4B) * n3

⬛ Suggest largest possible block size B, but limit 3B2 < C!

⬛ Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly

⬛ For a detailed discussion of blocking:
▪ http://csapp.cs.cmu.edu/public/waside.html
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Part C : Specs
- Cache:

- You get 1 kilobytes of cache
- Directly mapped (E=1)
- Block size is 32 bytes (b=5)
- There are 32 sets (s=5)

- Test Matrices:
- 32 by 32
- 64 by 64



33

Part C
- Things you’ll need to know:

- Warnings are errors
- Header files
- Eviction policies in the cache
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Eviction policies of Cache
- The first row of Matrix A evicts the first row of Matrix B

○ Caches are memory aligned.

○ Matrix A and B are stored in memory at addresses such that both 
the first elements align to the same place in cache!

○ Diagonal elements evict each other.

- Matrices are stored in memory in a row major order.
○ If the entire matrix can’t fit in the cache, then after the cache is 

full with all the elements it can load. The next elements will evict 
the existing elements of the cache.

○ Example:- 4x4 Matrix of integers and a 32 byte cache.
● The third row will evict the first row!
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Style
- Document your code 

- Header comments

- High-level description of big chunks of code

- Check for failures
- Write modular code
- 80 characters per line
- Consistent braces and whitespace
- No memory or file descriptor leaks
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Questions?


