
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 9:
“Modern Superscalar Out-of-Order Processors”

John P. Shen & Gregory Kesden
September 27, 2017

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 1

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 4 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

➢ Recommended Reading Assignment:
❖ Chapter 5 of Shen and Lipasti (SnL).

Lecture #7 – Processor Architecture & Design

Lecture #8 – Pipelined Processor Design

Lecture #9 – Superscalar O3 Processor Design

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 9:
“Modern Superscalar Out-of-Order Processors”

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 2

18-600 Foundations of Computer Systems

A. Instruction Flow Techniques
a. Control Flow Prediction
b. Dynamic Branch Prediction

B. Register Data Flow Techniques
a. Resolving Anti and Output Dependencies
b. Resolving True Dependencies
c. Dynamic Out-of-Order Execution

C. Memory Data Flow Techniques
a. Memory Data Dependencies
b. Load Bypassing & Load Forwarding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 3

Modern Superscalar Processor Organization

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

In
 O

rd
e
r

O
u

t
o

f

O
rd

e
r

In
 O

rd
e
r

Completion Buffer

▪ Buffers provide
decoupling

▪ In OOO designs
they also facilitate
(re-)ordering

▪ More details on
specific buffers to
follow

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 4

Designs of Inter-stage Buffers

• • •

Stage i

Buffer (> n)

Stage i + 1

• • •

(any order)

(any order)
_

Stage i

Buffer (1)

Stage i + 1

1

1

• • •

• • •

Stage i

Buffer (n)

Stage i +1

n

n

(in order)

• • •

(in order)

Scalar Pipeline Buffer In-order Parallel Buffers

Out-of-order Pipeline Stages

(simple register) (wide-register or FIFO)

(multiported SRAM and CAM)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3 Major Penalty Loops of Pipelined Processors

LOAD
PENALTY
(1 cycle)

F

D

E

M

W

BRANCH
PENALTY
(2 cycles)

ALU
PENALTY
(0 cycle)

Performance Objective: Reduce CPI as close to 1 as possible.

Best Possible for Real Programs is as Low as CPI = 1.15.

CAN WE DO BETTER? … CAN WE ACHIEVE IPC > 1.0?

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 5

From Lec #8 …

LOAD
PENALTY
(1 cycle)

F

D

E

M

W

BRANCH
PENALTY
(2 cycles)

ALU
PENALTY
(0 cycle)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 6

Three Impediments to Superscalar Performance

LOAD
PENALTY
(1 cycle)

F

D

E

M

W

BRANCH
PENALTY
(2 cycles)

ALU
PENALTY
(0 cycle)

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory

Data

Flow

EXECUTE

(ROB)

Flow

Flow

DISPATCH

Reservation
Stations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory

Data

Flow

EXECUTE

(ROB)

Flow

Flow

DISPATCH

18-600 Lecture #99/27/2017 (©J.P. Shen) 7

Three Flow Paths of Superscalar Processors
➢ Wide Instruction Fetching
➢ Dynamic Branch Prediction

Reservation
Stations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow Graph (CFG)

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 8

 Your program is actually
a control flow graph

 Shows possible paths of
control flow through
basic blocks

 Control Dependence

 Node X is control
dependent on Node Y if
the computation in Y
determines whether X
executes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 9

Mapping CFG to Linear Instruction Sequence
A A

B

B

A

B
C

D

D

C

C

D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Types and Implementation

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 10

 Types of Branches

 Conditional or Unconditional?

 Subroutine Call (aka Link), needs to save PC?

 How is the branch target computed?

 Static Target e.g. immediate, PC-relative

 Dynamic targets e.g. register indirect

 Conditional Branch Architectures

 Condition Code “N-Z-C-V” e.g. PowerPC

 General Purpose Register e.g. Alpha, MIPS

 Special Purposes register e.g. Power’s Loop Count

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What’s So Bad About Branches?

