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18-600  Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 4 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

➢ Recommended Reference:
❖ Chapters  1 and 2 of Shen and Lipasti (SnL).

Lecture #7 – Processor Architecture & Design

Lecture #8 – Pipelined Processor Design

Lecture #9 – Superscalar O3 Processor Design
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Lecture 8:
“Pipelined Processor Design”

1. Instruction Pipeline Design
a. Motivation for Pipelining
b. Typical Processor Pipeline
c. Resolving Pipeline Hazards

2. Y86-64 Pipelined Processor (PIPE) 
a. Pipelining of the SEQ Processor
b. Dealing with Data Hazards
c. Dealing with Control Hazards

3. Motivation for Superscalar
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Processor Architecture & Design
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From  Lec #7 …
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Computational Example

➢ System
• Computation requires total of 300 picoseconds

• Additional 20 picoseconds to save result in register

• Must have clock cycle of at least 320 ps

Combinational

logic

R

e

g

300 ps 20 ps

Clock

Delay = 320 ps

Throughput = 3.12 GIPS
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3-Way Pipelined Version

➢ System
• Divide combinational logic into 3 blocks of 100 ps each

• Can begin new operation as soon as previous one passes through stage A.
• Begin new operation every 120 ps

• Overall latency increases
• 360 ps from start to finish
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Clock

Comb.

logic

A

R
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g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps

Throughput = 8.33 GIPS
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Pipeline Diagrams

➢ Unpipelined

• Cannot start new operation until previous one completes

➢ 3-Way Pipelined

• Up to 3 operations in process simultaneously

Time

OP1

OP2

OP3

Time

A B C

A B C

A B C

OP1

OP2

OP3
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Operating a Pipeline

Time
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Pipelining Fundamentals

➢Motivation: 

• Increase throughput with little increase in hardware. 

Bandwidth or Throughput = Performance

➢ Bandwidth (BW) = no. of tasks/unit time

➢ For a system that operates on one task at a time:

• BW = 1/delay (latency)

➢ BW can be increased by pipelining if many operands exist which need the 
same operation, i.e. many repetitions of the same task are to be performed.

➢ Latency required for each task remains the same or may even increase slightly.
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Limitations: Register Overhead

• As we try to deepen pipeline, overhead of loading registers becomes more significant

• Percentage of clock cycle spent loading register:
• 1-stage pipeline: 6.25% 

• 3-stage pipeline: 16.67% 

• 6-stage pipeline: 28.57%

• High speeds of modern processor designs obtained through very deep pipelining

Delay = 420 ps, Throughput = 14.29 GIPSClock
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➢Starting from an un-pipelined version with 
propagation delay T and BW = 1/T

Ppipelined=BWpipelined = 1 / (T/ k +S )

where

S = delay through latch and overhead

T

S

S

T/k

T/k

k-stage 

pipelined
unpipelined

Pipelining Performance Model
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➢Starting from an un-pipelined version 
with hardware cost G

Costpipelined = kL + G

where 

L = cost of adding each latch, and

k = number of stages

G

L

L

G/k

G/k

k-stage 

pipelined
unpipelined

Hardware Cost Model
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Cost/Performance: 

C/P =  [Lk + G] / [1/(T/k + S)] = (Lk + G) (T/k + S)

=  LT + GS + LSk + GT/k

Optimal Cost/Performance: find min. C/P w.r.t. choice of k

Cost/Performance Trade-off 

k

C/P

[Peter M. Kogge, 1981]
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Typical Instruction Processing Steps

Processor State

 Program counter register (PC)

 Condition code register (CC)

 Register File

 Memories

 Access same memory space

 Data: for reading/writing program data

 Instruction: for reading instructions

Instruction Processing Flow

 Read instruction at address specified by PC

 Process through (four) typical steps 

 Update program counter

 (Repeat)
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1. Fetch

 Read instruction from 

instruction memory

2. Decode

 Determine Instruction type; 

Read program registers

3. Execute

 Compute value or address

4. Memory

 Read or write data in memory

5. Write Back

 Write program registers

6. PC Update

 Update program counter
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Instruction Dependencies & Pipeline Hazards

Sequential Code Semantics

i1: 

i2: 

i3: 

The implied sequential precedence's are 
over specifications. It is sufficient but not
necessary to ensure program correctness.           

