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Carnegie Mellon

Moore’s Law Origins

April 19, 1965
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Carnegie Mellon

Moore’s Law Origins

 Moore’s Thesis

▪ Minimize price per device 

▪ Optimum number of 
devices / chip increasing 2x 
/ year

 Later

▪ 2x / 2 years

▪ “Moore’s Prediction”

1965: 50

1970: 1000
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Carnegie Mellon

Moore’s Law: 50 Years
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Carnegie Mellon

What Moore’s Law Has Meant

 1976 Cray 1
▪ 250 M Ops/second

▪ ~170,000 chips

▪ 0.5B transistors

▪ 5,000 kg, 115 KW

▪ $9M

▪ 80 manufactured

 2014 iPhone 6
▪ > 4 B Ops/second

▪ ~10 chips

▪ > 3B transistors

▪ 120 g, < 5 W

▪ $649

▪ 10 million sold in first 3 days
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Carnegie Mellon

What Moore’s Law Has Meant

 1965 Consumer Product  2015 Consumer Product

Apple A8 Processor
2 B transistors
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Carnegie Mellon

Visualizing Moore’s Law to Date

Intel 4004
1970
2,300 transistors

Apple A8
2014
2 B transistors

If transistors were the size of a grain of sand

0.1 g

88 kg
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Carnegie Mellon

Moore’s Law Economics

Consumer products sustain the

$300B semiconductor industry

Capital +
R&D 
Investment

New Technology

Product
Design

Sales $$
Better
Products
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Carnegie Mellon

What Moore’s Law Has Meant
9 generations of iPhone since 2007
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Carnegie Mellon

What Moore’s Law Could Mean

Kurzweil, The Singularity is Near, 2005
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Carnegie Mellon

What Moore’s Law Could Mean

 2015 Consumer Product  2065 Consumer Product

▪ Portable

▪ Low power

▪ Will drive markets & innovation
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Carnegie Mellon

Requirements for Future Technology

 Must be suitable for portable, low-power operation

▪ Consumer products

▪ Internet of Things components

▪ Not cryogenic, not quantum

 Must be inexpensive to manufacture

▪ Comparable to current semiconductor technology

▪ O(1) cost to make chip with O(N) devices

 Need not be based on transistors

▪ Memristors, carbon nanotubes, DNA transcription, ...

▪ Possibly new models of computation

▪ But, still want lots of devices in an integrated system
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Carnegie Mellon

Moore’s Law: 100 Years

1017 devices!
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Carnegie Mellon

Visualizing 1017 Devices

0.1 m3

3.5 X 109 grains

1 million m3

0.35 X 1017 grains

If devices were the size of 

a grain of sand
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Carnegie Mellon

Increasing Transistor Counts

1. Chips have gotten bigger

▪ 1 area doubling / 10 years

2. Transistors have gotten smaller

▪ 4 density doublings / 10 years

Will these trends continue?
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Carnegie Mellon

Chips Have Gotten Bigger
Intel 4004
1970
2,300 transistors
12 mm2

Apple A8
2014
2 B transistors
89 mm2

IBM z13
2015
4 B transistors
678 mm2
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Carnegie Mellon

Chip Size Trend
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Carnegie Mellon

Chip Size Extrapolation

173 cm2
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Carnegie Mellon

Extrapolation: The iPhone 31s
Apple A59
2065
1017 transistors
173 cm2
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Carnegie Mellon

Transistors Have Gotten Smaller

▪ Area A

▪ N devices

▪ Linear Scale L L = A / N

L
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Carnegie Mellon

Linear Scaling Trend

1/2x every 5 years 
2x transistor density every 2.5 years
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Carnegie Mellon

Decreasing Feature Sizes

Intel 4004
1970
2,300 transistors
L = 72,000 nm

Apple A8
2014
2 B transistors
L = 211 nm
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Carnegie Mellon

Linear Scaling Trend
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Carnegie Mellon

Submillimeter Dimensions

1 micrometer 
(μm)

10-3

10-4

10-5

10-6

5μm: Spider silk thickness

72μm: Intel 4004 linear scale
50μm: Average size of cell in human body

500μm: Length of amoeba

10μm: Thickness of sheet of plastic food wrap

2μm: E coli bacterium length

1 millimeter 
(mm)
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Carnegie Mellon

Submicrometer Dimensions

1 micrometer 
(μm)

1 nanometer 
(nm)

10-6

10-7

10-8

10-9 1nm: Carbon nanotube diameter

2nm: DNA helix diameter

9nm: Cell membrane thickness

211nm: Apple A8 linear scale

30nm: Minimum cooking oil smoke particle diameter

400-700nm: Visible light wavelengths
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Carnegie Mellon

