
Carnegie Mellon

1

18-600: Recitation #7
Oct 10th, 2017

Shell Lab

Carnegie Mellon

2

Today

⬛ Shell Lab
▪ Exceptional control flow

▪ Processes

▪ Signals

▪ The shell

Carnegie Mellon

3

Asynchronous Exceptions (Interrupts)
⬛ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

⬛ Examples:

▪ I/O interrupts

▪ hitting Ctrl-C at the keyboard

▪ arrival of a packet from a network

▪ arrival of data from a disk

▪ Hard reset interrupt

▪ hitting the reset button

▪ Soft reset interrupt

▪ hitting Ctrl-Alt-Delete on a PC

Carnegie Mellon

4

Synchronous Exceptions
⬛ Caused by events that occur as a result of executing an instruction:

▪ Traps

▪ Intentional

▪ Examples: system calls, breakpoint traps, special instructions

▪ Returns control to “next” instruction

▪ Faults

▪ Unintentional but possibly recoverable

▪ Examples: page faults (recoverable), protection faults (unrecoverable), floating point
exceptions

▪ Either re-executes faulting (“current”) instruction or aborts

▪ Aborts

▪ unintentional and unrecoverable

▪ Examples: parity error, machine check

▪ Aborts current program

Carnegie Mellon

5

Processes
⬛ What is a program?

▪ A bunch of data and instructions stored in an executable binary file

⬛ What is a process?

▪ An instance of a running program

⬛ Process provides each program with two key abstractions:

▪ Logical control flow

▪ Each program seems to have exclusive use of the CPU

▪ Private virtual address space

▪ Each program seems to have exclusive use of main memory

▪ Gives the running program a state

Carnegie Mellon

6

Processes
⬛ Four basic States

▪ Running

▪ Executing instructions on the CPU

▪ Number bounded by number of CPU cores

▪ Runnable

▪ Waiting to be run

▪ Blocked

▪ Waiting for an event, maybe input from STDIN

▪ Not runnable

▪ Zombie

▪ Terminated, not yet reaped

Carnegie Mellon

7

Unix Process Hierarchy

Login shell

Child (tsh)ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1] For shell lab, you are here!

Carnegie Mellon

8

Processes
⬛ Four basic process control function families:

▪ fork()

▪ exec()

▪ And other variants such as execve()

▪ exit()

▪ wait()

▪ And variants like waitpid()

⬛ Standard on all UNIX-based systems

⬛ Don’t be confused:
Fork(), Exit(), Wait() are all wrappers provided by CS:APP

Carnegie Mellon

9

Process Examples
⬛ What are the possible output

(assuming fork succeeds) ?

▪ Child!
Parent!

▪ Parent!
Child!

⬛ How to get the child to always
print first?

pid_t child_pid = fork();

if (child_pid == 0){
 /* only child comes here */

 printf(“Child!\n”);

 exit(0);
}
else{

 printf(“Parent!\n”);
}

Carnegie Mellon

10

int status;
pid_t child_pid = fork();

if (child_pid == 0){
 /* only child comes here */

 printf(“Child!\n”);

 exit(0);
}
else{
 waitpid(child_pid, &status, 0);

 printf(“Parent!\n”);
}

Process Examples
⬛ Waits till the child has terminated.

 Parent can inspect exit status of
 child using ‘status’

▪ WEXITSTATUS(status)

⬛ Output always:
Child!
Parent!

Carnegie Mellon

11

Reaping

Parent
Proc

Child
Proc

Parent
kernel
data

Child
kernel
data

wait(...)

SIGCHLD (child stopped/terminated)

child’s exit status

fork()

Carnegie Mellon

12

Process Examples
⬛ An example of something useful.

⬛ Why is the first arg “/bin/ls”?

⬛ Will child reach here?

int status;
pid_t child_pid = fork();
char* argv[] = {“/bin/ls”, “-l”, NULL};
char* env[] = {…, NULL};

if (child_pid == 0){
 /* only child comes here */

 execve(“/bin/ls”, argv, env);

 /* will child reach here? */
}
else{
 waitpid(child_pid, &status, 0);

 … parent continues execution…
}

Carnegie Mellon

13

How do we get the process tree?