A true dependency between 
two instructions may only 
involve one subcomputation
of each instruction.         i1: xxxx

i2: xxxx

i3: xxxx

i2

i1

i3
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Inter-Instruction Dependencies

 True data dependency

r3  r1 op  r2 Read-after-Write

r5  r3 op  r4 (RAW)

 Anti-dependency

r3  r1 op  r2 Write-after-Read

r1  r4 op  r5 (WAR)

 Output dependency

r3  r1 op  r2 Write-after-Write

r5  r3 op  r4 (WAW)

r3  r6 op  r7

 Control dependency
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Example: Quick Sort for MIPS

bge $10,    $9,      L2
mul $15,    $10,    4
addu $24,    $6,      $15
lw $25,    0($24)
mul $13,    $8,      4
addu $14,    $6,      $13
lw $15,    0($14)
bge $25,    $15,    L2

L1:
addu $10,    $10,     1
. . .

L2:
addu $11,    $11,      -1
. . .

# for (;(j<high)&&(array[j]<array[low]);++j);

# $10  =  j; $9  =  high; $6  =  array; $8  =  low
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Resolving Pipeline Hazards

➢ Pipeline Hazards:
• Potential violations of program dependencies

• Must ensure program dependencies are not violated

➢ Hazard Resolution: 
• Static Method: Performed at compiled time in software 

• Dynamic Method: Performed at run time using hardware

➢ Pipeline Interlock:
• Hardware mechanisms for dynamic hazard resolution

• Must detect and enforce dependencies at run time
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Pipeline Hazards

➢ Necessary conditions for data hazards:

• WAR: write stage earlier than read stage

• Is this possible in the F-D-E-M-W pipeline?

• WAW: write stage earlier than write stage

• Is this possible in the F-D-E-M-W pipeline?

• RAW: read stage earlier than write stage

• Is this possible in the F-D-E-M-W pipeline?

➢ If conditions not met, no need to resolve

➢ Check for both register and memory 
dependencies
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1. Fetch

2. Decode

3. Execute

4. Memory

5. Write 
back

& PC 
update
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Pipeline Hazards Analysis (ALU)

➢ WAR:

(i) R3

:

(j) R3
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1. Fetch

2. Decode

3. Execute

4. Memory

5. Write 
back

& PC 
update

➢ WAW:

(i) R3

:

(j) R3

➢ RAW:

(i)R3 

:

(j) R3 

➢ RAW:

(i) R3R2+R1

(j) R3 
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Pipeline Stalling for RAW (ALU)
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1. Fetch

2. Decode

3. Execute

4. Memory

5. Write 
back

& PC 
update

(i) R3R2+R1

(i+1) R3 

(i) R3 R2+R1

------

(i+1) R3 

(i) R3 R2+R1

------

------

(i+1) R3 

(i) R3 R2+R1

------

------

------

(i+1) R3
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Dealing with Data Hazards

➢Must first detect RAW hazards
• Compare read register specifiers for newer instructions with write register 

specifiers for older instructions

• Newer instruction in D; older instructions in E, M

➢Resolve hazard dynamically
• Stall or forward

➢Not all hazards because
• No register written (store or branch)

• No register is read (e.g. addi, jump)

• Do something only if necessary
• Use special encodings for these cases to prevent spurious detection
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Data Forwarding for RAW (ALU)
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1. Fetch

2. Decode

3. Execute

4. Memory

5. Write 
back

& PC 
update

(i) R3R2+R1

(i+1) R3 

(i) R3 R2+R1

(i+1) R3 

(i+2) R3

(i) R3 R2+R1

(i+1) R3 

(i+2) R3

(i+3) R3

(i) R3 R2+R1

(i+1) R3 

(i+2) R3

(i+3) R3

(i+4) R3
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Data Forwarding for RAW (Load)
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1. Fetch

2. Decode

3. Execute

4. Memory

5. Write 
back

& PC 
update

(i) R3M[x]

(i+1) R3+R4 

(i) R3M[x]

(i+1) R3+R4 

(i+2) R3

(i) R3M[x]

------

(i+1) R3+R4

(i+2) R3

(i) R3M[x]