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 11

 Robs instruction fetch bandwidth and ILP

 Use up execution resources

 Fragmentation of I-cache lines

 Disruption of sequential control flow

 Need to determine branch direction (conditional branches)

 Need to determine branch target

 Example:

 We have a N-way superscalar processor (N is large)

 A branch every 5 instructions that takes 3 cycles to resolve

 What is the effective fetch bandwidth?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 12

Disruption of Sequential Control Flow

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

Completion Buffer

Branch

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Riseman and Foster’s Study

➢ 7 benchmark programs on CDC-3600

➢Assume infinite machine:

• Infinite memory and instruction stack, register file, fxn units

Consider only true dependency at data-flow limit

➢ If bounded to single basic block, i.e. no bypassing of branches maximum
speedup is 1.72

➢ Suppose one can bypass conditional branches and jumps (i.e. assume the
actual branch path is always known such that branches do not impede
instruction execution)

Br. Bypassed: 0 1 2 8 32 128

Max Speedup: 1.72 2.72 3.62 7.21 24.4 51.2

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 13

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Branch Prediction Tasks

➢Target Address Generation
• Access register

• PC, GP register, Link register

• Perform calculation

• +/- offset, auto incrementing/decrementing

 Target Speculation

➢Condition Resolution
• Access register

• Condition code register, data register, count register

• Perform calculation

• Comparison of data register(s)

 Condition Speculation

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 14

18-600 Lecture #99/27/2017 (©J.P. Shen) 15

Dynamic Branch Target Prediction

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish
Completion Buffer

Branch

nPC to Icache

nPC(seq.) = PC+4

PCBranch
Predictor
(using a BTB)

specu. target

BTB
update

prediction

(target addr.
and history)

specu. cond.

FA-mux

nPC=BP(PC)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 16

Target Prediction: Branch Target Buffer (BTB)

 A small “cache-like” memory in the instruction fetch stage
 Remembers previously executed branches, their addresses (PC), information to aid target

prediction, and most recent target addresses
 I-fetch stage compares current PC against those in BTB to “guess” nPC

 If matched then prediction is made else nPC=PC+N
 If predict taken then nPC=target address in BTB else nPC=PC+N

 When branch is actually resolved, BTB is updated

key

Associative Memory (CAM)

tag data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More on BTB (aka BTAC)
 Typically a large associative structure

 Pentium3: 512 entries, 4-way; Opteron: 2K entries, 4-way

 Entry format

 Valid bit, address tag (PC), target address, fall-through BB
address (length of BB), branch type info, branch direction
prediction

 BTB provides both target and direction prediction

 Multi-cycle BTB access?

 The case in many modern processors (2 cycle BTB)

 Start BTB access along with I-cache in cycle 0

 In cycle 1, fetch from PC+N (predict not-taken)

 In cycle 2, use BTB output to verify

 1 cycle fetch bubble if branch was taken

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 17

idx key

d
e
c
o
d
e
r

N-Way

Set-Associative Memory

k-bit index

2k • N blocks

tag data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Target Prediction for Function Returns
 In most languages, function calls are fully nested

 If you call A() B() C() D()

 Your return targets are PCc PCb PCa PCmain

 Return address stack (RAS)
 A FILO structure for capturing function return addresses

 Operation

 On a function call retirement, push call PC into the stack

 On a function return, use the top value in the stack & pop

 A 16-entry RAS can predict returns almost perfectly

 Most programs do not have such a deep call tree

 Sources of RAS inaccuracies

 Deep call statements (circular buffer overflow – will lose older calls)

 Setjmp and longjmp C functions (irregular call semantics)

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Return Address Stack (RAS) Operation

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RAS Effectiveness & Size (SPEC CPU’95)

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Condition Prediction

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 21

 Biased For Not Taken
 Does not affect the instruction set architecture
 Not effective in loops

 Software Prediction
 Encode an extra bit in the branch instruction

 Predict not taken: set bit to 0
 Predict taken: set bit to 1

 Bit set by compiler or user; can use profiling
 Static prediction, same behavior every time

 Prediction Based on Branch Offsets
 Positive offset: predict not taken
 Negative offset: predict taken

 Prediction Based on History

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

History-Based Branch Direction Prediction

 Track history of previous directions of branches (T or NT)

 History can be local (per static branch) or global (all branches)

 Based on observed history bits (T or NT), a FSM makes a prediction of Taken or Not

Taken

 Assumes that future branching behavior is predictable based on historical branching

behavior

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 22

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

History-Based Branch Prediction

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

▪ Prediction accuracy approaches maximum with as few as 2 preceding branch
occurrences used as history

Results (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC

93.3 96.5 90.8 83.4 97.5 90.6

Example Prediction Algorithm

TT
T

N

T

NT
T

TN
T

TN
T

NN
N

N

T

T

N

T

N

TT
T

last two branches

next prediction

▪ History avoids mispredictions
due to one time events

▪ Canonical example: loop exit

▪ 2-bit FSM as good as n-bit FSM

▪ Saturating counter as good as
any FSM

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 24

[James E Smith, CDC, 1981]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

N

T
N

N

T

TN
T

n?