Linear Scaling Extrapolation
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Carnegie Mellon

Subnanometer Dimensions

1 nanometer 
(nm)

1 picometer
(pm)

10-9

10-10

10-11

10-12

2.4pm: Electron wavelength (Compton wavelength)

53pm: Electron-proton spacing in hydrogen (Bohr radius)

1nm: Carbon nanotube diameter

543pm: Silicon crystal lattice spacing

74pm: Spacing between atoms in hydrogen molecule

230pm: 2065 linear scale projection
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Carnegie Mellon

Reaching 2065 Goal

 Target

▪ 1017 devices

▪ 400 mm2

▪ L = 63 pm

 Is this possible?
Not with 2-d
fabrication
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Carnegie Mellon

2000 mm3

Fabricating in 3 Dimensions

 Parameters

▪ 1017 devices

▪ 100,000 logical layers

▪ Each 50 nm thick

▪ ~1,000,000 physical layers

– To provide wiring and isolation

▪ L = 20 nm

▪ 10x smaller than today 2065 mm3

20 mm

20 mm5 mm
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Carnegie Mellon

3D Fabrication Challenges

 Yield

▪ How to avoid or tolerate flaws

 Cost

▪ High cost of lithography

 Power

▪ Keep power consumption within acceptable limits

▪ Limited energy available

▪ Limited ability to dissipate heat
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Carnegie Mellon

Photolithography

▪ Pattern entire chip in one step

▪ Modern chips require ~60 lithography steps

▪ Fabricate N transistor system with O(1) steps
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Carnegie Mellon

Fabrication Costs

 Stepper
▪ Most expensive equipment in fabrication facility

▪ Rate limiting process step

▪ 18s / wafer

▪ Expose 858 mm2 per step

▪ 1.2% of chip area
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Carnegie Mellon

Fabrication Economics

 Currently

▪ Fixed number of lithography steps

▪ Manufacturing cost $10–$20 / chip

▪ Including amortization of facility

 Fabricating 1,000,000 physical layers

▪ Cannot do lithography on every step

 Options

▪ Chemical self assembly

▪ Devices generate themselves via chemical processes

▪ Pattern multiple layers at once
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Carnegie Mellon

Samsung V-Nand Flash Example

▪ Build up layers of unpatterned material

▪ Then use lithography to slice, drill, etch, and deposit material across all layers

▪ ~30 total masking steps

▪ Up to 48 layers of memory cells

▪ Exploits particular structure of flash memory circuits
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Carnegie Mellon

Potentials of 3D Die Stacking

Standard C4 bumps

Thru-die viasThin Die 

Thick Die

Die-to-die Via 

interface

Bulk Si

Active Si #1

Active Si #2

Heat Sink
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Three Limitations to Moore’s Law

These limitations will make it very challenging to continue integrating systems

X
High BW Logic

Fast Logic
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ac
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e

Remaining system components
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Strategic Vision (Stacked System)

• The Stacked System model integrates dies from disparate technologies using a  
combination of 2.5D and 3D technology

• This construction model enables:
• Disparate die integration to improve form factors and reduce system overheads
• Die splitting to reduce process node complexity and cost

• Results in an interesting business model opportunity
18-600 Lecture #26 10[Bryan Black, 2015, AMD]12/04/2017 (J.P. Shen) 3
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“FIJI”
Featuring Die Stacking
and HBM Technology

The Road to

38 |  THE ROAD TO FIJI  |   SEMICON WEST  |   JULY 2015
[Bryan Black, 2015, AMD]12/04/2017 (J.P. Shen) 18-600 Lecture #26
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DETAILED LOOK

 Graphics Core Next Architecture

 64 Compute Units14

 4096 Stream Processors

 596 sq. mm. Engine

“Fiji” Chip

 4GB High-Bandwidth Memory

 4096-bit wide interface

 512 GB/s Memory Bandwidth

DETAILED LOOK

 First high-volume interposer

 First TSVs and µBumps in the graphics industry

 Most discrete dies in a single package at 22

 Total 1011 sq. mm.