------

(i+1) R3+R4

(i+2) R3

(i+3) R3
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Dealing With Branches 
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1. Fetch

2. Decode

3. Execute

4. Memory

5. Write 
back

& PC 
update

(i) cond: PC Y

(i+1) R1+R2

(i) cond: PCY

(i+1) R1+R2

(i+2) R3+R4

(i) cond: PCY

(i+1) R1+R2

(i+2) R3+R4

(i+3) R5+R6

(i) cond: PCY

(i+1) R1+R2

(i+2) R3+R4

(i+3) R5+R6

(k) (target of br)
fetch from M[Y]
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Lecture 8:
“Pipelined Processor Design”

1. Instruction Pipeline Design
a. Motivation for Pipelining
b. Typical Processor Pipeline
c. Resolving Pipeline Hazards

2. Y86-64 Pipelined Processor (PIPE) 
a. Pipelining of the SEQ Processor
b. Dealing with Data Hazards
c. Dealing with Control Hazards

3. Motivation for Superscalar
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PIPE Pipeline Stages

➢ Fetch (F)
• Select current PC

• Read instruction

• Compute incremented PC

➢ Decode (D)
• Read program registers

➢ Execute (E)
• Operate ALU

➢ Memory (M)
• Read or write data memory

➢ Write Back (W)
• Update register file
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1. Fetch

2. Decode

3. Execute
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& PC 
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PIPE Hardware

• Pipeline registers hold intermediate 
values from instruction execution

➢ Instructions propagate “upward”
• Older instructions “higher” in PIPE

• Values passed from one stage to next

• Cannot jump past stages
• e.g., valC passes through decode
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Feedback Paths

➢ Predicted PC
• Guess value of next PC

➢ Branch information
• Jump taken/not-taken

• Fall-through or target address

➢ Return point
• Read from memory

➢ Register updates
• To register file write ports
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Predicting the PC

• Start fetch of new instruction after current one has completed fetch stage
• Not enough time to reliably determine next instruction

• Guess which instruction will follow
• Recover if prediction was incorrect
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Our Prediction Strategy

➢ Instructions that Don’t Transfer Control
• Predict next PC to be valP

• Always reliable

➢ Call and Unconditional Jumps
• Predict next PC to be valC (destination)

• Always reliable

➢ Conditional Jumps
• Predict next PC to be valC (destination)

• Only correct if branch is taken
• Typically right 60% of time

➢ Return Instruction
• Don’t try to predict
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Recovering from 
PC Misprediction

• Mispredicted Jump
• Will see branch condition flag once instruction reaches memory stage

• Can get fall-through PC from valA (value M_valA)

• Return Instruction
• Will get return PC when ret reaches write-back stage (W_valM)
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Resolving Pipeline Hazards

➢Data Hazards
• Instruction having register R as source follows shortly after instruction having register 

R as destination (RAW)

• Common condition, don’t want to slow down pipeline

➢ Control Hazards
• Mispredict conditional branch

• Our design predicts all branches as being taken

• Naïve pipeline executes two extra instructions

• Getting return address for ret instruction
• Naïve pipeline executes three extra instructions

➢Making Sure It Really Works
• What if multiple special cases happen simultaneously?
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0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x00a: irmovq $3,%rax F D E M WF D E M W

0x014: nop F D E M WF D E M W

0x015: nop F D E M WF D E M W

0x016: addq %rdx,%rax F D E M WF D E M W

0x018: halt F D E M WF D E M W

10
# demo-h2.ys

W

R[ %rax] f3

D

valA fR[ %rdx] = 10

valB fR[ %rax] = 0

•
•
•

W

R[ %rax] f3

W

R[ %rax] f3

D

valA fR[ %rdx] = 10

valB fR[ %rax] = 0

D

valA fR[ %rdx] = 10

valB fR[ %rax] = 0

•
•
•

Cycle 6

Error
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D
a
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 D
e
p
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0x000: irmovq$10,% rdx

