
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 8:
“Pipelined Processor Design”

John P. Shen & Gregory Kesden
September 25, 2017

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 1

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 4 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

➢ Recommended Reference:
❖ Chapters 1 and 2 of Shen and Lipasti (SnL).

Lecture #7 – Processor Architecture & Design

Lecture #8 – Pipelined Processor Design

Lecture #9 – Superscalar O3 Processor Design

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 8:
“Pipelined Processor Design”

1. Instruction Pipeline Design
a. Motivation for Pipelining
b. Typical Processor Pipeline
c. Resolving Pipeline Hazards

2. Y86-64 Pipelined Processor (PIPE)
a. Pipelining of the SEQ Processor
b. Dealing with Data Hazards
c. Dealing with Control Hazards

3. Motivation for Superscalar

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 2

18-600 Foundations of Computer Systems

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processor Architecture & Design

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 3

From Lec #7 …

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computational Example

➢ System
• Computation requires total of 300 picoseconds

• Additional 20 picoseconds to save result in register

• Must have clock cycle of at least 320 ps

Combinational

logic

R

e

g

300 ps 20 ps

Clock

Delay = 320 ps

Throughput = 3.12 GIPS

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3-Way Pipelined Version

➢ System
• Divide combinational logic into 3 blocks of 100 ps each

• Can begin new operation as soon as previous one passes through stage A.
• Begin new operation every 120 ps

• Overall latency increases
• 360 ps from start to finish

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps

Throughput = 8.33 GIPS

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipeline Diagrams

➢ Unpipelined

• Cannot start new operation until previous one completes

➢ 3-Way Pipelined

• Up to 3 operations in process simultaneously

Time

OP1

OP2

OP3

Time

A B C

A B C

A B C

OP1

OP2

OP3

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operating a Pipeline

Time

OP1

OP2

OP3

A B C

A B C

A B C

0 120 240 360 480 640

Clock

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

239

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

241

R

e

g

R

e

g

R

e

g

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb.

logic

A

Comb.

logic

B

Comb.

logic

C

Clock

300

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

359

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipelining Fundamentals

➢Motivation:

• Increase throughput with little increase in hardware.

Bandwidth or Throughput = Performance

➢ Bandwidth (BW) = no. of tasks/unit time

➢ For a system that operates on one task at a time:

• BW = 1/delay (latency)

➢ BW can be increased by pipelining if many operands exist which need the
same operation, i.e. many repetitions of the same task are to be performed.

➢ Latency required for each task remains the same or may even increase slightly.

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations: Register Overhead

• As we try to deepen pipeline, overhead of loading registers becomes more significant

• Percentage of clock cycle spent loading register:
• 1-stage pipeline: 6.25%

• 3-stage pipeline: 16.67%

• 6-stage pipeline: 28.57%

• High speeds of modern processor designs obtained through very deep pipelining

Delay = 420 ps, Throughput = 14.29 GIPSClock

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

➢Starting from an un-pipelined version with
propagation delay T and BW = 1/T

Ppipelined=BWpipelined = 1 / (T/ k +S)

where

S = delay through latch and overhead

T

S

S

T/k

T/k

k-stage

pipelined
unpipelined

Pipelining Performance Model

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

➢Starting from an un-pipelined version
with hardware cost G

Costpipelined = kL + G

where

L = cost of adding each latch, and

k = number of stages

G

L

L

G/k

G/k

k-stage

pipelined
unpipelined

Hardware Cost Model

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cost/Performance:

C/P = [Lk + G] / [1/(T/k + S)] = (Lk + G) (T/k + S)

= LT + GS + LSk + GT/k

Optimal Cost/Performance: find min. C/P w.r.t. choice of k

Cost/Performance Trade-off

k

C/P

[Peter M. Kogge, 1981]

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

1

2

3

4

5

6

7

0 10 20 30 40 50

Pipeline Depth k

x104

C
o
s
t/
P

e
rf

o
rm

a
n
c
e
 R

a
ti
o
 (

C
/P

)

