
➢ Recommended Reference:
• “Parallel Computer Organization and Design,” by Michel Dubois,

Murali Annavaram, Per Stenstrom, Chapters 5 and 7, 2012.

18-600 Foundations of Computer Systems

Lecture 17:
“Multicore Cache Coherence”

John P. Shen
October 25, 2017

Prevalence of multicore processors:
▪ 2006: 75% for desktops, 85% for servers

▪ 2007: 90% for desktops and mobiles, 100%

for servers

▪ Today: 100% multicore processors with core

counts ranging from 2 to 8 cores for

desktops and mobiles, 8+ cores for servers

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 1

Lecture 17:
“Multicore Cache Coherence”

A. Multicore Processors
▪ The Case for Multicores
▪ Programming for Multicores
▪ The Cache Coherence Problem

B. Cache Coherence Protocol Categories
▪ Write Update
▪ Write Invalidate

C. Specific Bus-Based Snoopy Protocols
▪ VI & MI Protocols
▪ MSI, MESI, MOESI Protocols

18-600 Foundations of Computer Systems

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 2

The Case for Multicore Processors (MCP)

Regs

L1
d-cache

L1
i-cache

L2 unified

cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified

cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Multicore Processor package

 Stalled Scaling of Single-
Core Performance

 Expected continuation
of Moore’s Law

 Throughput
Performance for Server
Workloads

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 3

Processor Scaling Until ~2004

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 4

Processor Development Until ~2004

 Moore’s Law: transistor count doubles every 18 months

 Used to improve processor performance by 2x every 18 months

 Single core, binary compatible to previous generations

 Contributors to performance improvements

 More ILP through OOO superscalar techniques

 Wider issue, better branch prediction, better instruction scheduling, …

 Better memory hierarchies, faster and larger

 Clock frequency improvements with deeper pipelines

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 5

Problems with Single Core Performance

 Moore’s Law is still doing well (for the foreseeable future…)

 The Power Wall

 Power ≈ CL * Vdd
2 * Freq

 Cannot scale transistor count and frequency without reducing Vdd

 Unfortunately, voltage scaling has essentially stalled

 The Complexity Wall

 Designing and verifying increasingly large OOO cores is very expensive

 100s of engineers for 3-5 years

 Caches are easier to design but can only help so much…

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 6

Power & Latency (Single-Thread) Performance

15

20

25

30

0 2

Relative Performance

R
e
la

ti
v
e
 P

o
w

e
r

Pentium 4 (Psc)

power = perf (1.74)

Pentium 4 (Wmt)

Pentium Pro

Pentiumi486

0

5

10

4 6 8

[Ed Grochowski, 2004]

❖ For comparison
▪ Factor out contributions due to process

technology

▪ Keep contributions due to
microarchitecture design

▪ Normalize to i486™ processor

❖ Relative to i486™ Pentium® 4 (Wmt)
processor is
▪ 6x faster (2X IPC at 3X frequency)

▪ 23x higher power

▪ Spending 4 units of power for every 1
unit of scalar performance

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 7

From ILP to TLP

 So far, we run single process, single thread

 Extracting ILP from sequential instruction stream

 Single-thread performance can't scale indefinitely!

 Limited ILP within each thread

 Power consumption & complexity of superscalar cores

 We will now pursue Thread-Level Parallelism (TLP)

 To increase utilization and tolerate latency in single core

 To exploit multiple cores

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 8

Thread-Level Parallelism

 Instruction-level parallelism (ILP)

 Reaps performance by finding independent work in a single thread

 Thread-level parallelism (TLP)

 Reaps performance by finding independent work across multiple threads

 Historically, requires explicitly parallel workloads

 Originate from mainframe time-sharing workloads

 Even then, CPU speed >> I/O speed

 Had to overlap I/O latency with “something else” for the CPU to do

 Hence, operating system would schedule other tasks/processes/threads
that were “time-sharing” the CPU

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 9

Thread-Level Parallelism

 Reduces effectiveness of temporal and spatial locality

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 10

Thread-Level Parallelism

 Initially motivated by time-sharing of single CPU
 OS, applications written to be multithreaded

 Quickly led to adoption of multiple CPUs in a single system
 Enabled scalable product line from entry-level single-CPU systems to high-end

multiple-CPU systems
 Same applications, OS, run seamlessly
 Adding CPUs increases throughput (performance)

 More recently:
 Multiple threads per processor core

 Coarse-grained multithreading (aka “switch-on-event”)
 Simultaneous multithreading (aka “hyper-threading”)