39 |  THE ROAD TO FIJI  |   SEMICON WEST  |   JULY 2015
[Bryan Black, 2015, AMD]12/04/2017 (J.P. Shen) 18-600 Lecture #26
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“Fiji” Chip

DIE STACKING  
TECHNOLOGY HBM DRAM Die

HBM DRAM Die

HBM DRAM Die

HBM DRAM Die

Logic Die

Interposer

Package Substrate

GPU

µBumpsTSVs

 Die stacking facilitates the integration of discrete dies

 8.5 years of development by AMD and its technology 
partners

40 |  THE ROAD TO FIJI  |   SEMICON WEST  |   JULY 2015 [Bryan Black, 2015, AMD]12/04/2017 (J.P. Shen) 18-600 Lecture #26
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19   |  THE ROAD TO FIJI  |   SEMICON WEST  |   JULY 2015

AMD Radeon™ R9 Fury X Graphics Card

30%
Shorter than the  
AMD Radeon™  
R9 290X (11.5”)

SMALL SIZE, GIANT IMPACT

Board shot shown for illustration purposes only. Final board design may differ.
[Bryan Black, 2015, AMD]12/04/2017 (J.P. Shen) 18-600 Lecture #26
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Carnegie Mellon

Key Challenge to Moore’s Law: Economic

 Growing Capital Costs

▪ State of art fab line ~$20B

▪ Must have very high volumes to 
amortize investment

▪ Has led to major consolidations
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Carnegie Mellon

Meeting Power Constraints

▪ 2 B transistors

▪ 2 GHz operation

▪ 1—5 W

▪ 64 B neurons

▪ 100 Hz operation

▪ 15—25 W

▪ Liquid cooling

▪ Up to 25% body’s total 
energy consumption

Can we increase number of devices 
by 500,000x without increasing 
power requirement?
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Carnegie Mellon

Final Thoughts

 Compared to future, past 50 years will seem fairly straightforward

▪ 50 years of using photolithography to pattern transistors on two-dimensional surface

 Questions about future integrated systems

▪ Can we build them?

▪ What will be the technology?

▪ Are they commercially viable?

▪ Can we keep power consumption low?

▪ What will we do with them?

▪ How will we program / customize them?
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IMAGE RECOGNITION SPEECH RECOGNITION

2012
AlexNet

2015
ResNet

152 layers

22.6 GFLOP

~3.5% error
8 layers

1.4 GFLOP

~16% Error

16X
Model

2014
Deep Speech 1

2015
Deep Speech 2

80 GFLOP
7,000 hrs of Data

~8% Error

10X
Training Ops

465 GFLOP

12,000 hrs of Data

~5% Error

Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks

Deep Learning Models are Getting Larger

["Deep Learning Tutorial" @ FPGA’17, 
Song Han & Bill Dally]



CPUs for DNN Training

Intel Knights Landing (2016)

• 7 TFLOPS FP32

• 16GB MCDRAM– 400 GB/s

• 245W TDP

• 29 GFLOPS/W (FP32)

• 14nm process

Knights Mill: next gen Xeon Phi “optimized for deep learning”

Intel announced the addition of new vector instructions for deep learning  

(AVX512-4VNNIW and AVX512-4FMAPS), October 2016

Slide Source: Sze et al Survey of DNN Hardware, MICRO’16 Tutorial.  
Image Source: Intel, Data Source: Next Platform

["Deep Learning Tutorial" @ FPGA’17 , Song 
Han & Bill Dally]

["Deep Learning Tutorial" @ FPGA’17, 
Song Han & Bill Dally]



Nvidia PASCAL GP100 (2016)

• 10/20 TFLOPS FP32/FP16

• 16GB HBM – 750 GB/s

• 300W TDP

• 67 GFLOPS/W (FP16)

• 16nm process

• 160GB/s NV Link

Slide Source: Sze et al Survey of DNN Hardware, MICRO’16 Tutorial.  
Data Source: NVIDIA

GPUs for DNN Training

["Deep Learning Tutorial" @ FPGA’17 , Song 
Han & Bill Dally]

["Deep Learning Tutorial" @ FPGA’17, 
Song Han & Bill Dally]



GPU Systems for DNN Training

• 170 TFLOPS

• 8× Tesla P100, Dual Xeon

• NVLink Hybrid Cube Mesh

• Optimized DL Software

• 7 TB SSD Cache

• Dual 10GbE, Quad IB 100Gb

• 3RU – 3200W

Nvidia DGX-1 (2016)

Slide Source: Sze et al Survey of DNN Hardware, MICRO’16 Tutorial.  
Data Source: NVIDIA

["Deep Learning Tutorial" @ FPGA’17, 
Song Han & Bill Dally]



WHAT IS IT?

"Neuromorphic engineering, also known as neuromorphic
computing started as a concept developed by Carver Mead
in the late 1980s, describing the use of very-large-scale
integration (VLSI) systems containing electronic analogue
circuits to mimic neurobiological architectures present in the
nervous system."

- Easton, 2015



WHAT IS IT? (SIMPLER)

"Neuromorphic engineering/computing is a new emerging
interdisciplinary field which takes inspiration from biology,
physics, mathematics, computer science and engineering
to design hardware/physical models of neural and sensory
systems.”