G=175, L=41, T=400, S=22

G=175, L=21, T=400, S=11

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 13

“Optimal” Pipeline Depth (kopt) Examples

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Typical Instruction Processing Steps

Processor State

 Program counter register (PC)

 Condition code register (CC)

 Register File

 Memories

 Access same memory space

 Data: for reading/writing program data

 Instruction: for reading instructions

Instruction Processing Flow

 Read instruction at address specified by PC

 Process through (four) typical steps

 Update program counter

 (Repeat)

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 14

1. Fetch

 Read instruction from

instruction memory

2. Decode

 Determine Instruction type;

Read program registers

3. Execute

 Compute value or address

4. Memory

 Read or write data in memory

5. Write Back

 Write program registers

6. PC Update

 Update program counter

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 15

5
-S

ta
g

e
 P

ip
e
lin

e
 (

P
IP

E
)

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CCCC
ALUALU

Data
memory

Data
memory

1.Fetch

2. Decode

3. Execute

4. Memory

5.Write back

icode ifun
rA , rB

valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Cnd

valE

Addr, Data

valM

6. PC update

valE, valM

newPC

1. Fetch

2. Decode

3. Execute

4. Memory

5. Write
back

& PC
update

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Dependencies & Pipeline Hazards

Sequential Code Semantics

i1:

i2:

i3:

The implied sequential precedence's are
over specifications. It is sufficient but not
necessary to ensure program correctness.

A true dependency between
two instructions may only
involve one subcomputation
of each instruction. i1: xxxx

i2: xxxx

i3: xxxx

i2

i1

i3

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inter-Instruction Dependencies

 True data dependency

r3 r1 op r2 Read-after-Write

r5 r3 op r4 (RAW)

 Anti-dependency

r3 r1 op r2 Write-after-Read

r1 r4 op r5 (WAR)

 Output dependency

r3 r1 op r2 Write-after-Write

r5 r3 op r4 (WAW)

r3 r6 op r7

 Control dependency

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 17

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Quick Sort for MIPS

bge $10, $9, L2
mul $15, $10, 4
addu $24, $6, $15
lw $25, 0($24)
mul $13, $8, 4
addu $14, $6, $13
lw $15, 0($14)
bge $25, $15, L2

L1:
addu $10, $10, 1
. . .

L2:
addu $11, $11, -1
. . .

for (;(j<high)&&(array[j]<array[low]);++j);

$10 = j; $9 = high; $6 = array; $8 = low

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 18

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Resolving Pipeline Hazards

➢ Pipeline Hazards:
• Potential violations of program dependencies

• Must ensure program dependencies are not violated

➢ Hazard Resolution:
• Static Method: Performed at compiled time in software

• Dynamic Method: Performed at run time using hardware

➢ Pipeline Interlock:
• Hardware mechanisms for dynamic hazard resolution

• Must detect and enforce dependencies at run time

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 19

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipeline Hazards

➢ Necessary conditions for data hazards:

• WAR: write stage earlier than read stage

• Is this possible in the F-D-E-M-W pipeline?

• WAW: write stage earlier than write stage

• Is this possible in the F-D-E-M-W pipeline?

• RAW: read stage earlier than write stage

• Is this possible in the F-D-E-M-W pipeline?

➢ If conditions not met, no need to resolve

➢ Check for both register and memory
dependencies

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 20

1. Fetch

2. Decode

3. Execute

4. Memory

5. Write
back

& PC
update

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipeline Hazards Analysis (ALU)

➢ WAR:

(i) R3

:

(j) R3

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 21

1. Fetch

2. Decode

3. Execute

4. Memory

5. Write
back

& PC
update

➢ WAW:

(i) R3

:

(j) R3

➢ RAW:

(i)R3

:

(j) R3

➢ RAW:

(i) R3R2+R1

(j) R3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipeline Stalling for RAW (ALU)
9/25/2017 (©J.P. Shen) 18-600 Lecture #8 22

