18-600 Foundations of Computer Systems

Lecture 10: "The Memory Hierarchy"

John P. Shen & Gregory Kesden October 2, 2017

Required Reading Assignment:

- Chapter 6 of CS:APP (3rd edition) by Randy Bryant & Dave O'Hallaron
- Recommended Reference:
 - Sec. 1 & Sec. 3: Bruce Jacob, "The Memory System: You Can't Avoid It, You Can't Ignore It, You Can't Fake It," Synthesis Lectures on Computer Architecture 2009.

Carnegie Mellon University 1

10/02/2017 (© John Shen)

18-600 Lecture #10

18-600 Foundations of Computer Systems

Lecture 10: "The Memory Hierarchy"

- A. Memory Technologies
- B. Main Memory Implementation
 - a. DRAM Organization
 - b. DRAM Operation
 - c. Memory Controller
- C. Disk Storage Technologies

10/02/2017 (© John Shen)

From Lec #9 ...

Integrating Map Table with the ARF

(a)

9/27/2017 (©J.P. Shen)

18-600 Lecture #9

From Lec #9 ...

9/27/2017 (©J.P. Shen)

18-600 Lecture #9

From Lec #9 ...

Reorder Buffer Implementation

(a)

- Reorder Buffer
 - "Bookkeeping"
 - Can be instructiongrained, or blockgrained (4-5 ops)

18-600 Lecture #10

Carnegie Mellon University 7

10/02/2017 (© John Shen)

ia1

ia2

ia3

ia4

ia5

ia6

ia7

.L2:

ia8

ia9

18-600 Lecture #10

.L3:

ia1

ia2

ia3

ia4

ia5

ia6

ia7

.L2:

ia8

ia9

18-600 Lecture #10

.L3:

ia1

ia2

ia3

ia4

ia5

ia6

ia7

.L2:

ia8

ia9

18-600 Lecture #10

Carnegie Mellon University ¹⁰

.L3:

ia1

ia2

ia3

ia4

ia5

ia6

ia7

.L2:

ia8

ia9

18-600 Lecture #10

18-600 Lecture #10

18-600 Lecture #10

Carnegie Mellon University ¹³

18-600 Lecture #10

18-600 Lecture #10

18-600 Lecture #10

From Lec #9 ...

Prefetching Data Cache

18-600 Lecture #10

Carnegie Mellon University ¹⁹

From Lec #9 ...

Cortex-A9 Single Core Microarchitecture

10/02/2017 (© John Shen)

18-600 Lecture #10

18-600 Lecture #10

Carnegie Mellon University ²¹

State-of-the-art branch prediction

- Fine tuned 0-cycle branch prediction for better IPC
 - Further optimized from Cortex-A73
 - Sustains required instruction bandwidth to the core even on tight loops
- Resources for micro-BTACs, return stack and static branch predictors unchanged
 - Sustains additional performance required by Cortex-A75

©ARM 2017

ARM

High-performance processor core

- 3-way superscalar high-performance pipeline
 - Single cycle decode with instruction fusing and micro-ops
- 7 independent high-performance issue queues
 - 2x Load/Store, 2x NEON/FPU, 1x Branch and 2x Integer core
- Increased capacity to sustain operation under LI miss / L2 hit
 - 12 entries for integer core to maximise on inflight instructions and out-of-order capabilities
 - 8 entries for Load/Store and NEON/FPU

ARM

High-throughput data path

- LI D-Cache, 64KB, 4-way set associative
 - VIPT with PIPT programmer's view
 - Load Store Unit extended to 16 slots
 - Increased core ↔ L1 cache bandwidth
- Aggressive Out-of-Order support
 - Support Read-after-Write OoO with filtering

ARM

©ARM 2017

Typical Computer Organization

10/02/2017 (© John Shen)

18-600 Lecture #10

Memory Hierarchy (where do all the bits live?) **Register File** 32 words, sub-nsec L1 cache (SRAM) ~32 KB, ~nsec CPU Memory bstraction L2 cache (SRAM) 512 KB ~ 1MB, many nsec L3 cache, (SRAM) Main Memory (DRAM) 2-8 GB, ~100 nsec **Disk Storage** 200-1K GB, ~10 msec

Carnegie Mellon University ²⁶

Bus Structure Connecting CPU and Memory

- A bus is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.