T

t

T

N

N

T

TN
T

t?

T

T N

n?

tt?

N
N

n
n

T
N

Other Prediction Algorithms

▪ Combining prediction accuracy with BTB hit rate (86.5% for 128 sets of 4
entries each), branch prediction can provide the net prediction accuracy of
approximately 80%. This implies a 5-20% performance enhancement.

Saturation

Counter

Hysteresis

Counter

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Branch Prediction Based on History

 Use HW tables to
track history of
direction/targets

 nextPC =
function(PC,
history)

 Need to verify
prediction

 Branch still gets
to execute

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 26

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

SFX SFX CFX FPU LSBRN

Buffer

icacheP
C

Branch

History

Table

Branch

Target

Address

Cache

+16

feedback

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 27

PowerPC 604 Branch Predictor: BHT & BTAC

BTAC:
▪ 64 entries
▪ Fully associative
▪ Hit predict taken

BHT:
▪ 512 entries
▪ Direct mapped
▪ 2-bit saturating counter
▪ History based prediction
▪ Overrides BTAC prediction

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

SFX SFX CFX FPU LSBRN

Buffer

icacheP
C

Branch

History

Table

Branch

Target

Address

Cache

+16

feedback

BHT prediction

BTAC prediction BHT
update

BTAC
update

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Out-of-order Execution Core

28

Modern Superscalar Processor Organization

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

In
 O

rd
e
r

O
u

t
o

f

O
rd

e
r

In
 O

rd
e
r

Completion Buffer

9/27/2017 (©J.P. Shen) 18-600 Lecture #9

We have: fetched & decoded
instructions

 In-order but speculative
(branch prediction)

Register Renaming

 Eliminate WAR and WAW
dependencies without stalling

Dynamic Scheduling

 Track & resolve true RAW
dependencies

 Scheduling HW: Instruction
window, reservation stations,
common data bus, …

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory

Data

Flow

EXECUTE

(ROB)

Flow

Flow

DISPATCH

18-600 Lecture #99/27/2017 (©J.P. Shen) 29

Three Flow Paths of Superscalar Processors
➢ Wide Instruction Fetching
➢ Dynamic Branch Prediction

➢ Register Renaming
➢ Dynamic Scheduling

Reservation
Stations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Big Picture: Impediments Limiting ILP

INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependencies

Control Dependencies Data Dependencies (registers, memory)

True Dependencies

Anti-Dependencies Output Dependencies

Storage Conflicts (registers, memory)

(Structural Dependencies)

(RAW)

(WAR) (WAW)

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 30

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Data Flow

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 31

 For an instruction to execute:
 Need availability of functional unit Fn (structural dependency)
 Need availability of Rj and Rk (RAW: true data dependency)
 Need availability of Ri (WAR and WAW: anti and output dependencies)

Each ALU Instruction: INSTRUCTION EXECUTION MODEL

Ri Fn (Rj, Rk)

Dest.

Reg.

Funct.

Unit

Source

Registers

R0
R1

Rm

FU1

FU2

FUn

Interconnect

•
•
•

•
•
•

Registers Functional
Units“Register Transfer”

“Read”

“Write”
“Execute”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 32

Causes of Register Storage Conflict

WAW

WAR

First instance of Ri

Second instance of Ri

REGISTER RECYCLING

MAXIMIZE USE OF REGISTERS

MULTIPLE ASSIGNMENTS OF VALUES TO REGISTERS

OUT OF ORDER ISSUING AND COMPLETION

LOSE IMPLIED PRECEDENCE OF SEQUENTIAL CODE

LOSE 1-1 CORRESPONDENCE BETWEEN VALUES AND REGISTERS

Ri

•
•
•

Ri

••• DEF

USE

USE

DEF•••

Ri

Ri

•
•
•

•
•
•

WAR

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 33

Reason for WAW and WAR: Register Recycling

9 $34: mul $14 $7, 40

10 addu $15, $4, $14

11 mul $24, $9, 4

12 addu $25, $15, $24

13 lw $11, 0($25)