 Multiple processor cores per die
 Chip multiprocessors (CMP) or “Muticore processors” (MCP)
 Chip multithreading (CMT)

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 11

Recall: Processes and Software Threads

 Process: an instance of a program executing in a system

 OS supports concurrent execution of multiple processes

 Each process has its own address space, set of registers, and PC

 Two different processes can partially share their address spaces to
communicate

 Thread: an independent control stream within a process

 A process can have one or more threads

 Private state: PC, registers (int, FP), stack, thread-local storage

 Shared state: heap, address space (VM structures)

 A “parallel program” is one process but multiple threads

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 12

Reminder: Classic OS Context Switch

 OS context-switch

 Timer interrupt stops a program mid-execution (precise)

 OS saves the context of the stopped thread

 PC, GPRs, and more

 Shared state such as physical pages are not saved

 OS restores the context of a previously stopped thread (all except PC)

 OS uses a “return from exception” to jump to the restarting PC

 The restored thread has no idea it was interrupted, removed, later restarted

 Take a few hundred cycles per switch (why?)

 Amortized over the execution “quantum”

 What latencies can you hide using OS context switching?

 How much faster would a user-level thread switch be?

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 13

Multithreaded Cores (old “Multiprogramming”)

 Basic idea:

 CPU resources are expensive and should not be idle

 1960’s: Virtual memory and multiprogramming

 Virtual memory/multiprogramming invented to tolerate latency to
secondary storage (disk/tape/etc.)

 Processor-disk speed mismatch:

 microseconds to tens of milliseconds (1:10,000 or more)

 OS context switch used to bring in other useful work while waiting for page
fault or explicit file read/write accesses

 Cost of context switch must be much less than I/O latency (easy)

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 14

Multithreaded Cores (new “Multithreading”)

 1990’s: Memory wall and multithreading
 Processor-DRAM speed mismatch:

 nanosecond to fractions of a microsecond (1:500)

 H/W task switch used to bring in other useful work while
waiting for cache miss

 Cost of context switch must be much less than cache miss
latency

 Very attractive for applications with abundant thread-level
parallelism
 Commercial multi-user (transaction processing) workloads

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 15

Processor Scaling Since ~2005

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 16

The Multicore Alternative
 Use Moore’s law to place more cores per chip

 Potentially 2x cores/chip with each CMOS generation

 Without significantly compromising clock frequency

 Known as Multi-Core Processors (MCP) or Chip Multiprocessors (CMP)

 The good news

 Continued scaling of chip-level peak (throughput) performance

 Mitigate the undesirable superscalar power scaling (“wrong side of the square law”)

 Facilitate design and verification, and product differentiation

 The bad news

 Require multithreaded workloads: multiple programs or parallel programs

 Require parallelizing single applications into parallel programs

 Power is still an issue as transistors shrink due to leakage current

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 17

Big OOO Superscalar vs. Multicore Processor

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 18

Power & Throughput (Multi-Thread) Performance

power = perf (1.74)

30

R
e
la

ti
v
e
 P

o
w

e
r

10

15

20

25

0 2 4 6 8

Relative Performance

Pentium 4 (Psc)

Pentium 4 (Wmt)

Pentium Pro

Pentium

i486

0

5

Pentium M

power = perf (1.0) ?

power = perf (1.74)

Scalar/Latency
Performance

Throughput
Performance

❖ Assume a large-scale multicore
processor (MCP) with potentially
many cores

❖ Replication of cores results in
nearly proportional increases to
both throughput performance
and power (hopefully).

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 19

[Ed Grochowski, 2004]

Programming for Multicore Processors (MCP)

➢ Programmers must write parallel programs using threads/processes.

➢ Spread the workload across multiple cores at run time.

➢ OS will map threads/processes to cores at run time.

Assigning Threads to Cores:

➢ Each thread/process has an affinity mask

➢ Affinity mask specifies what cores the thread is allowed to run on.

➢ Different threads can have different masks

➢ Affinities are inherited across fork()

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 20

Shared-Memory Multiprocessors or Multicores

 All processor cores have access to unified physical memory
 They can communicate via the shared memory using loads and stores

 Advantages
 Supports multi-threading (TLP) using multiple cores
 Requires relatively simple changes to the OS for scheduling
 Threads within an app can communicate implicitly without using OS

 Simpler to code for and lower overhead
 App development: first focus on correctness, then on performance

 Disadvantages
 Implicit communication is hard to optimize
 Synchronization can get tricky
 Higher hardware complexity for cache management

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 21

18-600 Lecture #1710/25/2017 (© J.P. Shen) 22

 Caches are (equally) helpful with multicores
 Reduce access latency, reduce bandwidth requirements
 For both private and shared data across cores

 Advantages of private caches:
 They are closer to core, so faster access
 Reduces contention to cache by cores

 Advantages of shared cache:
 Threads on different cores can share the same cache data
 More cache space available if a single (or a few) high-performance

thread runs on the system

 But multiple private caches introduce the two problems of
 Cache Coherence (cover in this lecture)
 Memory Consistency (beyond this course)

Caches for Multicores (or Multicore Processors)

18-600 Lecture #1710/25/2017 (© J.P. Shen) 23

• Since we have private caches:

How to keep the data consistent across caches?