1 2 3 4 5 6 7 8

F D E M

W0x00a: irmovq $3,% rax F D E M

W

F D E M W0x014: addq % rdx,% rax

F D E M W0x016: halt

# demo-h0.ys

E

D

valA f R[% rdx] = 0

valB f R[% rax] = 0

D

valA f R[% rdx] = 0

valB f R[% rax] = 0

Cycle 4

Error

M

M_ valE = 10
M_ dstE = % rdx

e_ valE f 0 + 3 = 3 
E_ dstE = % rax
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S
ta

lli
n
g

 f
o

r 
D

a
ta

 
D

e
p

e
n
d

e
n
ci

e
s

• If instruction follows too closely after one that writes register, slow it 
down

• Hold instruction in decode

• Dynamically inject nop into execute stage

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W

0x00a: irmovq $3,%rax F D E M W

0x014: nop F D E M W

bubble

F

E M W

0x016: addq %rdx,%rax D D E M W

0x018: halt F D E M W

10
# demo-h2.ys

F

F D E M W0x015: nop

11
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Stall Condition
➢Source Registers

• srcA and srcB of current 
instruction in decode stage

➢Destination Registers
• dstE and dstM fields
• Instructions in execute, memory, 

and write-back stages

➢Special Case
• Don’t stall for register ID 15 (0xF)

• Indicates absence of register 
operand

• Or failed cond. move
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D
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ct
in

g
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ta
ll 

C
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d

it
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n
0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W

0x00a: irmovq $3,%rax F D E M W

0x014: nop F D E M W

bubble

F

E M W

0x016: addq %rdx,%rax D D E M W

0x018: halt F D E M W

10
# demo-h2.ys

F

F D E M W0x015: nop

11

Cycle 6

W

D

•
•
•

W_dstE = %rax

W_valE = 3

srcA = %rdx
srcB = %rax
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Stalling X3 0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W

0x00a: irmovq $3,%rax F D E M W

bubble

F

E M W

bubble

D

E M W

0x014: addq %rdx,%rax D D E M W

0x016: halt F D E M W

10
# demo-h0.ys

F F

D

F

E M Wbubble

11

Cycle 4 •
•
•

W

W_dstE = %rax

D

srcA = %rdx
srcB = %rax

•
•
•

M

M_dstE = %rax

D

srcA = %rdx
srcB = %rax

E

e_dstE = %rax

D

srcA = %rdx
srcB = %rax

Cycle 5

Cycle 6
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What Happens When Stalling?

• Stalling instruction held back in decode stage

• Following instruction stays in fetch stage

• Bubbles injected into execute stage
• Like dynamically generated nop’s

• Move through later stages

0x000: irmovq $10,%rdx

0x00a: irmovq $3,%rax

0x014: addq %rdx,%rax

Cycle 4

0x016: halt

0x000: irmovq $10,%rdx

0x00a: irmovq $3,%rax

0x014: addq %rdx,%rax

# demo-h0.ys

0x016: halt

0x000: irmovq $10,%rdx

0x00a: irmovq $3,%rax

bubble

0x014: addq %rdx,%rax

Cycle 5

0x016: halt

0x00a: irmovq $3,%rax

bubble

0x014: addq %rdx,%rax

bubble

Cycle 6

0x016: halt

bubble

bubble

0x014: addq %rdx,%rax

bubble

Cycle 7

0x016: halt

bubble

bubble

Cycle 8

0x014: addq %rdx,%rax

0x016: halt

Write Back

Memory

Execute

Decode

Fetch
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➢ Pipeline Control
• Combinational logic detects stall condition

• Sets mode signals for how pipeline registers should update
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Pipeline Register Modes

Rising

clock

Rising

clock
_ _

Output = y

yy

Rising

clock

Rising

clock
_ _

Output = x

xx

xx

n

o

p

Rising

clock

Rising

clock
_ _

Output = nop

Output = xInput = y

stall 

= 0

bubble

= 0

xxNormal

Output = xInput = y

stall 

= 1

bubble

= 0

xxStall

Output = xInput = y

stall 

= 0

bubble

= 1

Bubble
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Data Forwarding

➢ Naïve Pipeline
• Register isn’t written until completion of write-back stage

• Source operands read from register file in decode stage
• Needs to be in register file at start of stage

➢ Observation
• Value generated in execute or memory stage

➢ Trick
• Pass value directly from generating instruction to decode stage

• Needs to be available at end of decode stage
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Data Forwarding Example

• irmovq in write-back stage

• Destination value in W pipeline register

• Forward as valB for decode stage

0x000: irmovq$10,% rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x00a: irmovq $3,% rax F D E M WF D E M W