1. Fetch

2. Decode

3. Execute

4. Memory

5. Write
back

& PC
update

(i) R3R2+R1

(i+1) R3

(i) R3 R2+R1

(i+1) R3

(i) R3 R2+R1

(i+1) R3

(i) R3 R2+R1

(i+1) R3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing with Data Hazards

➢Must first detect RAW hazards
• Compare read register specifiers for newer instructions with write register

specifiers for older instructions

• Newer instruction in D; older instructions in E, M

➢Resolve hazard dynamically
• Stall or forward

➢Not all hazards because
• No register written (store or branch)

• No register is read (e.g. addi, jump)

• Do something only if necessary
• Use special encodings for these cases to prevent spurious detection

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Forwarding for RAW (ALU)
9/25/2017 (©J.P. Shen) 18-600 Lecture #8 24

1. Fetch

2. Decode

3. Execute

4. Memory

5. Write
back

& PC
update

(i) R3R2+R1

(i+1) R3

(i) R3 R2+R1

(i+1) R3

(i+2) R3

(i) R3 R2+R1

(i+1) R3

(i+2) R3

(i+3) R3

(i) R3 R2+R1

(i+1) R3

(i+2) R3

(i+3) R3

(i+4) R3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Forwarding for RAW (Load)
9/25/2017 (©J.P. Shen) 18-600 Lecture #8 25

1. Fetch

2. Decode

3. Execute

4. Memory

5. Write
back

& PC
update

(i) R3M[x]

(i+1) R3+R4

(i) R3M[x]

(i+1) R3+R4

(i+2) R3

(i) R3M[x]

(i+1) R3+R4

(i+2) R3

(i) R3M[x]

(i+1) R3+R4

(i+2) R3

(i+3) R3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing With Branches
9/25/2017 (©J.P. Shen) 18-600 Lecture #8 26

1. Fetch

2. Decode

3. Execute

4. Memory

5. Write
back

& PC
update

(i) cond: PC Y

(i+1) R1+R2

(i) cond: PCY

(i+1) R1+R2

(i+2) R3+R4

(i) cond: PCY

(i+1) R1+R2

(i+2) R3+R4

(i+3) R5+R6

(i) cond: PCY

(i+1) R1+R2

(i+2) R3+R4

(i+3) R5+R6

(k) (target of br)
fetch from M[Y]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 8:
“Pipelined Processor Design”

1. Instruction Pipeline Design
a. Motivation for Pipelining
b. Typical Processor Pipeline
c. Resolving Pipeline Hazards

2. Y86-64 Pipelined Processor (PIPE)
a. Pipelining of the SEQ Processor
b. Dealing with Data Hazards
c. Dealing with Control Hazards

3. Motivation for Superscalar

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 27

18-600 Foundations of Computer Systems

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PIPE Pipeline Stages

➢ Fetch (F)
• Select current PC

• Read instruction

• Compute incremented PC

➢ Decode (D)
• Read program registers

➢ Execute (E)
• Operate ALU

➢ Memory (M)
• Read or write data memory

➢ Write Back (W)
• Update register file

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 28

1. Fetch

2. Decode

3. Execute

4. Memory

5. Write
back

& PC
update

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PIPE Hardware

• Pipeline registers hold intermediate
values from instruction execution

➢ Instructions propagate “upward”
• Older instructions “higher” in PIPE

• Values passed from one stage to next

• Cannot jump past stages
• e.g., valC passes through decode

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 29

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Feedback Paths

➢ Predicted PC
• Guess value of next PC

➢ Branch information
• Jump taken/not-taken

• Fall-through or target address

➢ Return point
• Read from memory

➢ Register updates
• To register file write ports

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 30

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Predicting the PC

• Start fetch of new instruction after current one has completed fetch stage
• Not enough time to reliably determine next instruction