Memory Read & Write Transactions

10/02/2017 (© John Shen)

18-600 Lecture #10

"Random Access" Memories (RAM)

- Key features
 - RAM is traditionally packaged as a chip.
 - Basic storage unit is normally a cell (one bit per cell).
 - Multiple RAM chips form a memory.
- RAM comes in two varieties:
 - SRAM (Static RAM)
 - DRAM (Dynamic RAM)

SRAM (Static Random Access Memory)

Read Sequence

- 1. address decode
- 2. drive row select
- 3. selected bit-cells drive bitlines (entire row is read together)
- 4. diff. sensing and col. select (data is ready)
- 5. precharge all bitlines (for next read or write)

Access latency dominated by steps 2 and 3 Cycling time dominated by steps 2, 3 and 5 step 2 proportional to 2ⁿ

step 3 and 5 proportional to 2^m

DRAM (Dynamic Random Access Memory)

Bits stored as charges on node capacitance (non-restorative)

- bit cell loses charge when read
- bit cell loses charge over time

Read Sequence

- 1~3 same as SRAM
- 4. a "flip-flopping" sense amp amplifies and regenerates the bitline, data bit is mux' ed out
- 5. precharge all bitlines

Refresh: A DRAM controller must periodically read all rows within the allowed refresh time (10s of ms) such that charge is restored in cells

10/02/2017 (© J.P. Shen)

DRAM vs. SRAM

- DRAM (used in main memories)

 - Higher density (1T 1C cell)
 - Lower cost \leftarrow 1x cost
 - Requires refresh and READs are destructive
 - Manufacturing requires putting capacitor and logic together
- SRAM (used in cache memories)
 - □ Faster access (no capacitor) ← 1x access time
 - Lower density (6T cell)
 - Higher cost ← 100x cost
 - No need for refresh and non-destructive READs
 - Manufacturing compatible with logic process (no capacitor)

18-600 Foundations of Computer Systems

Lecture 10: "The Memory Hierarchy"

A. Memory Technologies

B. Main Memory Implementation

a. DRAM Organization

b. DRAM Operation

c. Memory Controller

C. Disk Storage Technologies

10/02/2017 (© John Shen)

DRAM Chip Organization

- Optimized for density, not speed
- Data stored as charge in capacitor
- Discharge on reads => destructive reads
- Charge leaks over time
 - refresh every 64ms
- Cycle time roughly twice access time
- Need to precharge bitlines before access

18-600 Lecture #10

DRAM Chip Organization

- Address pins are time-multiplexed
 - Row address strobe (RAS)
 - Column address strobe (CAS)
- New RAS results in:
 - Bitline precharge
 - Row decode, sense
 - Row buffer write (up to 8K)
- New CAS

۰,

- Read from row buffer
- Much faster (3x)
- Streaming row accesses
 desirable

DRAM Bank Organization

- Read access sequence:
 - 1. Decode row address & drive word-line
 - 2. Selected bits drive bit-lines
 - Entire row read
 - 3. Amplify row data
 - 4. Decode column address & select subset of row
 - Send to output
 - 5. Precharge bit-lines
 - For next access
The DRAM Chip

- Consists of multiple banks (2-16 in Synchronous DRAM)
- Banks share command/address/ data buses
- The chip itself has a narrow interface
 (4-16 bits per read)

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

DRAM Rank and Module

- Rank: Multiple chips operated together to form a wide interface
- All chips comprising a rank are controlled at the same time
 - Respond to a single command
 - Share address and command buses, but provide different data
- A DRAM module consists of one or more ranks
 - E.g., DIMM (dual inline memory module)
 - This is what you plug into your motherboard
- If we have chips with 8-bit interface, to read 8 bytes in a single access, use 8 chips in a DIMM

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

A 64-bit Wide DIMM (One Rank)

- Advantages:
 - Acts like a highcapacity DRAM chip with a wide interface
 - Flexibility: memory controller does not need to deal with individual chips

Disadvantages:

Granularity: Accesses
 cannot be smaller than
 the interface width

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

10/02/2017 (© John Shen)

18-600 Lecture #10

Rank and Channel

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

DRAM Channels

- 2 Independent Channels: 2 Memory Controllers (Above)
- 2 Dependent/Lockstep Channels: 1 Memory Controller with wide interface (Not Shown above)

10/02/2017 (© John Shen)

18-600 Lecture #10

Channel and Controller

Main Memory Implementation

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

18-600 Foundations of Computer Systems

Lecture 10: "The Memory Hierarchy"

- A. Memory Technologies
- B. Main Memory Implementation
 - a. DRAM Organization
 - b. DRAM Operation
 - c. Memory Controller
- C. Disk Storage Technologies

10/02/2017 (© John Shen)

Page Mode DRAM

- A DRAM bank is a 2D array of cells: rows x columns
- A "DRAM row" is also called a "DRAM page"
- "Sense amplifiers" also called "row buffer"
- Each address is a <row,column> pair
- Access to a "closed row"
 - Activate command opens row (placed into row buffer)
 - Read/write command reads/writes column in the row buffer
 - Precharge command closes the row and prepares the bank for next access
- Access to an "open row"
 - No need for activate command

DRAM (Bank) Operation

18-600 Lecture #10

Original (Old) DRAM Read Timing

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

10/02/2017 (© John Shen)

18-600 Lecture #10

Enhanced DRAMs

- Basic DRAM cell has not changed since its invention in 1966.
 - Commercialized by Intel in 1970.
- DRAM cores with better interface logic and faster I/O :
 - Synchronous DRAM (SDRAM)
 - Uses a conventional clock signal instead of asynchronous control
 - Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
 - Double data-rate synchronous DRAM (DDR SDRAM)
 - Double edge clocking sends two bits per cycle per pin
 - Different types distinguished by size of small prefetch buffer:
 - DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits)
 - By 2010, standard for most server and desktop systems
 - Intel Core i7 supports only DDR3 SDRAM

Physical memory space

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

Physical memory space

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

Physical memory space

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

Physical memory space

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

Physical memory space

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

Physical memory space

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

Physical memory space

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

18-600 Foundations of Computer Systems

Lecture 10: "The Memory Hierarchy"

- A. Memory Technologies
- B. Main Memory Implementation
 - a. DRAM Organization
 - b. DRAM Operation
 - c. Memory Controller
- C. Disk Storage Technologies

10/02/2017 (© John Shen)

Memory Controller

10/02/2017 (© J.P. Shen)

18-600 Lecture #10

18-600 Lecture #10

Latency Components: Basic DRAM Operation

- CPU \rightarrow controller transfer time
- Controller latency
 - Queuing & scheduling delay at the controller
 - Access converted to basic commands
- Controller \rightarrow DRAM transfer time
- DRAM bank latency
 - Simple CAS if row is "open" OR
 - RAS + CAS if array precharged OR
 - PRE + RAS + CAS (worst case)
- DRAM → CPU transfer time (through controller)

- A: Transaction request may be delayed in Queue B: Transaction request sent to Memory Controller C: Transaction converted to Command Sequences (may be queued)
- D: Command/s Sent to DRAM
- E₁: Requires only a CAS or
- E₂: Requires **RAS + CAS** or
- E3: Requires PRE + RAS + CAS
- F: Transaction sent back to CPU

"DRAM Latency" = A + B + C + D + E + F

18-600 Foundations of Computer Systems

Lecture 10: "The Memory Hierarchy"

- A. Memory Technologies
- B. Main Memory Implementation
 - a. DRAM Organization
 - b. DRAM Operation
 - c. Memory Controller
- C. Disk Storage Technologies

Carnegie Mellon University 66

10/02/2017 (© John Shen)

Typical Computer Organization

18-600 Lecture #10

What's Inside A Disk Drive?

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks.
- Each track consists of sectors separated by gaps.
- Aligned tracks form a cylinder.