• Each core should perceive the memory as a monolithic array, shared

by all the cores

The Cache Coherence Problem

18-600 Lecture #1710/25/2017 (© J.P. Shen) 24

Suppose variable x initially contains 15213

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=15213

multi-core chip

The Cache Coherence Problem

18-600 Lecture #1710/25/2017 (© J.P. Shen) 25

Core 1 reads x

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=15213

multi-core chip

The Cache Coherence Problem

18-600 Lecture #1710/25/2017 (© J.P. Shen) 26

Core 2 reads x

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=15213

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=15213

multi-core chip

The Cache Coherence Problem

18-600 Lecture #1710/25/2017 (© J.P. Shen) 27

Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip
assuming

write-through

caches

The Cache Coherence Problem

18-600 Lecture #1710/25/2017 (© J.P. Shen) 28

Core 2 attempts to read x… gets a stale copy

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip

The Cache Coherence Problem

18-600 Lecture #1710/25/2017 (© J.P. Shen) 29

• This is a general problem with shared memory

multiprocessors and multicores with private caches

• Coherence Solution:

• Use HW to ensure that loads from all cores will return the

value of the latest store to that memory location

• Use metadata to track the state for cached data

• There exist two major categories with many specific

coherence protocols.

Solutions for Cache Coherence Problem

18-600 Lecture #1710/25/2017 (© J.P. Shen) 30

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

Main memory

multi-core chip

inter-core bus

Bus Based (“Snooping”) Multicore Processor

18-600 Lecture #1710/25/2017 (© J.P. Shen) 31

• Invalidation:

If a core writes to a data item, all other copies of this

data item in other caches are invalidated

• Snooping:

All cores continuously “snoop” (monitor) the bus

connecting the cores.

Invalidation Protocol with Snooping

18-600 Lecture #1710/25/2017 (© J.P. Shen) 32

Revisited: Cores 1 and 2 have both read x

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=15213

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=15213

multi-core chip

Invalidation Based Cache Coherence Protocol

18-600 Lecture #1710/25/2017 (© J.P. Shen) 33

Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=15213

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip
assuming

write-through

caches

INVALIDATEDsends

invalidation

request

inter-core bus

Invalidation Based Cache Coherence Protocol

18-600 Lecture #1710/25/2017 (© J.P. Shen) 34

After invalidation:

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip

Invalidation Based Cache Coherence Protocol

18-600 Lecture #1710/25/2017 (© J.P. Shen) 35

Core 2 reads x. Cache misses, and loads the new copy.

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=21660

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip

Invalidation Based Cache Coherence Protocol

18-600 Lecture #1710/25/2017 (© J.P. Shen) 36

Core 1 writes x=21660:

Core 1 Core 2 Core 3 Core 4

One or more

levels of

cache

x=21660

One or more

levels of

cache

x=21660

One or more

levels of

cache

One or more

levels of

cache

Main memory

x=21660

multi-core chip
assuming

write-through

caches

UPDATED

broadcasts

updated

value
inter-core bus

Update Based Cache Coherence Protocol

18-600 Lecture #1710/25/2017 (© J.P. Shen) 37

• Multiple writes to the same location

– invalidation: only the first time

– update: must broadcast each write

(which includes new variable value)

• Invalidation generally performs better:

it generates less bus traffic

Invalidation vs. Update Protocols

Cache Coherence

 Informally, with coherent caches: accesses to a memory
location appear to occur simultaneously in all copies of that
memory location
“copies” caches + memory

 Cache coherence suggests an absolute time scale -- this is
not necessary
 What is required is the "appearance" of coherence... not

absolute coherence
 E.g. temporary incoherence between memory and a write-back

cache may be OK.

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 38

Write Update vs.
Write Invalidate

 Coherent caches with
Shared Memory

 All cores see the effects
of others’ writes

 How/when writes are
propagated

 Determined by
coherence protocol

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 39

Bus-Based Snoopy Cache Coherence

 All requests broadcast on the bus

 All processors (or private caches) and memory snoop and respond

 Cache blocks writeable at one processor or read-only at several

 Single-writer protocol

 Snoops that hit dirty (i.e. modified) lines?