NEUROMORPHIC CHIPS

• Modeled on biological brains—designed to  

process sensory data such as images and  
sound and respond to changes in that data in  
ways not specifically programmed.



MORAVEC'S PARADOX

• Sensory information processing is extremely 
easy  for brains but extremely hard for modern  
computers; whereas symbolic information  
processing is comparably hard for brains but  
extremely easy for modern computers.



Introduction to “Neuromorphic Computing”  

18-600  Foundations of Computer Systems

John P. Shen (with contribution from Mikko Lipasti)
December 4, 2017
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Mikko H. Lipasti
Professor, Electrical and Computer Engineering

University of Wisconsin – Madison



18-600 Lecture #2612/04/2017 (Mikko Lipasti)

Ken Jennings vs. IBM Watson

Ken (“baseline”) Watson

Pretty good at Jeopardy (also, life) Pretty good at Jeopardy

400g gray matter 10 racks, 15TB DRAM, 2880 CPU cores, 80 TFLOPs

20W 200KW

1 lifetime of experience 100 person-years to develop

54
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DNNs vs. BNNs
• Deep NNs (usually convolutional)

– Rely on artificial perceptron neuron model

– Trained using stochastic gradient descent (backprop):             
no biological bases

– Must “experience” everything (training cost)

– Can have superhuman performance

• Biological (spiking) NNs

– Energy efficient, powerful

– Training/learning/development poorly understood

– Currently not very useful or practical…yet

55
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Neurons - Introduction

56

Dendrites 
(Inputs)

Axon 
(Output)

Soma (Cell Body): 
Membrane Potential

Firing 
Threshold

Synapses

Presynaptic 
Neuron

Postsynaptic
Neuron

Time
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Neuromorphic Architectures
• Computer architectures that are similar to biological brains; computer architectures that 

implement  artificial neural networks in hardware.

• Functional units are composed of neurons, axons, synapses, and dendrites.

• Synapses are connections between two neurons

▪ Remembers previous state, updates to a new state, holds the weight of the connection

• Axons and dendrites connect to many neurons/synapses, like long range bus.
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Biological vs. Hardware
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18-600 Lecture #2612/04/2017 (Mikko Lipasti)

IBM’s TrueNorth
• Digital spiking Neurosynaptic Core 

Neurons (NCNs)

– LP CMOS, standard digital logic

– 256 neurons/core on 4.2mm2

• “Biologically competitive” energy

– Few parameters/neuron

– Binary synapses

– Linear, no transcendental functions

– 1kHz operating frequency of NCNs

– 45pJ/spike 

• Scaled to 1M neurons/chip

61
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http://science.sciencemag.org/[Paul A. Merolla, et al., August 4, 2014]
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Output 
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Input
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A3 G3

N1 N3 NMNeurons

*Figure adapted from Merolla et al. 

A Very Simple Digital Neuron
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Example Pattern Recognition

• 10 networks each trained to identify one digit as its  "pattern"
o Each receives the input in parallel, and reaches output at  the same

time
• Every neuron fires proportional to how strong it thinks the  input 

matches the internalized pattern
• The strongest output wins, so "3" is the result
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IBM’s TrueNorth Chip
• IBM along with DARPA funding, created 2 brain-like chips

• These chips are not as complex as the human, in fact they

have less neurons and synapses than a snail

• Scaling is tough, as increasing # of neurons exponentially  increases # of

synapses
o at 500 transistors/synapse, this gets largefast

• What sets these chips apart is that they were done on  current 

CMOS technology
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ns16e: courtsey LLNL

ns1e: UW-Madison

Spiking Neural Network Hardware: TrueNorth

• Biologically inspired neurons where 
computations happen via spikes.

• Goal: Hardware substrate that mimic this 
computation scheme and be energy 
efficient 

• IBM TrueNorth: Abstracts away relevant 
computing features of biological neurons 
and only keeps them.

• TrueNorth architecture can be scaled up. 

• ns1e (1-Chip system) -> ns16e (16-chip 
system) 

• Real hardware (ns1e) prototype.
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Visual Cortex: Possible?
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3 December 2017

Retina

LGN

Helicopter

IT

Car

V4

V1 
(vertical)

V1 (horizontal)
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Visual System NNet (VSNN)
• 100,000 modeled neurons

• Applications

– Invariant object recognition

– Pattern completion

– Motion detection/tracking/prediction

– Noise filtering 

• Requires complex neuronal behaviors

– Hebbian learning, voltage-dependent behavior, long-timescale 
neuroreceptors (NMDA) etc. [Self et al., Proc. NAS, 2012]

– Not implemented in IBM TrueNorth!