• Guess which instruction will follow
• Recover if prediction was incorrect

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 31

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Our Prediction Strategy

➢ Instructions that Don’t Transfer Control
• Predict next PC to be valP

• Always reliable

➢ Call and Unconditional Jumps
• Predict next PC to be valC (destination)

• Always reliable

➢ Conditional Jumps
• Predict next PC to be valC (destination)

• Only correct if branch is taken
• Typically right 60% of time

➢ Return Instruction
• Don’t try to predict

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recovering from
PC Misprediction

• Mispredicted Jump
• Will see branch condition flag once instruction reaches memory stage

• Can get fall-through PC from valA (value M_valA)

• Return Instruction
• Will get return PC when ret reaches write-back stage (W_valM)

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 33

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Resolving Pipeline Hazards

➢Data Hazards
• Instruction having register R as source follows shortly after instruction having register

R as destination (RAW)

• Common condition, don’t want to slow down pipeline

➢ Control Hazards
• Mispredict conditional branch

• Our design predicts all branches as being taken

• Naïve pipeline executes two extra instructions

• Getting return address for ret instruction
• Naïve pipeline executes three extra instructions

➢Making Sure It Really Works
• What if multiple special cases happen simultaneously?

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x00a: irmovq $3,%rax F D E M WF D E M W

0x014: nop F D E M WF D E M W

0x015: nop F D E M WF D E M W

0x016: addq %rdx,%rax F D E M WF D E M W

0x018: halt F D E M WF D E M W

10
demo-h2.ys

W

R[%rax] f3

D

valA fR[%rdx] = 10

valB fR[%rax] = 0

•
•
•

W

R[%rax] f3

W

R[%rax] f3

D

valA fR[%rdx] = 10

valB fR[%rax] = 0

D

valA fR[%rdx] = 10

valB fR[%rax] = 0

•
•
•

Cycle 6

Error

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 35

D
a
ta

 D
e
p

e
n
d

e
n
ci

e
s:

2
 N

o
p’

s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

D
a
ta

 D
e
p

e
n
d

e
n
ci

e
s:

N

o
 N

o
p

0x000: irmovq$10,% rdx

1 2 3 4 5 6 7 8

F D E M

W0x00a: irmovq $3,% rax F D E M

W

F D E M W0x014: addq % rdx,% rax

F D E M W0x016: halt

demo-h0.ys

E

D

valA f R[% rdx] = 0

valB f R[% rax] = 0

D

valA f R[% rdx] = 0

valB f R[% rax] = 0

Cycle 4

Error

M

M_ valE = 10
M_ dstE = % rdx

e_ valE f 0 + 3 = 3
E_ dstE = % rax

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 36

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

S
ta

lli
n
g

 f
o

r
D

a
ta

D

e
p

e
n
d

e
n
ci

e
s

• If instruction follows too closely after one that writes register, slow it
down

• Hold instruction in decode

• Dynamically inject nop into execute stage

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W

0x00a: irmovq $3,%rax F D E M W

0x014: nop F D E M W

bubble

F

E M W

0x016: addq %rdx,%rax D D E M W

0x018: halt F D E M W

10
demo-h2.ys

F

F D E M W0x015: nop

11

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 37

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stall Condition
➢Source Registers

• srcA and srcB of current
instruction in decode stage

➢Destination Registers
• dstE and dstM fields
• Instructions in execute, memory,

and write-back stages

➢Special Case
• Don’t stall for register ID 15 (0xF)

• Indicates absence of register
operand

• Or failed cond. move

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 38

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

D
e
te

ct
in

g
 S

ta
ll

C
o

n
d

it
io

n
0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W

0x00a: irmovq $3,%rax F D E M W

0x014: nop F D E M W

bubble

F

E M W

0x016: addq %rdx,%rax D D E M W

0x018: halt F D E M W

10
demo-h2.ys

F

F D E M W0x015: nop

11

Cycle 6

W

D

•
•
•

W_dstE = %rax

W_valE = 3

srcA = %rdx
srcB = %rax

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 39

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stalling X3 0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W