14 mul $12, $9, 40

15 addu $13, $5, $12

16 mul $14, $8, 4

17 addu $15, $13, $14

18 lw $24, 0($15)

19 mul $25, $11, $24

20 addu $10, $10, $25

21 addu $9, $9, 1

22 ble $9, 10, $34

COMPILER REGISTER ALLOCATION

INSTRUCTION LOOPS

Single Assignment, Symbolic Reg.

Map Symbolic Reg. to Physical Reg.
Maximize Reuse of Reg.

CODE GENERATION

REG. ALLOCATION

For (k=1;k<= 10; k++)
t += a [i] [k] * b [k] [j] ;

“Spill code”
(if not enough

registers)

 Intermediate code
 Infinite number of

symbolic registers
 One used per

value definition

 Register Allocation
via graph coloring
 Map symbolic

registers to few
architectural
registers

 Leads to register
reuses

 Dynamic register reuse
 Reuse same set of registers in

each iteration
 Overlapped execution of

multiple iterations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Renaming: The Idea

▪ Anti and output dependencies are false dependencies

▪ The dependency is on name/location rather than data

▪ Given unlimited number of registers, anti and output dependencies can always
be eliminated

r3 r1 op r2

r5 r3 op r4

r3 r6 op r7

Renamed

r1 r2 / r3

r4 r1 * r5

r8 r3 + r6

r9 r8 - r4

Original

r1 r2 / r3

r4 r1 * r5

r1 r3 + r6

r3 r1 - r4

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Renaming Resolves:

Anti- Dependences

Output Dependences

Design of Redundant Registers:

Number:

One

Multiple

Allocation:

Fixed for Each Register

Pooled for all Regsiters

Location:

Attached to Register File

(Centralized)

Attached to functional units
(Distributed)

Architected Physical

Registers Registers

R1
R2

•
•
•

Rn

P1

P2
•

•
•
Pn

•
•

•
Pn + k

9/27/2017 (©J.P. Shen) 18-600 Lecture #9

Register Renaming

35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Renaming Buffer Options

MERGED Rename

& Architectural

Register File

Rename

Register File

Architectural

Register File
ROB

Architectural

Register File

Commit
Commit

 Unified/merged register file – MIPS R10K, Alpha 21264
 Registers change role architecture to renamed

 Rename register file (RRF) – PA 8500, PPC 620
 Holds new values until they are committed to ARF (extra transfer)

 Renaming in the ROB – Pentium III

 Note: can have a single scheme or separate for integer/FP

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 36

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Number of Rename Registers

 Naïve: as many as the number of pending instructions

 Waiting to be scheduled + executing + waiting to commit

 Simplification

 Do not need renaming for stores, branches, …

 Usual approach:

 # scheduler entries # RRF entries # ROB entries

 Examples:

 PPC 620: scheduler 15, RRF 16 (RRF), ROB 16

 MIPS R12000: scheduler 48, RRF 64 (merged), ROB 48

 Pentium III: scheduler 20, RRF 40 (in ROB), ROB 40

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Integrating Map Table with the ARF

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 38

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 39

Register Renaming Tasks
▪ Source Read, Destination Allocate, Register Update

Next entry
to complete

Next entry
to be allocated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen)

Embedded “Dataflow” Engine
Dispatch Buffer

Reservation

Dispatch

Complete

Stations

“Dynamic

Completion Buffer

Branch

Execution”

- Read register or
- Assign register tag

- Monitor reg. tag
- Receive data
 being forwarded
- Issue when all
 operands ready

- Advance instructions
 to reservation stations

40

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Steps in Dynamic OOO Execution (1)

419/27/2017 (©J.P. Shen) 18-600 Lecture #9

 FETCH instruction (in-order, speculative)

 I-cache access, predictions, insert in a fetch buffer

 DISPATCH (in-order, speculative)

 Read operands from Register File (ARF) and/or Rename Register File (RRF)

