18-600 Foundations of Computer Systems

Lecture 26: "Future of Computing Systems"

John P. Shen (with contribution from Randy Bryant) December 4, 2017

Introduction to "Neuromorphic Computing"

John P. Shen (with contribution from Mikko Lipasti) December 4, 2017

Electronics Code cathode tables to count and store page 80 Dosimeter reasered as a store radiation: page 93 35th anniversary—the experts look ahead: page 99 35th anniversary—the experts look ahead: page 99

April 19, 1965

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.

18-600 Lecture #26

Moore's Law Origins

Moore's Thesis

- Minimize price per device
- Optimum number of devices / chip increasing 2x / year

Later

- 2x / 2 years
- "Moore's Prediction"

What Moore's Law Has Meant

- **1976 Cray 1**
 - 250 M Ops/second
 - ~170,000 chips
 - 0.5B transistors
 - 5,000 kg, 115 KW
 - \$9M
 - 80 manufactured

- >4 B Ops/second
- ~10 chips
- > 3B transistors
- 120 g, < 5 W
- **\$649**
- 10 million sold in first 3 days

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Carnegie Mellon University

What Moore's Law Has Meant

1965 Consumer Product

2015 Consumer Product

Apple A8 Processor 2 B transistors

Visualizing Moore's Law to Date

If transistors were the size of a grain of sand

Intel 4004 1970 2,300 transistors

0.1 g

Apple A8 2014 2 B transistors

88 kg

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Carnegie Mellon University

What Moore's Law Has Meant

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Carnegie Mellon University

What Moore's Law Could Mean

Kurzweil, The Singularity is Near, 2005

12/04/2017 (J.P. Shen)

What Moore's Law Could Mean

2015 Consumer Product

- Portable
- Low power
- Will drive markets & innovation

Requirements for Future Technology

Must be suitable for portable, low-power operation

- Consumer products
- Internet of Things components
- Not cryogenic, not quantum

Must be inexpensive to manufacture

- Comparable to current semiconductor technology
 - O(1) cost to make chip with O(N) devices

Need not be based on transistors

- Memristors, carbon nanotubes, DNA transcription, ...
- Possibly new models of computation
- But, still want lots of devices in an integrated system

Visualizing 10¹⁷ Devices

If devices were the size of a grain of sand

1 million m³ 0.35 X 10¹⁷ grains

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Increasing Transistor Counts

1. Chips have gotten bigger

1 area doubling / 10 years

2. Transistors have gotten smaller

4 density doublings / 10 years

Will these trends continue?

Chips Have Gotten Bigger

Intel 4004 1970 2,300 transistors 12 mm²

IN GOD WE TRUST

Apple A8 2014 2 B transistors 89 mm²

IBM z13 2015 4 B transistors 678 mm²

Chip Size Trend Area by Year 1024 512 \times_{\times}^{\times} \times 256 128 Area (mm^2) Desktop Embedded 64 🔺 GPU 32 \times Server —Trend 16 2x every 9.5 years 8 4 1970 1975 1985 1990 1995 2000 2010 2015 1980 2005 Year

Chip Size Extrapolation Area by Year

Extrapolation: The iPhone 31s

Apple A59 2065 10¹⁷ transistors 173 cm²

Transistors Have Gotten Smaller

- Area A
- N devices • Linear Scale L $L = \sqrt{A/N}$

Decreasing Feature Sizes

Intel 4004 1970 2,300 transistors *L* = 72,000 nm

Apple A8 2014 2 B transistors *L* = 211 nm

Submillimeter Dimensions

18-600 Lecture #26

Carnegie Mellon University

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Carnegie Mellon University

¹⁸⁻⁶⁰⁰ Lecture #26

Subnanometer Dimensions

Reaching 2065 Goal

- Target
 - 10¹⁷ devices
 - 400 mm²
 - *L* = 63 pm

Is this possible?