Disk Capacity

Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x (# surfaces/platter) x (# platters/disk)

Example:

- 512 bytes/sector
- 300 sectors/track (on average)
- 20,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

```
Capacity = 512 x 300 x 20000 x 2 x 5
```

- = 30,720,000,000
 - = 30.72 GB

Disk Operation

The read/write *head* is attached to the end of the *arm* and flies over the disk surface on a thin cushion of air.

> By moving radially, the arm can position the read/write head over any track.

Multi-Platter View

Single-Platter View

spindle

10/02/2017 (© John Shen)

18-600 Lecture #10

Disk Access

Head in position above a track

Rotation is counter-clockwise
Disk Access – Read

About to read blue sector

After BLUE read

Disk Access of RED

Disk Access Time

- Average time to access some target sector approximated by :
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - Time to position heads over cylinder containing target sector.
 - Typical Tavg seek is 3–9 ms
- Rotational latency (Tavg rotation)
 - Time waiting for first bit of target sector to pass under r/w head.
 - Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
 - Typical Tavg rotation = 7200 RPMs
- Transfer time (Tavg transfer)
 - Time to read the bits in the target sector.
 - Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Disk Access Time Example

- Given:
 - Rotational rate = 7,200 RPM
 - Average seek time = 9 ms.
 - Avg # sectors/track = 400.
- Derived:
 - Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
 - Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
 - Taccess = 9 ms + 4 ms + 0.02 ms
- Important points:
 - Access time dominated by seek time and rotational latency.
 - First bit in a sector is the most expensive, the rest are free.
 - SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - Disk is about 40,000 times slower than SRAM,
 - 2,500 times slower then DRAM.

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface,track,sector) triples.
- Allows controller to set aside spare cylinders for each zone.
 - Accounts for the difference in "formatted capacity" and "maximum capacity".

10/02/2017 (© John Shen)

18-600 Lecture #10

Carnegie Mellon University 78

Reading a Disk Sector (1)

10/02/2017 (© John Shen)

18-600 Lecture #10

Reading a Disk Sector (2)

10/02/2017 (© John Shen)

18-600 Lecture #10

Carnegie Mellon University 80

Reading a Disk Sector (3)

10/02/2017 (© John Shen)

18-600 Lecture #10

Carnegie Mellon University⁸¹

Nonvolatile Memories

- DRAM and SRAM are volatile memories
 - Lose information if powered off.
- Nonvolatile memories retain value even if powered off
 - Read-only memory (ROM): programmed during production
 - Programmable ROM (PROM): can be programmed once
 - Erasable PROM (EPROM): can be bulk erased (UV, X-Ray)
 - Electrically erasable PROM (EEPROM): electronic erase capability
 - Flash memory: EEPROMs. with partial (block-level) erase capability
 - Wears out after about 100,000 erasing cycles
- Uses for Nonvolatile Memories
 - Firmware programs stored in a ROM (BIOS, controllers for disks, network cards, graphics accelerators, security subsystems,...)
 - Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, laptops,...)
 - Disk caches

EPROM device structure

- Pages: 512B to 4KB, Blocks: 32 to 128 pages
- Data read/written in units of pages.
- Page can be written only after its block has been erased
- A block wears out after about 100,000 repeated writes.

SSD Tradeoffs vs Rotating Disks

- Advantages
 - No moving parts \rightarrow faster, less power, more rugged
- Disadvantages
 - Have the potential to wear out
 - Mitigated by "wear leveling logic" in flash translation layer
 - E.g. Intel SSD 730 guarantees 128 petabyte (128 x 10¹⁵ bytes) of writes before they wear out
 - In 2015, about 30 times more expensive per byte
- Applications
 - MP3 players, smart phones, laptops
 - Beginning to appear in desktops and servers (as disk cache)

The CPU-Memory-Storage Gaps

10/02/2017 (© John Shen)

18-600 Lecture #10

Carnegie Mellon University⁸⁵

18-600 Foundations of Computer Systems

Lecture 11: "Cache Memories & Multicore Processors"

John P. Shen & Gregory Kesden October 4, 2017

Next Time

Required Reading Assignment:

• Chapter 6 of CS:APP (3rd edition) by Randy Bryant & Dave O'Hallaron.

10/02/2017 (© John Shen)

18-600 Lecture #10

Carnegie Mellon University⁸⁶