 RRF may return a ready value or a Tag for a physical location

 Allocate new RRF entry (rename destination register) for destination

 Allocate Reorder Buffer (ROB) entry

 Advance instruction to appropriate entry in the scheduling hardware

 Typical name for centralized: Issue Queue or Instruction Window

 Typical name for distributed: Reservation Stations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Steps in Dynamic OOO Execution (2)

429/27/2017 (©J.P. Shen) 18-600 Lecture #9

 ISSUE & EXECUTE (out-of-order, speculative)
 Scheduler entry monitors result bus for rename register Tag(s) for pending operand(s)

 Find out if source operand becomes ready; if Tag(s) match, latch in operand(s)

 When all operands ready, instruction is ready to be issued into FU (wake-up)

 Issue instruction into FU, deallocate scheduler entry, no further stalling in FU pipe

 Issuing is subject to structural hazards and scheduling priorities (select)

 When execution finishes, broadcast result to waiting scheduler entries and RRF entry

 COMMIT/RETIRE/GRADUATE (in-order, non-speculative)
 When ready to commit result into “in-order” (architectural) state (head of the ROB):

 Update architectural register from RRF entry, deallocate RRF entry, and if it is a store
instruction, advance it to Store Buffer

 Deallocate ROB entry and instruction is considered architecturally completed

 Update predictors based on instruction result

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 43

Reservation Station Implementation

+ info for executing instruction
(opcode, ROB entry, RRF entry…)

• Reservation Stations:
distributed vs. centralized

• Wakeup: benefit to partition
across data types

• Select: much easier with
partitioned scheme

• Select 1 of n/4 vs. 4 of n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 44

Reorder Buffer Implementation

• Reorder Buffer
• “Bookkeeping”
• Can be instruction-

grained, or block-
grained (4-5 ops)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dispatch Buffer

Reservation

Dispatch

Complete

Stations

Compl. Buffer

Branch

Reg. File Ren. Reg.

Forwarding
results to
Res. Sta. &

Allocate
Reorder
Buffer
entries

Reg. Write Back

rename

Managed as a queue;
Maintains sequential order
of all Instructions in flight
(“takeoff” = dispatching;
 “landing” = completion)

(Reorder Buff.)

Integer Integer Float.- Load/
Point Store

registers

18-600 Lecture #99/27/2017 (©J.P. Shen) 45

Elements of Modern Micro-Dataflow Engine

in
o

rd
e

r
o
u
t-

o
f-

o
rd

e
r

in
o

rd
e

r

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Scheduling Implementation Cost

469/27/2017 (©J.P. Shen) 18-600 Lecture #9

 To support N-way dispatch per cycle
 Nx2 simultaneous lookups into the rename map (or associative search)
 N simultaneous write ports into the IW and the ROB

 To support N-way issue per cycle (assuming read at issue)
 1 prioritized associative lookup of N entries
 N read ports into the IW
 Nx2 read ports into the RF

 To support N-way complete per cycle
 N write ports into the RF and the ROB
 Nx2 associative lookup and write in IW

 To support N-way retire per cycle
 N read ports in the ROB
 N ports into the RF (potentially)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory

Data

Flow

EXECUTE

(ROB)

Flow

Flow

DISPATCH

18-600 Lecture #99/27/2017 (©J.P. Shen) 47

Three Flow Paths of Superscalar Processors

➢ Load Bypassing & Forwarding
➢ Speculative Memory Disamb.

➢ Wide Instruction Fetching
➢ Dynamic Branch Prediction

➢ Register Renaming
➢ Dynamic Scheduling

Reservation
Stations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• So far, we only considered register-register instructions
– Add, sub, mul, branch, jump,

• Loads and Stores
– Necessary because we don’t have enough registers for everything

• Memory allocated objects, register spill code
– RISC ISAs: only loads and stores access memory
– CISC ISAs: memory micro-ops are essentially RISC loads/stores

• Steps in load/store processing
– Generate address (not fully encoded by instruction)
– Translate address (virtual ⇒ physical) [due to virtual memory]
– Execute memory access (actual load/store)

48

Memory Operations and Memory Data Flow

9/27/2017 (©J.P. Shen) 18-600 Lecture #9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Data Dependencies

➢ Besides branches, long memory latencies are one of the biggest performance challenges
today.