- 100,000 logical layers
 - Each 50 nm thick
 - ~1,000,000 physical layers
 - To provide wiring and isolation
- *L* = 20 nm
 - 10x smaller than today

2065 mm³

3D Fabrication Challenges

Yield

How to avoid or tolerate flaws

Cost

High cost of lithography

Power

- Keep power consumption within acceptable limits
- Limited energy available
- Limited ability to dissipate heat

Photolithography

- Pattern entire chip in one step
- Modern chips require ~60 lithography steps
- Fabricate *N* transistor system with O(1) steps

- Most expensive equipment in fabrication facility
- Rate limiting process step
 - 18s / wafer
- Expose 858 mm² per step
 - 1.2% of chip area

Fabrication Economics

Currently

- Fixed number of lithography steps
- Manufacturing cost \$10-\$20 / chip
 - Including amortization of facility

Fabricating 1,000,000 physical layers

Cannot do lithography on every step

Options

- Chemical self assembly
 - Devices generate themselves via chemical processes
- Pattern multiple layers at once

Samsung V-Nand Flash Example

- Build up layers of unpatterned material
- Then use lithography to slice, drill, etch, and deposit material across all layers
- ~30 total masking steps
- Up to 48 layers of memory cells
- Exploits particular structure of flash memory circuits

Potentials of 3D Die Stacking

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Carnegie Mellon University

These limitations will make it very challenging to continue integrating systems

12/04/2017 (J.P. Shen)

[Bryan Black, 2015, AMD]
Strategic Vision (Stacked System)

- The Stacked System model integrates dies from disparate technologies using a combination of 2.5D and 3D technology
- This construction model enables:
 - Disparate die integration to improve form factors and reduce system overheads
 - Die splitting to reduce process node complexity and cost
- Results in an interesting business model opportunity

12/04/2017 (J.P. Shen)

[Bryan Black, 2015, AMD]¹⁹₇

Featuring Die Stacking and HBM Technology

18-600 Lecture #26

[Bryan Black, 2015, AMD]

- ▲ First high-volume interposer
- First TSVs and μBumps in the graphics industry
- Most discrete dies in a single package at 22
- ✓ Total 1011 sq. mm.

- ▲ Graphics Core Next Architecture
- ▲ 64 Compute Units¹⁴

 \bigcirc

- ▲ 4096 Stream Processors
- ▲ 596 sq. mm. Engine

12/04/2017 (J.P. Shen) 399 | | THE BRADTOOFFIJI | SEEMCOONVERST | JULY 20055

18-600 Lecture #26

[Bryan Black, 2015, AMD]

DIE STACKING TECHNOLOGY

- Die stacking facilitates the integration of discrete dies
- 8.5 years of development by AMD and its technology partners

AMD Radeon[™] R9 Fury X Graphics Card

AMD

SMALL SIZE, GIANT IMPACT

49 | THE ROAD TO FIJI | SEMICON WEST | JULY 2015

18-600 Lecture #26 Board shot shown for illustration purposes only. Final board design may differ. [Bryan Black, 2015, AMD]

Key Challenge to Moore's Law: Economic

130nm	90nm	65nm	45/40nm	32/28nm	22/20nm	
Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	
Intel	Intel	Intel	Intel	Intel	Intel	
STMicroelectronics	STMicroelectronics	STMicroelectronics	STMicroelectronics	STMicroelectronics	Globalfoundries	
Toshiba	Toshiba	Toshiba	Toshiba	Globalfoundries	TSMC	
Fujitsu	Fujitsu	Fujitsu	Fujitsu	TSMC		
IBM	IBM	IBM	IBM	UMC		
Renesas (NEC)	Renesas	Renesas	Renesas			
Texas Instruments	Texas Instruments	Texas Instruments	Globalfoundries			
Sony	Sony	Sony	TSMC			
Infineon	Infineon	Infineon	UMC			
Freescale	Freescale	Globalfoundries	SMIC			
Seiko Epson	Seiko Epson	TSMC			.0 111aj01 C	Unsuluations
Globalfoundries	Globalfoundries	UMC			o maior o	oncolidations
TSMC	TSMC	SMIC		amortize	e investme	ent
UMC	UMC		ĺ	IVIust have	ve very hig	gh volumes to
SMIC	SMIC					
Grace Semiconductor	Grace Semiconductor			State of	art fab lin	e ~\$20B
Altis Semiconductor Dongbu HiTek	Dongbu HiTek		• G	irowing C	apital Co	osts

42

Meeting Power Constraints

- 2 B transistors
- 2 GHz operation
- 1—5 W

Can we increase number of devices by 500,000x without increasing power requirement?