0x014: nop F D E M WF D E M W

0x015: nop F D E M WF D E M W

0x016: addq % rdx,% rax F D E M WF D E M W

0x018: halt F D E M WF D E M W

10
# demo-h2.ys

Cycle 6

W

R[ %rax] f3

D

valA fR[ %rdx] = 10

valB fW_ valE = 3

•
•
•

W_ dstE = %rax

W_ valE = 3

srcA = %rdx
srcB = %rax
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Forwarding Paths

➢Decode Stage
• Forwarding logic selects valA

and valB

• Normally from register file

• Forwarding: get valA or valB
from later pipeline stage

➢ Forwarding Sources
• Execute: valE

• Memory: valE, valM

• Write back: valE, valM
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Data 
Forwarding 
Example #2

➢ Register %rdx

• Generated by ALU during previous cycle

• Forward from memory as valA

➢ Register %rax

• Value just generated by ALU

• Forward from execute as valB

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M

W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

# demo-h0.ys

Cycle 4

M

D

valA f M_valE = 10

valB f e_valE = 3

M_dstE = %rdx

M_valE = 10

srcA = %rdx

srcB = %rax

E

E_dstE = %rax

e_valE f 0 + 3 = 3
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➢Multiple Forwarding Choices
• Which one should have priority

• Match serial semantics

• Use matching value from earliest pipeline stage

0x000: irmovq $1, %rax

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x00a: irmovq $2, %rax F D E M WF D E M W

0x014: irmovq $3, %rax F D E M WF D E M W

0x01e: rrmovq %rax, %rdx F D E M WF D E M W

0x020: halt F D E M WF D E M W

10
# demo-priority.ys

W

R[ %rax] f3

W

R[ %rax] f1

D

valA fR[ %rdx] = 10

valB fR[ %rax] = 0

D

valA fR[ %rdx] = 10

valB fR[

D

valA fR[ %rax] = ?

valB f0

Cycle 5

W

R[ %rax] f3

M

R[ %rax] f2

W

R[ %rax] f3

E

R[ %rax] f3

Forwarding 
Priority
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Implementing 
Forwarding

• Add additional feedback paths 
from E, M, and W pipeline 
registers into decode stage

• Create logic blocks to select 
from multiple sources for valA
and valB in decode stage

9/25/2017  (©J.P. Shen) 18-600   Lecture #8 49



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementing Forwarding

## What should be the A value?

int d_valA = [

# Use incremented PC

D_icode in { ICALL, IJXX } : D_valP; 

# Forward valE from execute 

d_srcA == e_dstE : e_valE;    

# Forward valM from memory

d_srcA == M_dstM : m_valM; 

# Forward valE from memory 

d_srcA == M_dstE : M_valE;    

# Forward valM from write back d_srcA == 

W_dstM : W_valM;    

# Forward valE from write back

d_srcA == W_dstE : W_valE;

# Use value read from register file

1 : d_rvalA;

];
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Limitation of 
Forwarding

➢ Load-use dependency
• Value needed by end of decode stage in 

cycle 7

• Value read from memory in memory stage 
of cycle 8
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Avoiding 
Load/Use 
Hazard

• Stall using instruction for one cycle

• Can then pick up loaded value by 
forwarding from memory stage
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Condition Trigger

Load/Use Hazard
E_icode in { IMRMOVQ, IPOPQ }  && 

E_dstM in { d_srcA, d_srcB }
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Control for Load/Use Hazard

• Stall instructions in fetch and 
decode stages

• Inject bubble into execute stage

0x000: irmovq $128,%rdx

1 2 3 4 5 6 7 8 9

F D E M

W

F D E M

W0x00a: irmovq $3,%rcx F D E M

W

F D E M

W

0x014: rmmovq %rcx, 0(%rdx) F D E M WF D E M W

0x01e: irmovq $10,%ebx F D E M WF D E M W

0x028: mrmovq 0(%rdx),%rax # Load %rax F D E M WF D E M W

# demo-luh.ys

0x032: addq %ebx,%rax # Use %rax

0x034: halt

F D E M W

E M W

10

D D E M W

11

bubble

F D E M W

F

F

12

Condition F D E M W

Load/Use Hazard stall stall bubble normal normal
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Branch Misprediction Example