0x00a: irmovq $3,%rax F D E M W

bubble

F

E M W

bubble

D

E M W

0x014: addq %rdx,%rax D D E M W

0x016: halt F D E M W

10
demo-h0.ys

F F

D

F

E M Wbubble

11

Cycle 4 •
•
•

W

W_dstE = %rax

D

srcA = %rdx
srcB = %rax

•
•
•

M

M_dstE = %rax

D

srcA = %rdx
srcB = %rax

E

e_dstE = %rax

D

srcA = %rdx
srcB = %rax

Cycle 5

Cycle 6

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 40

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Happens When Stalling?

• Stalling instruction held back in decode stage

• Following instruction stays in fetch stage

• Bubbles injected into execute stage
• Like dynamically generated nop’s

• Move through later stages

0x000: irmovq $10,%rdx

0x00a: irmovq $3,%rax

0x014: addq %rdx,%rax

Cycle 4

0x016: halt

0x000: irmovq $10,%rdx

0x00a: irmovq $3,%rax

0x014: addq %rdx,%rax

demo-h0.ys

0x016: halt

0x000: irmovq $10,%rdx

0x00a: irmovq $3,%rax

bubble

0x014: addq %rdx,%rax

Cycle 5

0x016: halt

0x00a: irmovq $3,%rax

bubble

0x014: addq %rdx,%rax

bubble

Cycle 6

0x016: halt

bubble

bubble

0x014: addq %rdx,%rax

bubble

Cycle 7

0x016: halt

bubble

bubble

Cycle 8

0x014: addq %rdx,%rax

0x016: halt

Write Back

Memory

Execute

Decode

Fetch

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 41

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Im
p

le
m

e
n
ti
n
g

 S
ta

lli
n
g

➢ Pipeline Control
• Combinational logic detects stall condition

• Sets mode signals for how pipeline registers should update

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 42

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipeline Register Modes

Rising

clock

Rising

clock
_ _

Output = y

yy

Rising

clock

Rising

clock
_ _

Output = x

xx

xx

n

o

p

Rising

clock

Rising

clock
_ _

Output = nop

Output = xInput = y

stall

= 0

bubble

= 0

xxNormal

Output = xInput = y

stall

= 1

bubble

= 0

xxStall

Output = xInput = y

stall

= 0

bubble

= 1

Bubble

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 43

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Forwarding

➢ Naïve Pipeline
• Register isn’t written until completion of write-back stage

• Source operands read from register file in decode stage
• Needs to be in register file at start of stage

➢ Observation
• Value generated in execute or memory stage

➢ Trick
• Pass value directly from generating instruction to decode stage

• Needs to be available at end of decode stage

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 44

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Forwarding Example

• irmovq in write-back stage

• Destination value in W pipeline register

• Forward as valB for decode stage

0x000: irmovq$10,% rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x00a: irmovq $3,% rax F D E M WF D E M W

0x014: nop F D E M WF D E M W

0x015: nop F D E M WF D E M W

0x016: addq % rdx,% rax F D E M WF D E M W

0x018: halt F D E M WF D E M W

10
demo-h2.ys

Cycle 6

W

R[%rax] f3

D

valA fR[%rdx] = 10

valB fW_ valE = 3

•
•
•

W_ dstE = %rax

W_ valE = 3

srcA = %rdx
srcB = %rax

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 45

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Forwarding Paths

➢Decode Stage
• Forwarding logic selects valA

and valB

• Normally from register file

• Forwarding: get valA or valB
from later pipeline stage

➢ Forwarding Sources
• Execute: valE

• Memory: valE, valM

• Write back: valE, valM

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 46

1. Fetch

2. Decode

3. Execute

4. Memory

5. Write
back

& PC
update

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data
Forwarding
Example #2

➢ Register %rdx

• Generated by ALU during previous cycle

• Forward from memory as valA

➢ Register %rax

• Value just generated by ALU

• Forward from execute as valB

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M

W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

demo-h0.ys

Cycle 4

M

D

valA f M_valE = 10

valB f e_valE = 3

M_dstE = %rdx

M_valE = 10

srcA = %rdx

srcB = %rax

E

E_dstE = %rax

e_valE f 0 + 3 = 3

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 47

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

➢Multiple Forwarding Choices
• Which one should have priority

• Match serial semantics

• Use matching value from earliest pipeline stage

0x000: irmovq $1, %rax

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x00a: irmovq $2, %rax F D E M WF D E M W