- 64 B neurons
- 100 Hz operation
- 15—25 W
 - Liquid cooling
 - Up to 25% body's total energy consumption

43

Final Thoughts

Compared to future, past 50 years will seem fairly straightforward

50 years of using photolithography to pattern transistors on two-dimensional surface

Questions about future integrated systems

- Can we build them?
- What will be the technology?
- Are they commercially viable?
- Can we keep power consumption low?
- What will we do with them?
- How will we program / customize them?

44

Deep Learning Models are Getting Larger

Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks

["Deep Learning Tutorial" @ FPGA'17,				
Song Han & Bill Dally]				

CPUs for DNN Training

Intel Knights Landing (2016)

- 7 TFLOPS FP32
- 16GB MCDRAM- 400 GB/s
- 245W TDP
- 29 GFLOPS/W (FP32)
- 14nm process

Knights Mill: next gen Xeon Phi "optimized for deep learning"

Intel announced the addition of new vector instructions for deep learning (AVX512-4VNNIW and AVX512-4FMAPS), October 2016

Slide Source: Sze et al Survey of DNN Hardware, MICRO'16 Tutorial. Image Source: Intel, Data Source: Next Platform

> ["Deep Learning Tutorial" @ FPGA'17, Song Han & Bill Dally]

GPUs for DNN Training

Nvidia PASCAL GP100 (2016)

- 10/20 TFLOPS FP32/FP16
- 16GB HBM 750 GB/s
- 300W TDP
- 67 GFLOPS/W (FP16)
- 16nm process
- 160GB/s NV Link

Slide Source: Sze et al Survey of DNN Hardware, MICRO'16 Tutorial. Data Source: NVIDIA

GPU Systems for DNN Training

Nvidia DGX-1 (2016)

- 170 TFLOPS
- 8× Tesla P100, Dual Xeon
- NVLink Hybrid Cube Mesh
- Optimized DL Software
- 7 TB SSD Cache
- Dual 10GbE, Quad IB 100Gb
- 3RU 3200W

Slide Source: Sze et al Survey of DNN Hardware, MICRO'16 Tutorial. Data Source: NVIDIA

WHAT IS IT?

"Neuromorphic engineering, also known as neuromorphic computing started as a concept developed by Carver Mead in the late 1980s, describing the use of very-large-scale integration (VLSI) systems containing electronic analogue circuits to mimic neurobiological architectures present in the nervous system."

- Easton, 2015

WHAT IS IT? (SIMPLER)

"Neuromorphic engineering/computing is a new emerging interdisciplinary field which takes inspiration from biology, physics, mathematics, computer science and engineering to design hardware/physical models of neural and sensory systems."

NEUROMORPHIC CHIPS

 Modeled on biological brains—designed to process sensory data such as images and sound and respond to changes in that data in ways not specifically programmed.

MORAVEC'S PARADOX

 Sensory information processing is extremely easy for brains but extremely hard for modern computers; whereas symbolic information processing is comparably hard for brains but extremely easy for modern computers.

18-600 Foundations of Computer Systems

Introduction to "Neuromorphic Computing"

John P. Shen (with contribution from Mikko Lipasti) December 4, 2017

Mikko H. Lipasti

Professor, Electrical and Computer Engineering University of Wisconsin – Madison

Electrical & Computer ENGINEERING

Carnegie Mellon University 53

18-600 Lecture #26

Ken Jennings vs. IBM Watson

Ken ("baseline")	Watson
Pretty good at Jeopardy (also, life)	Pretty good at Jeopardy
400g gray matter	10 racks, 15TB DRAM, 2880 CPU cores, 80 TFLOPs
20W	200KW
1 lifetime of experience	100 person-years to develop

12/04/2017 (Mikko Lipasti)

THE UNIVERSITY WISCONSIN MADISON

DNNs vs. BNNs

- Deep NNs (usually convolutional)
 - Rely on artificial perceptron neuron model
 - Trained using stochastic gradient descent (backprop): no biological bases
 - Must "experience" everything (training cost)
 - Can have superhuman performance
- Biological (spiking) NNs
 - Energy efficient, powerful
 - Training/learning/development poorly understood
 - Currently not very useful or practical...yet

Neurons - Introduction

Neuromorphic Architectures

- Computer architectures that are similar to biological brains; computer architectures that implement artificial neural networks in hardware.
- Functional units are composed of neurons, axons, synapses, and dendrites.
- Synapses are connections between two neurons
 - Remembers previous state, updates to a new state, holds the weight of the connection
- Axons and dendrites connect to many neurons/synapses, like long range bus.