• Should only execute first 8 instructions

0x000:    xorq %rax,%rax

0x002:    jne t # Not taken

0x00b:    irmovq $1, %rax # Fall through

0x015:    nop

0x016:    nop

0x017:    nop

0x018:    halt

0x019: t: irmovq $3, %rdx # Target

0x023:    irmovq $4, %rcx # Should not execute

0x02d:    irmovq $5, %rdx # Should not execute

demo-j.ys
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Handling Misprediction

Predict branch as taken
 Fetch 2 instructions at target

Cancel when mispredicted
 Detect branch not-taken in execute stage
 On following cycle, replace instructions in execute and decode by 

bubbles
 No side effects have occurred yet
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Detecting Mispredicted Branch

Condition Trigger

Mispredicted Branch E_icode = IJXX & !e_Cnd
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Control for Misprediction

Condition F D E M W

Mispredicted Branch normal bubble bubble normal normal
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0x000:    irmovq Stack,%rsp # Intialize stack pointer

0x00a:    call p             # Procedure call

0x013:    irmovq $5,%rsi # Return point

0x01d:    halt

0x020: .pos 0x20

0x020: p: irmovq $-1,%rdi    # procedure

0x02a:    ret

0x02b:    irmovq $1,%rax     # Should not be executed

0x035:    irmovq $2,%rcx     # Should not be executed

0x03f:    irmovq $3,%rdx     # Should not be executed

0x049:    irmovq $4,%rbx     # Should not be executed

0x100: .pos 0x100

0x100: Stack:                # Stack: Stack pointer

Return Example

• Previously executed three additional instructions

demo-retb.ys
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0x026:    ret F D E M

Wbubble F D E M

W

bubble F D E M W

bubble F D E M W

0x013:    irmovq$5,% rsi # Return F D E M W

# demo- retb

F D E M W

F

valC f 5
rBf % esi

F

valC f 5
rBf % rsi

W

valM = 0x0b

W

valM = 0x013

•
•
•

Correct Return 
Example

 As ret passes through pipeline, stall at fetch stage

While in decode, execute, and memory stage

 Inject bubble into decode stage

 Release stall when reach write-back stage
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Detecting 
Return

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }
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0x026:    ret F D E M

Wbubble F D E M

W

bubble F D E M W

bubble F D E M W

0x014:    irmovq $5,%rsi # Return F D E M W

# demo-retb

F D E M W

Control for Return

Condition F D E M W

Processing ret stall bubble normal normal normal

9/25/2017  (©J.P. Shen) 18-600   Lecture #8 62



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Special Control Cases
➢Detection

➢Action (on next cycle)

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

Load/Use Hazard E_icode in { IMRMOVQ, IPOPQ } && 
E_dstM in { d_srcA, d_srcB }

Mispredicted Branch E_icode = IJXX & !e_Cnd

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Mispredicted Branch normal bubble bubble normal normal
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• Combinational logic generates pipeline control signals

• Action occurs at start of following cycle
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Control Combinations

• Special cases that can arise on same clock cycle

➢ Combination A
• Not-taken branch

• ret instruction at branch target

➢ Combination B
• Instruction that reads from memory to %rsp

• Followed by ret instruction

LoadE

UseD

M

Load/use

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

E

retD

M

ret 1

E

retD

M

ret 1

retE

bubbleD

M

ret 2

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

bubbleE

bubbleD

retM

ret 3

Combination B

Combination A
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 A

• Should handle as mispredicted branch

• Stalls F pipeline register

• But PC selection logic will be using M_valM anyhow

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

E

retD

M

ret 1

E

retD

M

ret 1

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal

Mispredicted Branch normal bubble bubble normal normal

Combination stall bubble bubble normal normal
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Control Combination B

• Would attempt to bubble and stall pipeline register D

• Signaled by processor as pipeline error

LoadE

UseD

M

Load/use

ret

ret

E

retD

M

1

E

retD

M

1

Combination B

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall bubble + 
stall

bubble normal normal
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Handling Control Combination B

• Load/use hazard should get priority

• ret instruction should be held in decode stage for additional cycle

LoadE

UseD

M

Load/use

ret

M

E

retD

ret 1

E

retD

Combination B

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal
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Corrected Pipeline Control Logic