 Flush modified data out of cache

 Either write back to memory, then satisfy remote miss from memory, or

 Provide dirty (modified) data directly to requestor

 Big problem in shared-memory multicore processor systems

 Dirty/coherence/sharing misses

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 40

Bus-Based Protocols

Cache

Controller
Cache Data

Processor

Bus

Processor Actions

Bus Actions

State Tags

 Protocol consists of
states and actions
(state transitions)

 Actions can be
invoked from
processor or bus to
the cache controller

 Coherence based on
per cache line (block)

Main Memory

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 41

Minimal Coherence Protocol (Write-Back Caches)

Valid
(M)

Invalid
(I)

Local
Read or

Local
Write

Evict or
Remote
Read or
Remote
Write

Local Read or
Local Write

Tag State Data

A M …

B I …

Cache

 Blocks are always private or
exclusive

 State transitions:
 Local read: I->M, fetch,

invalidate other copies
 Local write: I->M, fetch,

invalidate other copies
 Evict: M->I, write back data
 Remote read: M->I, write

back data
 Remote write: M->I, write

back data

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 42

Invalidate Protocol Optimization

 Observation: data often read shared by multiple CPUs

 Add S (shared) state to protocol: MSI

 State transitions:

 Local read: I->S, fetch shared

 Local write: I->M, fetch modified; S->M, invalidate other copies

 Remote read: M->I, write back data

 Remote write: M->I, write back data

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 43

MSI Protocol (with Write Back Cache)

Action and Next State

Current

State

Processor

Read

Processor

Write

Eviction Cache

Read

Cache

Read&M

Cache

Upgrade

I Cache Read

Acquire

Copy

→ S

Cache Read&M

Acquire Copy

→ M

No Action

→ I

No Action

→ I

No Action

→ I

S No Action

→ S

Cache Upgrade

→ M

No Action

→ I

No Action

→ S

Invalidate

Frame

→ I

Invalidate

Frame

→ I

M No Action

→ M

No Action

→ M

Cache

Write

back

→ I

Memory

inhibit;

Supply

data;

→ S

Invalidate

Frame;

Memory

inhibit;

Supply data;

→ I

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 44

MSI Example
Thread Event Bus Action Data From Global State Local

States:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> S I I

2. T0 write→ CU <1,0,0,0> M I I

3. T2 read→ CR C0 <1,0,1,1> S I S

4. T1 write→ CRM Memory <0,1,0,0> I M I

 If line is in no other cache
 Read, modify, Write requires 2 bus transactions
 Optimization: add Exclusive state

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 45

MSI: A Coherence Protocol (Write Back Caches)

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has a tag

Address tag

state
bits

Write miss

Other processor
intent to write

Read
miss

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
P1 writes back

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 46

MSI Coherence Protocol Example with 2 Cores

M

S I

Write miss

Read
miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads

P1 writes

P2 reads

P2 writes

P1 writes

P2 writes

P1 reads

P1 writes

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 47

Invalidate Protocol Optimizations

 Observation: data can be write-private (e.g. stack frame)

 Avoid invalidate messages in that case

 Add E (exclusive) state to protocol: MESI

 State transitions:

 Local read: I->E if only copy, I->S if other copies exist

 Local write: E->M silently, S->M, invalidate other copies

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 48

MESI Protocol (most common in industry)

Variation used in many Intel processors

 4-State Protocol

Modified: <1,0,0…0>

 Exclusive: <1,0,0,…,1>

 Shared: <1,X,X,…,1>

 Invalid: <0,X,X,…X>

 Bus/Processor Actions

 Same as MSI

 Adds shared signal to indicate if other caches have a copy

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 49

MESI Protocol
Action and Next State

Current

State

Processor

Read

Processor

Write
Eviction

Cache

Read

Cache

Read&M

Cache

Upgrade

I

Cache

Read

If no

sharers:

→ E

If sharers:

→ S

Cache Read&M

→ M

No Action

→ I

No Action

→ I

No Action

→ I

S
No Action

→ S

Cache Upgrade

→ M

No Action

→ I

Respond

Shared:

→ S

No Action

→ I

No Action

→ I

E
No Action

→ E

No Action

→ M

No Action

→ I

Respond

Shared;

→ S

No Action

→ I

M
No Action

→ M

No Action

→ M

Cache

Write-back

→ I

Respond

dirty;

Write back

data;

→ S

Respond

dirty;