18-600 Lecture #26

Biological vs. Hardware

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Carnegie Mellon University 58

Figure 1. **Comparison of high-level conventional and neuromorphic computer architectures**. The socalled "von Neumann bottleneck" is the data path between the CPU and the memory unit. In contrast, a neural network based architecture combines synapses and neurons into a fine grain distributed structure that scales both memory (synapse) and compute (soma) elements as the systems increase in scale and capability, thus avoiding the bottleneck between computing and memory.

	Biology	Silicon	Advantage	Materials to Sys	
Sneed	1 msec	1 nsec	1.000.000x	Consider Neuromo Basic Research No	
Size	1μm - 10μm	10nm - 100nm	1,000x	October 29-30, 2015 Gaithersburg, MD	
Voltage	~ 0.1V	V _{dd} ~1.0V	10x	Organizing Committee Ivan K. Schuller (Chair), University of California, Sa Rick Stevens (Chair), Argonne National Laborato	
Neuron Density	100K/mm ²	5k/mm ²	20x		
Reliability	80%	< 99.9999%	1,000,000x		
Synaptic Error Rate	75%	~ 0%	>10 ⁹	1	
Fan-out (-in)	$10^{3}-10^{4}$	3-4	10,000x		
Dimensions	Pseudo 3D	Pseudo 3D	Similar	1	
Synaptic Op Energy	~ 2 fJ	~10pJ	5000x		
Total Energy	10 Watt	>>10 ³ Watt	100,000x		
Temperature	36C - 38C	5C - 60C	Wider Op Range	1	
Noise effect	Stochastic Resonance	Bad		1	
Criticality	Edge	Far]	

Table 1. **Comparison of biological and silicon based systems.** This table shows a comparison of neurons built with biology to equivalent structures built with silicon. Red is where biology is ahead; black is where silicon is ahead. The opportunity lies in combining the best of biology and silicon.

ecture

IBM's TrueNorth

- Digital spiking Neurosynaptic Core Neurons (NCNs)
 - LP CMOS, standard digital logic
 - 256 neurons/core on 4.2mm²
- "Biologically competitive" energy
 - Few parameters/neuron
 - Binary synapses
 - Linear, no transcendental functions
 - 1kHz operating frequency of NCNs
 - 45pJ/spike
- Scaled to 1M neurons/chip

[Paul A. Merolla, et al., August 4, 2014]

http://science.sciencemag.org/

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Carnegie Mellon University 62

[Paul A. Merolla, et al., August 4, 2014]

http://science.sciencemag.org/

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Carnegie Mellon University 63

Example Pattern Recognition

- 10 networks each trained to identify one digit as its "pattern"
 - Each receives the input in parallel, and reaches output at the same time
- Every neuron fires proportional to how strong it thinks the input matches the internalized pattern
- The strongest output wins, so "3" is the result

IBM's TrueNorth Chip

- IBM along with DARPA funding, created 2 brain-like chips
- These chips are not as complex as the human, in fact they have less neurons and synapses than a snail
- Scaling is tough, as increasing # of neurons exponentially increases # of synapses
 - $_{\odot}\,$ at 500 transistors/synapse, this gets large fast
- What sets these chips apart is that they were done on current CMOS technology

Carnegie Mellon University 66

Spiking Neural Network Hardware: TrueNorth

- Biologically inspired neurons where computations happen via spikes.
- Goal: Hardware substrate that mimic this computation scheme and be energy efficient
- IBM TrueNorth: Abstracts away relevant computing features of biological neurons and only keeps them.
- TrueNorth architecture can be scaled up.
- ns1e (1-Chip system) -> ns16e (16-chip system)
- Real hardware (ns1e) prototype.

ns1e: UW-Madison

ns16e: courtsey LLNL

Visual Cortex: Possible?