0x014: irmovq $3, %rax F D E M WF D E M W

0x01e: rrmovq %rax, %rdx F D E M WF D E M W

0x020: halt F D E M WF D E M W

10
demo-priority.ys

W

R[%rax] f3

W

R[%rax] f1

D

valA fR[%rdx] = 10

valB fR[%rax] = 0

D

valA fR[%rdx] = 10

valB fR[

D

valA fR[%rax] = ?

valB f0

Cycle 5

W

R[%rax] f3

M

R[%rax] f2

W

R[%rax] f3

E

R[%rax] f3

Forwarding
Priority

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 48

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementing
Forwarding

• Add additional feedback paths
from E, M, and W pipeline
registers into decode stage

• Create logic blocks to select
from multiple sources for valA
and valB in decode stage

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 49

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementing Forwarding

What should be the A value?

int d_valA = [

Use incremented PC

D_icode in { ICALL, IJXX } : D_valP;

Forward valE from execute

d_srcA == e_dstE : e_valE;

Forward valM from memory

d_srcA == M_dstM : m_valM;

Forward valE from memory

d_srcA == M_dstE : M_valE;

Forward valM from write back d_srcA ==

W_dstM : W_valM;

Forward valE from write back

d_srcA == W_dstE : W_valE;

Use value read from register file

1 : d_rvalA;

];

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 50

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitation of
Forwarding

➢ Load-use dependency
• Value needed by end of decode stage in

cycle 7

• Value read from memory in memory stage
of cycle 8

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 51

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoiding
Load/Use
Hazard

• Stall using instruction for one cycle

• Can then pick up loaded value by
forwarding from memory stage

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

D
e
te

ct
in

g
 L

o
a
d

/U
se

H

a
za

rd

Condition Trigger

Load/Use Hazard
E_icode in { IMRMOVQ, IPOPQ } &&

E_dstM in { d_srcA, d_srcB }

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 53

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control for Load/Use Hazard

• Stall instructions in fetch and
decode stages

• Inject bubble into execute stage

0x000: irmovq $128,%rdx

1 2 3 4 5 6 7 8 9

F D E M

W

F D E M

W0x00a: irmovq $3,%rcx F D E M

W

F D E M

W

0x014: rmmovq %rcx, 0(%rdx) F D E M WF D E M W

0x01e: irmovq $10,%ebx F D E M WF D E M W

0x028: mrmovq 0(%rdx),%rax # Load %rax F D E M WF D E M W

demo-luh.ys

0x032: addq %ebx,%rax # Use %rax

0x034: halt

F D E M W

E M W

10

D D E M W

11

bubble

F D E M W

F

F

12

Condition F D E M W

Load/Use Hazard stall stall bubble normal normal

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 54

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Misprediction Example

• Should only execute first 8 instructions

0x000: xorq %rax,%rax

0x002: jne t # Not taken

0x00b: irmovq $1, %rax # Fall through

0x015: nop

0x016: nop

0x017: nop

0x018: halt

0x019: t: irmovq $3, %rdx # Target

0x023: irmovq $4, %rcx # Should not execute

0x02d: irmovq $5, %rdx # Should not execute

demo-j.ys

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Misprediction

Predict branch as taken
 Fetch 2 instructions at target

Cancel when mispredicted
 Detect branch not-taken in execute stage
 On following cycle, replace instructions in execute and decode by

bubbles
 No side effects have occurred yet

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 56

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detecting Mispredicted Branch