➢ To preserve sequential (in-order) state in the data caches and external memory (so that
recovery from exceptions is possible) stores are performed in order. This takes care of anti-
dependences and output dependences to memory locations.

➢ However, loads can be issued out of order with respect to stores if the out-of-order loads
check for data dependences with respect to previous, pending stores.

WAW WAR RAW

store X load X store X

: : :

store X store X load X

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 49

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Data Dependency Terminology

➢ “Memory Aliasing” = Two memory references involving the same memory location
(collision of two memory addresses).

➢ “Memory Disambiguation” = Determine whether two memory references will alias or not
(whether there is a dependence or not).

➢ Memory Dependency Detection:
• Must compute effective addresses of both memory references
• Effective addresses can depend on run-time data and other instructions
• Comparison of addresses require much wider comparators

Example code:
(1) STORE V
(2) ADD
(3) LOAD Y
(4) LOAD X
(5) LOAD V
(6) ADD
(7) STORE Y

RAW

WAR

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 50

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• Stores
– Allocate store buffer entry at DISPATCH (in-order)
– When register value available, issue and calculate address (“finished”)
– When all previous instructions retire, store considered completed

• Store buffer split into “finished” and “completed” part through pointers
– Completed stores go to memory in order

• Loads
– Loads remember the store buffer entry of the last store before them
– A load can issue when

• Address register value is available AND
• All older stores are considered “completed”

In-Order (Total Ordering) Load/store Processing

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 51

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 52

Processing of Load/Store Instructions

LD/ST Queue
cannot follow

simple register
dataflow

Dispatch Buffer

Dispatch

Reservation Stations

Arch. RF Ren. RF

Reg. Write Back

Reorder Buffer

Address Generation

Address Translation

Memory Access

Data Memory

Complete

Retire

Store Buffer

Branch Integer Integer Float.-

Point

Load/

Store

in
o

rd
e

r
o
u
t-

o
f-

o
rd

e
r

in
o

rd
e

r

Store Path

Load
Path

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 53

Load/Store Units and Store Buffer

Speculative

State

Reservation Station

Address Generation

Address Translation

Memory Access

Data Cache

Load

unit

Store

unit

Address Generation

Address Translation

(Finished)

Store Buffer

(Completed)

Store Buffer

Memory Update

AddressData

Committed

In-order

State

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load Bypassing Load Forwarding

Load Bypassing & Load Forwarding: Motivation

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 54

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load Bypassing
➢ Loads can be allowed to bypass older stores if no aliasing is found

• Older stores’ addresses must be computed before loads can be issued to allow checking
for RAW load dependences. If dependence cannot be checked, e.g. store address cannot
be determined, then all subsequent loads are held until address is valid (conservative).

➢Alternatively a load can assume no aliasing and bypass older stores
speculatively

• Validation of no aliasing with previous stores must be done and mechanism for reversing
the effect must be provided.

➢ Stores are kept in ROB until all previous instructions complete, and kept in the
store buffer until gaining access to cache port.

• At completion time, a store is moved to the Completed Store Buffer to wait for turn to
access cache. Store buffer is “future file” for memory.

Store is consider completed. Latency beyond this point has little effect on the processor throughput.

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reservation Station

Data Cache

Store

unit

(Finished)
Store Buffer

(Completed)
Store Buffer

Load

unit

Match/No match

Tag match
Address

Data

If no match: update
destination register

addrdata

18-600 Lecture #99/27/2017 (©J.P. Shen) 56

Illustration of Load Bypassing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load Forwarding

➢If a pending load is RAW dependent on an earlier store still in the
store buffer, it need not wait till the store is issued to the data
cache

➢The load can be directly satisfied from the store buffer if both load
and store addresses are valid and the data is available in the store
buffer

➢Since data is sourced directly from the store buffer, this avoids the
latency (and power consumption) of accessing the data cache

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

addr

match

data

Reservation Station

Load

unit

Data Cache

Store

unit

(Finished)
Store Buffer

(Completed)
Store Buffer

Match/No match

Tag match
Address

Data

If match: forward to
destination register

18-600 Lecture #99/27/2017 (©J.P. Shen) 58

Illustration of Load Forwarding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The “DAXPY” Example

Total Order

Y(i) = A * X(i) + Y(i)