Write back

data;

→ I

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 50

MESI Example

Thread Event Bus

Action

Data

From

Global State Local States:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 51

Cache-to-Cache Transfers

 Common in many workloads:

 T0 writes to a block: <1,0,…,0> (block in M state in T0)

 T1 reads from block: T0 must write back, then T1 reads from memory

 In shared-bus system

 T1 can snarf data from the bus during the writeback

 Called cache-to-cache transfer or dirty miss or intervention

 Without shared bus

 Must explicitly send data to requestor and to memory (for writeback)

 Known as the 4th C (cold, capacity, conflict, communication)

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 52

MESI Example 2

Thread Event Bus

Action

Data From Global State Local States:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

3. T1 read→ CR C0 <1,1,0,1> S S I

4. T2 read→ CR Memory <1,1,1,1> S S S

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 53

MOESI Optimization (IEEE Standard)

 Observation: shared ownership prevents cache-to-cache
transfer, causes unnecessary memory read

 Add O (owner) state to protocol: MOSI/MOESI

 Last requestor becomes the owner

 Avoid writeback (to memory) of dirty data

 Also called shared-dirty state, since memory is stale

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 54

MOESI Protocol

Used in AMD Opteron

5-State Protocol

Modified: <1,0,0…0>

 Exclusive: <1,0,0,…,1>

 Shared: <1,X,X,…,1>

 Invalid: <0,X,X,…X>

Owned: <1,X,X,X,0> ; only one owner, memory not up to date

Owner can supply data, so memory does not have to

Avoids lengthy memory access

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 55

MOESI Protocol
Action and Next State

Current State
Processor

Read

Processor

Write
Eviction Cache Read Cache Read&M

Cache

Upgrade

I

Cache Read

If no sharers:

→ E

If sharers:

→ S

Cache Read&M

→ M

No Action

→ I

No Action

→ I

No Action

→ I

S
No Action

→ S

Cache Upgrade

→ M

No Action

→ I

Respond shared;

→ S

No Action

→ I

No Action

→ I

E
No Action

→ E

No Action

→ M

No Action

→ I

Respond shared;

Supply data;

→ S

Respond

shared;

Supply data;

→ I

O
No Action

→ O

Cache Upgrade

→ M

Cache Write-

back

→ I

Respond shared;

Supply data;

→ O

Respond shared;

Supply data;

→ I

M
No Action

→ M

No Action

→ M

Cache Write-

back

→ I

Respond shared;

Supply data;

→ O

Respond shared;

Supply data;

→ I

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 56

MOESI Example

Thread Event Bus Action Data From Global State local states

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

3. T2 read→ CR C0 <1,0,1,0> O I S

4. T1 write→ CRM C0 <0,1,0,0> I M I

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 57

MOESI Coherence Protocol

 A protocol that tracks validity, ownership, and exclusiveness
 Modified: dirty and private

 Owned: dirty but shared

 Avoid writeback to memory on M->S transitions

 Exclusive: clean but private

 Avoid upgrade misses on private data

 Shared

 Invalid

 There are also some variations (MOSI and MESI)

 What happens when 2 cores read/write different words in a cache
line?

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 58

Snooping with Multi-level Caches

 Private L2 caches
 If inclusive, snooping traffic checked at the L2 level first

 Only accesses that refer to data cached in L1 need to be
forwarded

 Saves bandwidth at the L1 cache

 Shared L2 or L3 caches
 Can act as serialization points even if there is no bus

 Track state of cache line and list of sharers (bit mask)

 Essentially the shared cache acts like a coherence directory

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 59

Scaling Coherence Protocols

 The problem

 Too much broadcast traffic for snooping (probing)

 Solution: probe filters

 Maintain info of which address ranges that are definitely not shared or
definitely shared

 Allows filtering of snoop traffic

 Solution: directory based coherence

 A directory stores all coherence info (e.g., sharers)

 Consult directory before sending coherence messages

 Caching/filtering schemes to avoid latency of 3-hops

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 60

The Memory Consistency Problem: Example
P1 P2

/*Assume initial value of A and flag is 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

 Intuitively, you expect to print A=1

 But can you think of a case where you will print A=0?

 Even if cache coherence is available

 Coherence talks about accesses to a single location

 Consistency is about ordering for accesses to difference locations

 Alternatively

 Coherence determines what value is returned by a read

 Consistency determines when a write value becomes visible

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 61

Lecture 18:
“Program Performance Optimizations”

John P. Shen & Gregory Kesden
November 1, 2017

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 5 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

SE
18-600

PL
OS
CA

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 62