70
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NRT

Retina Input

V2

LGN

V1

V4

IT Excitatory (23%)

Connection Type

Inhibitory (8%)

STP * (19%)

NMDA ** (40%)

Hebbian (10%)

VSNN Architecture

Complex 
Behaviors!

TN Compatible

* Short Term Plasticity (STP) modulated synapse

** N-methyl D-aspartate (NMDA) modulated synapses
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Neuromorphic Semantic Gap
• IBM NCNs are very simple (for efficiency)

• Biology incorporates numerous complex behaviors
– NMDA receptor effects last much longer than 1ms

Presynaptic 
Neuron

Postsynaptic 
NeuronNA NB

NMDA 
Receptors

50ms
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Semantic Gap – Plasticity
• IBM NCN does not support synaptic plasticity*

• Hebbian learning – “fire together, wire together”

Presynaptic 
Neuron

Postsynaptic 
NeuronNA NB

*Seo et al. design features two simple online learning rules 73
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Hebbian Learning Assembly

Presynaptic 
Neuron

Postsynaptic 
NeuronNA NB

NG

NSyn

• 2 extra NCNs/synapse

• ~1000*45pJ power overhead/learned synapse
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VSNN on Neurosynaptic Core

• “Compiler” replaces complex neurons/synapses with NCN 
assemblies
– Deployable on Neurosynaptic Core hardware

• VSNN System Overheads

Neuron “Area” 100K

Regular 
Neurons

200K

NMDA 
Assemblies

40K

STP

24K

Hebbian

Dynamic Power

3.64x
(~364K 

Neurons)
10Hz

45pJ/Spike 

45 uW 2.6 mW .82mW.27 mW 83.2x
(~3.7mW)
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IBM TrueNorth Summary

• Complex behaviors can be emulated with simple LIF neurons

– Cost is considerable

– Minor HW changes could improve this (“latch”)

• Not the final answer on neuron complexity!

• Still at very small scale (100K biological neurons)

• Communication overhead already significant

– Will dominate in larger networks

[Details in Nere et al., HPCA 2013]
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Algorithmic Gap

• Neural substrates well suited for algorithms that were 
developed with them in mind:

– CNNs, DNNs, etc.

– Mainly targeted towards vision, classification

• Vast majority of existing algorithms developed for Von 
Neumann machines

– Can we find a way to map at least some interesting subset of these 
algorithms?

– Can we do so in a way that avoids ad hoc approaches for correctness?

77
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Mapping to Hardware
• Mathematical formulation is very useful

– Can prototype in e.g. Matlab

– Can reason about it, prove properties, etc.

– Often this work (algorithm development) has already been done 
by others

• Mapping to hardware-constrained neural substrate

– Precision, range of weights

– Precision, range of spike trains

– Handling +/- values

– Implementing arithmetic operators

– Implementing state (memory)
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How do Neural Circuits Emerge?
• Genetically programmed

– Structure, interconnect, neuron parameters

• Billions of them! Often specialized, tailored to particular task

– Way too much information for human genome

• So, how then?

– Is cortex a blank slate?

– Structure, function emerges in response to stimulus

– Relatively simple set of developmental rules are genetically 
programmed

– Everything else is a product of experience
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Conclusions

• We can deploy linear solvers on hardware-
constrained neural substrates
– IBM TrueNorth

• Looks like we can do interesting things
– Mimic not just vision, but rewards, planning, recall

• Many practical challenges remain

• Many open questions
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IBM TrueNorth Chip [2014-2015]

▪ TrueNorth is a neuromorphic CMOS chip produced by IBM in 2014.

▪ It is a manycore processor network on a chip, with 4096 cores, 

▪ Each core simulating 256 programmable silicon "neurons" for a total 
of just over a million neurons. 

▪ Each neuron has 256 programmable "synapses" that convey the 
signals between neurons. 

▪ The total number of 268 million (228) programmable synapses. 

▪ In terms of basic chip building blocks, its transistor count is 5.4 billion. 

▪ TrueNorth is very energy-efficient, consuming 70 milliwatts and a 
power density that is 1/10,000th of conventional microprocessors.
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DARPA SyNAPSE 16 chip board with IBM TrueNorth
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http://www.darpa.mil/NewsEvents/Releases/2014/08/07.aspx



Intel’s Loihi “AI” Chip [2017-2018] 
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▪ Intel's Loihi chip has 1,024 artificial neurons, or 130,000 simulated 
neurons, with 130 million possible synaptic connections. 



THE POSSIBILITIES ARE
ENDLESS. . . 