Condition Trigger

Mispredicted Branch E_icode = IJXX & !e_Cnd

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 57

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control for Misprediction

Condition F D E M W

Mispredicted Branch normal bubble bubble normal normal

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 58

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0x000: irmovq Stack,%rsp # Intialize stack pointer

0x00a: call p # Procedure call

0x013: irmovq $5,%rsi # Return point

0x01d: halt

0x020: .pos 0x20

0x020: p: irmovq $-1,%rdi # procedure

0x02a: ret

0x02b: irmovq $1,%rax # Should not be executed

0x035: irmovq $2,%rcx # Should not be executed

0x03f: irmovq $3,%rdx # Should not be executed

0x049: irmovq $4,%rbx # Should not be executed

0x100: .pos 0x100

0x100: Stack: # Stack: Stack pointer

Return Example

• Previously executed three additional instructions

demo-retb.ys

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 59

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0x026: ret F D E M

Wbubble F D E M

W

bubble F D E M W

bubble F D E M W

0x013: irmovq$5,% rsi # Return F D E M W

demo- retb

F D E M W

F

valC f 5
rBf % esi

F

valC f 5
rBf % rsi

W

valM = 0x0b

W

valM = 0x013

•
•
•

Correct Return
Example

 As ret passes through pipeline, stall at fetch stage

While in decode, execute, and memory stage

 Inject bubble into decode stage

 Release stall when reach write-back stage

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 60

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detecting
Return

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 61

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0x026: ret F D E M

Wbubble F D E M

W

bubble F D E M W

bubble F D E M W

0x014: irmovq $5,%rsi # Return F D E M W

demo-retb

F D E M W

Control for Return

Condition F D E M W

Processing ret stall bubble normal normal normal

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 62

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Special Control Cases
➢Detection

➢Action (on next cycle)

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

Load/Use Hazard E_icode in { IMRMOVQ, IPOPQ } &&
E_dstM in { d_srcA, d_srcB }

Mispredicted Branch E_icode = IJXX & !e_Cnd

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Mispredicted Branch normal bubble bubble normal normal

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 63

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Im
p

le
m

e
n
ti
n
g

 P
ip

e
lin

e

C
o

n
tr

o
l

• Combinational logic generates pipeline control signals

• Action occurs at start of following cycle

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 64

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Combinations

• Special cases that can arise on same clock cycle

➢ Combination A
• Not-taken branch

• ret instruction at branch target

➢ Combination B
• Instruction that reads from memory to %rsp

• Followed by ret instruction

LoadE

UseD

M

Load/use

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

E

retD

M

ret 1

E

retD

M

ret 1

retE

bubbleD

M

ret 2

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

bubbleE

bubbleD

retM

ret 3

Combination B

Combination A

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 65

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C
o

n
tr

o
l
C

o
m

b
in

a
ti
o

n
 A

• Should handle as mispredicted branch

• Stalls F pipeline register

• But PC selection logic will be using M_valM anyhow

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

E

retD

M

ret 1

E

retD

M

ret 1

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal

Mispredicted Branch normal bubble bubble normal normal

Combination stall bubble bubble normal normal

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Combination B

• Would attempt to bubble and stall pipeline register D

• Signaled by processor as pipeline error

LoadE

UseD

M

Load/use

ret

ret

E

retD

M

1

E

retD

M

1

Combination B

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall bubble +
stall

bubble normal normal

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 67

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Control Combination B

• Load/use hazard should get priority

• ret instruction should be held in decode stage for additional cycle

LoadE

UseD

M

Load/use

ret

M

E

retD

ret 1

E

retD

Combination B

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 68

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Corrected Pipeline Control Logic

• Load/use hazard should get priority

• ret instruction should be held in decode stage for additional cycle

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal

bool D_bubble =

Mispredicted branch

(E_icode == IJXX && !e_Cnd) ||

Stalling at fetch while ret passes through pipeline

IRET in { D_icode, E_icode, M_icode }

but not condition for a load/use hazard

&& !(E_icode in { IMRMOVQ, IPOPQ }

&& E_dstM in { d_srcA, d_srcB });