⬛ The operating system launches the init process

⬛ init then spawns all the other processes (e.g. shell)

⬛ This is done via calls to fork() and exec()
▪ fork - create a “duplicate” process, with its own memory and states

▪ exec - Hijack the current process’ memory and load an entirely new

program

⬛ This keeps repeating

Carnegie Mellon

14

Signals
⬛ A signal is a small message that notifies a process that an event of some type has

occurred in the system

▪ akin to exceptions and interrupts (asynchronous)

▪ sent from the kernel (sometimes at the request of another process) to a process

▪ signal type is identified by small integer ID’s (1 - 32+)

▪ only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
2 SIGINT Terminate Interrupt (e.g., ctrl-c from keyboard)
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation(Segfault)
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

15

Signals
⬛ A destination process receives a signal when it is forced by the kernel to react

in some way to the delivery of the signal

⬛ Blocking signals

▪ Sometimes code needs to run through a section that can’t be interrupted

▪ Implemented with sigprocmask()

⬛ Waiting for signals

▪ Sometimes, we want to pause execution until we get a specific signal

▪ Implemented with sigsuspend()

⬛ Can’t modify behavior of SIGKILL and SIGSTOP

⬛ Think about what could happen when another signal is received within a signal
handler!

Carnegie Mellon

16

Signal Handling

⬛ Process software

▪ Send a signal e.g. via kill(...) [Yes, kill doesn’t necessarily kill a process]

⬛ Hardware

▪ Raises an exception e.g. segmentation fault

⬛ Kernel coordinates the signal delivery

⬛ The process for which the signal is intended can choose to either receive or ignore

the signal (Except SIGKILL and SIGSTOP)

⬛ Standard POSIX signals are not queued (existing pending signal will be overwritten)!

Carnegie Mellon

17

Signal Handling Contd.
⬛ Running Process:

▪ Receipt of a signal triggers a control transfer to a signal handler
▪ After it finishes processing, the handler returns control to the interrupted

program
⬛ Runnable Process:

▪ When the process is next scheduled, the control is first transferred to the signal
handler

▪ After it finishes processing, the handler returns control to the program

1) Signal received
By a running process

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler returns to
next instruction

1) Signalled process
scheduled to run

(2) Control first passes
to signal handler and it
runs

(3) The process is
scheduled to run

Carnegie Mellon

18

Signal Handlers
⬛ Signal handlers

▪ Can be installed to run when a signal is received

▪ The form is void handler(int signum){ … }

▪ Separate flow of control in the same process

▪ Resumes normal flow of control upon returning

▪ Can be called anytime when the appropriate signal is fired

▪ CSAPP provides a Signal(...) API to register handlers, but this is sigaction(...)
under the hood! Look up why sigaction(...) has replaced signal(...).

https://en.wikipedia.org/wiki/Sigaction#Replacement_of_deprecated_signal.28.29

Carnegie Mellon

19

Shell Lab
⬛ Shell Lab will be out on October 12th!

⬛ Read the code we’ve given you
▪ There’s a lot of stuff you don’t need to write yourself; we gave you

quite a few helper functions

▪ It’s a good example of the code we expect from you!

⬛ Don’t be afraid to write your own helper functions; you
might find yourself needing them!

⬛ Watch out for all interleaved scenarios to account for race
conditions!

Carnegie Mellon

20

Shell Lab
⬛ Read man pages. You may find the following functions helpful:

▪ sigemptyset()

▪ sigaddset()

▪ sigprocmask()

▪ sigsuspend()

▪ waitpid()

▪ open()

▪ dup2()

▪ setpgid()

▪ kill()

⬛ Please read the man pages thoroughly to understand what each function does

⬛ Please do not use sleep() to solve synchronization issues.

Carnegie Mellon

21

Shell Lab
⬛ Hazards

▪ Race conditions

▪ Hard to debug so start early (and think carefully)

▪ Reaping zombies

▪ Race conditions

▪ Handling signals correctly

▪ Waiting for foreground job

▪ Think carefully about what the right way to do this is

Carnegie Mellon

22

Things to remember while working on Shell Lab

⬛ Run your shell
▪ This is the fun part!

⬛ Utilize tshref
▪ How should the shell behave?

⬛ Run traces
▪ Each trace tests one feature.

⬛ Breathe

Carnegie Mellon

23

Questions?