• Load/use hazard should get priority

• ret instruction should be held in decode stage for additional cycle

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal

bool D_bubble =

# Mispredicted branch

(E_icode == IJXX && !e_Cnd) ||

# Stalling at fetch while ret passes through pipeline

IRET in { D_icode, E_icode, M_icode }

# but not condition for a load/use hazard

&& !(E_icode in { IMRMOVQ, IPOPQ } 

&& E_dstM in { d_srcA, d_srcB });
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Lecture 8:
“Pipelined Processor Design”

1. Instruction Pipeline Design
a. Motivation for Pipelining
b. Typical Processor Pipeline
c. Resolving Pipeline Hazards

2. Y86-64 Pipelined Processor (PIPE) 
a. Pipelining of the SEQ Processor
b. Dealing with Data Hazards
c. Dealing with Control Hazards

3. Motivation for Superscalar
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3 Major Penalty Loops of (Scalar) Pipelining

LOAD
PENALTY
(1 cycle)

F

D

E

M

W

BRANCH
PENALTY
(2 cycles)

ALU  
PENALTY
(0 cycle)

Performance Objective: Reduce CPI as close to 1 as possible.

Best Possible for Real Programs is as Low as CPI = 1.15. 

CAN WE DO BETTER? … CAN WE ACHIEVE IPC > 1.0?
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IBM RISC Experience:  
[Agerwala and Cocke 1987]

➢ Load Penalty:  0.0625 CPI

➢ Branch Penalty: 0.085 CPI

Total CPI = 1.0 + 0.0625 + 0.085

= 1.1475 CPI

= 0.87 IPC
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Amdahl’s Law and Instruction Level Parallelism

➢ h = fraction of time in serial code

➢ f = fraction that is vectorizable or parallelizable

➢ N = max speedup for f

➢ Overall speedup     

No. of
Processors

N

Time

1
h 1 - h

1 - f

f

N

f
f

Speedup





)1(

1
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Revisit Amdahl’s Law

➢Sequential bottleneck

➢Even if N is infinite
• Performance limited by non-vectorizable portion (1-f)

f

N

f
f

N 



 1

1

)1(

1
lim

No. of
Processors

N

Time
1

h 1 - h

1 - f

f
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Pipelined Processor Performance Model

➢g = fraction of time pipeline is filled

➢1-g = fraction of time pipeline is not filled (stalled)

1-g g

Pipeline
Depth

N

1
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Pipelined Processor Performance Model

➢“Tyranny of Amdahl’s Law” 

• When g is even slightly below 100%, a big performance hit will result

• Stalled cycles in the pipeline are the key adversary and must be 
minimized as much as possible

• Can we somehow fill the pipeline bubbles (stalled cycles)?

1-g g

Pipeline
Depth

N

1
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Motivation for Superscalar Design

Typical Range

Speedup jumps from 3 to 
4.3 for N=6, f=0.8, but s =2 

instead of s=1 (scalar)
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Superscalar Proposal

➢Moderate the tyranny of Amdahl’s Law

• Ease the sequential bottleneck

• More generally applicable

• Robust (less sensitive to f)

• Revised Amdahl’s Law:

 
N

f

S

f
Speedup





1

1
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18-600   Lecture #89/25/2017  (©J.P. Shen) 78

Iron Law of Processor Performance

➢ In the 1980’s (decade of pipelining):

❖ CPI: 5.0  1.15

➢ In the 1990’s (decade of superscalar):

❖ CPI: 1.15  0.5  OR  IPC: 0.87  2.0 (current best)

➢ In the 2000’s (decade of multicore):

❖ Core CPI unchanged; chip CPI scales with #cores

1/Processor Performance  =   ---------------
Time

Program

Instructions Cycles

Program Instruction

Time

Cycle

(path length)

= X X

(CPI) (cycle time)
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Lecture 9:
“Superscalar Out-of-Order (O3) Processors”

John P. Shen & Gregory Kesden
September 27, 2017
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➢ Required Reading Assignment:
• Chapter 4 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron.

➢ Recommended Reading Assignment:
❖ Chapter 4 of Shen and Lipasti (SnL).