V4 geometric and more complex shapes

V2 orientation, and

orientation, and combinations of orientations

V1 edges of preferred orientation

LGN on-off, off-on, contrast

Retina

12/04/2017 (Mikko Lipasti)

THE UNIVERSITY

Visual System NNet (VSNN)

- 100,000 modeled neurons
- Applications
 - Invariant object recognition
 - Pattern completion
 - Motion detection/tracking/prediction
 - Noise filtering
- Requires complex neuronal behaviors
 - Hebbian learning, voltage-dependent behavior, long-timescale neuroreceptors (NMDA) etc. [Self et al., Proc. NAS, 2012]
 - Not implemented in IBM TrueNorth!

VSNN Architecture

Neuromorphic Semantic Gap

- IBM NCNs are very simple (for efficiency)
- Biology incorporates numerous complex behaviors
 - NMDA receptor effects last much longer than 1ms

Semantic Gap – Plasticity

- IBM NCN does not support synaptic plasticity^{*}
- Hebbian learning "fire together, wire together"

- 2 extra NCNs/synapse
- ~1000*45pJ power overhead/learned synapse

VSNN on Neurosynaptic Core

- "Compiler" replaces complex neurons/synapses with NCN assemblies
 - Deployable on Neurosynaptic Core hardware
- VSNN System Overheads

IBM TrueNorth Summary

- Complex behaviors can be emulated with simple LIF neurons
 - Cost is considerable
 - Minor HW changes could improve this ("latch")
- Not the final answer on neuron complexity!
- Still at very small scale (100K biological neurons)
- Communication overhead already significant
 - Will dominate in larger networks

[Details in Nere et al., HPCA 2013]

Algorithmic Gap

- Neural substrates well suited for algorithms that were developed with them in mind:
 - CNNs, DNNs, etc.
 - Mainly targeted towards vision, classification
- Vast majority of existing algorithms developed for Von Neumann machines
 - Can we find a way to map at least some interesting subset of these algorithms?
 - Can we do so in a way that avoids *ad hoc* approaches for correctness?

Mapping to Hardware

- Mathematical formulation is very useful
 - Can prototype in e.g. Matlab
 - Can reason about it, prove properties, etc.
 - Often this work (algorithm development) has already been done by others
- Mapping to hardware-constrained neural substrate
 - Precision, range of weights
 - Precision, range of spike trains
 - Handling +/- values
 - Implementing arithmetic operators
 - Implementing state (memory)

How do Neural Circuits Emerge?

- Genetically programmed
 - Structure, interconnect, neuron parameters
 - Billions of them! Often specialized, tailored to particular task
 - <u>Way too much</u> information for human genome
- So, how then?
 - Is cortex a *blank slate?*
 - Structure, function emerges in response to stimulus
 - Relatively simple set of developmental rules are genetically programmed
 - Everything else is a product of experience

Conclusions

 We <u>can</u> deploy linear solvers on hardwareconstrained neural substrates

-IBM TrueNorth

- Looks like we can do interesting things
 - -Mimic not just vision, but rewards, planning, recall
- Many practical challenges remain
- Many open questions

IBM TrueNorth Chip [2014-2015]

- TrueNorth is a neuromorphic CMOS chip produced by IBM in 2014.
- It is a manycore processor network on a chip, with 4096 cores,
- Each core simulating 256 programmable silicon "neurons" for a total of just over a million neurons.
- Each neuron has 256 programmable "synapses" that convey the signals between neurons.
- The total number of 268 million (2²⁸) programmable synapses.
- In terms of basic chip building blocks, its transistor count is 5.4 billion.
- TrueNorth is very energy-efficient, consuming 70 milliwatts and a power density that is 1/10,000th of conventional microprocessors.

DARPA SyNAPSE 16 chip board with IBM TrueNorth

http://www.darpa.mil/NewsEvents/Releases/2014/08/07.aspx

Intel's Loihi "AI" Chip [2017-2018]

Intel's Loihi chip has 1,024 artificial neurons, or 130,000 simulated neurons, with 130 million possible synaptic connections.

12/04/2017 (J.P. Shen)

18-600 Lecture #26

Carnegie Mellon University⁸³

THE POSSIBILITIES ARE ENDLESS...