LD F0, a

ADDI R4, Rx, #512 ; last address

Loop:

LD F2, 0(Rx) ; load X(i)

MULTD F2, F0, F2 ; A*X(i)

LD F4, 0(Ry) ; load Y(i)

ADDD F4, F2, F4 ; A*X(i) + Y(i)

SD F4, 0(Ry) ; store into Y(i)

ADDI Rx, Rx, #8 ; inc. index to X

ADDI Ry, Ry, #8 ; inc. index to Y

SUB R20, R4, Rx ; compute bound

BNZ R20, loop ; check if done

LD

LD
MULTD

ADDD

SD

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 59

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Gains From Weak Ordering

Load Bypassing: Load Forwarding:

Performance gain:

Load bypassing: 11%-19% increase over total ordering

Load forwarding: 1%-4% increase over load bypassing

CODE:

ST X

:

:

LD Y

CODE:

ST X

:

:

LD X

Reservation

Station

Completion

Buffer

Store

Buffer

Load/Store

Unit

ST X

LD Y

ST X

LD X

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 60

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Bottleneck
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Eff. Addr. Gen.

Addr. Translation

D-cache Access

Data Cache

Complete

Retire

Store Buff.

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 61

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Bottleneck Techniques

Dynamic Hardware (Microarchitecture):
• Use Multiple Load/Store Units (need multiported D-cache)

• Use More Advanced Caches (victim cache, stream buffer)

• Use Hardware Prefetching (need load history and stride detection)

• Use Non-blocking D-cache (need missed-load buffers/MSHRs)

• Large instruction window (memory-level parallelism)

Static Software (Code Transformation):
• Insert Prefetch or Cache-Touch Instructions (mask miss penalty)

• Array Blocking Based on Cache Organization (minimize misses)

• Reduce Unnecessary Load/Store Instructions (redundant loads)

• Software Controlled Memory Hierarchy (expose it to above DSI)

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 62

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reservation Station

Data Cache

Store

unit

(Finished)

(Completed)
Store Buffer

Load

unit

Data

Load

unit
Cache missCache miss

Data

Address Address

Missed

load
queue

Main Memory

18-600 Lecture #99/27/2017 (©J.P. Shen) 63

Dual-Ported Non-Blocking Cache

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #99/27/2017 (©J.P. Shen) 64

Prefetching Data Cache

Completion Buffer

Decode Buffer

Dispatch Buffer

Reservation

Decode

Dispatch

Stations

Complete
Data Cache

Main Memory

I-cacheBranch
Predictor

branch integer integer floating store load
point

Memory
Reference
Prediction

Prefetch
Queue

S
to

re
 B

u
ff

e
r

Main Memory

Cortex-A9 Single Core Microarchitecture

Cortex-A9 Microarchitecture Structure and the Single Core Interfaces

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 65

• ARM Cortex-A9 is the 2nd generation of

ARM MPCore technology series

•High performance

•Uses ARMv7-A ISA

• Used many embedded devices due to its

ability to control different level of

power consumption

o essential for mobile devices

Introduction

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 66

Cortex-A9 MultiCore Processor

Cortex-A9 Multicore Processor Configuration

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 67

• IPhone 4s, IPad2, IPad mini

• consists of a dual-core ARM

Cortex-A9 MPCore CPU

•Max. CPU clock rate

o 0.8GHz for IPhone 4s

o 1GHz for IPad2, mini\

• L1 cache: 32 KB instruction +

32 KB data

• L2 cache: 1 MB

Apple A5

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 68

• Four Cortex-A9 processors

•Graphics: Quad-core

PowerVR SGX543MP4+

• 2 GHz CPU clock rate

• Power: 2200 mAh, 3-5 hours

• 2.2 million units sold

PlayStation Vita SoC

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 69

• Samsung

Galaxy S III, Galaxy Note

•Quad-core ARM Cortex A-9

•CPU: 1.4-1.6 GHz

• over 10 million note sold

• over 50 million of S III sold

Exynos 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 10:
“The Memory Hierarchy”

John P. Shen & Gregory Kesden
October 2, 2017

9/27/2017 (©J.P. Shen) 18-600 Lecture #9 70

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 6 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

➢ Recommended Reference:
❖ Chapter 3 of Shen and Lipasti (SnL).