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 69

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 8:
“Pipelined Processor Design”

1. Instruction Pipeline Design
a. Motivation for Pipelining
b. Typical Processor Pipeline
c. Resolving Pipeline Hazards

2. Y86-64 Pipelined Processor (PIPE)
a. Pipelining of the SEQ Processor
b. Dealing with Data Hazards
c. Dealing with Control Hazards

3. Motivation for Superscalar

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 70

18-600 Foundations of Computer Systems

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3 Major Penalty Loops of (Scalar) Pipelining

LOAD
PENALTY
(1 cycle)

F

D

E

M

W

BRANCH
PENALTY
(2 cycles)

ALU
PENALTY
(0 cycle)

Performance Objective: Reduce CPI as close to 1 as possible.

Best Possible for Real Programs is as Low as CPI = 1.15.

CAN WE DO BETTER? … CAN WE ACHIEVE IPC > 1.0?

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 71

IBM RISC Experience:
[Agerwala and Cocke 1987]

➢ Load Penalty: 0.0625 CPI

➢ Branch Penalty: 0.085 CPI

Total CPI = 1.0 + 0.0625 + 0.085

= 1.1475 CPI

= 0.87 IPC

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law and Instruction Level Parallelism

➢ h = fraction of time in serial code

➢ f = fraction that is vectorizable or parallelizable

➢ N = max speedup for f

➢ Overall speedup

No. of
Processors

N

Time

1
h 1 - h

1 - f

f

N

f
f

Speedup

)1(

1

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 72

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Revisit Amdahl’s Law

➢Sequential bottleneck

➢Even if N is infinite
• Performance limited by non-vectorizable portion (1-f)

f

N

f
f

N

 1

1

)1(

1
lim

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 73

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipelined Processor Performance Model

➢g = fraction of time pipeline is filled

➢1-g = fraction of time pipeline is not filled (stalled)

1-g g

Pipeline
Depth

N

1

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 74

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pipelined Processor Performance Model

➢“Tyranny of Amdahl’s Law”

• When g is even slightly below 100%, a big performance hit will result

• Stalled cycles in the pipeline are the key adversary and must be
minimized as much as possible

• Can we somehow fill the pipeline bubbles (stalled cycles)?

1-g g

Pipeline
Depth

N

1

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 75

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Motivation for Superscalar Design

Typical Range

Speedup jumps from 3 to
4.3 for N=6, f=0.8, but s =2

instead of s=1 (scalar)

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 76

[Tilak Agerwala and John Cocke, 1987]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Superscalar Proposal

➢Moderate the tyranny of Amdahl’s Law

• Ease the sequential bottleneck

• More generally applicable

• Robust (less sensitive to f)

• Revised Amdahl’s Law:

N

f

S

f
Speedup

1

1

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 77

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18-600 Lecture #89/25/2017 (©J.P. Shen) 78

Iron Law of Processor Performance

➢ In the 1980’s (decade of pipelining):

❖ CPI: 5.0 1.15

➢ In the 1990’s (decade of superscalar):

❖ CPI: 1.15 0.5 OR IPC: 0.87 2.0 (current best)

➢ In the 2000’s (decade of multicore):

❖ Core CPI unchanged; chip CPI scales with #cores

1/Processor Performance = ---------------
Time

Program

Instructions Cycles

Program Instruction

Time

Cycle

(path length)

= X X

(CPI) (cycle time)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 9:
“Superscalar Out-of-Order (O3) Processors”

John P. Shen & Gregory Kesden
September 27, 2017

9/25/2017 (©J.P. Shen) 18-600 Lecture #8 79

18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 4 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

➢ Recommended Reading Assignment:
❖ Chapter 4 of Shen and Lipasti (SnL).

