18-600 Foundations of Computer Systems

Lecture 4: "Floating Point"

$>$ Required Reading Assignment:

- Chapter 2 of CS:APP (3 ${ }^{\text {rd }}$ edition) by Randy Bryant \& Dave O'Hallaron
> Assignments for This Week:
* Lab 1

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Fractional Binary Numbers

Fractional Binary Numbers: Examples

- Value

5 3/4
$27 / 8$
$17 / 16$

Representation

101.112
10.111_{2}
1.0111_{2}

■ Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111.... 2 are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$

Floating Point Representation

- Numerical Form:

$$
(-1)^{\mathrm{S}} \boldsymbol{M} 2^{E}
$$

- Sign bit s determines whether number is negative or positive
- Significand M (mantissa) normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
- MSB s is sign bit s
- \exp field encodes E (but is not equal to E)
- frac field encodes \boldsymbol{M} (but is not equal to M)

s	\exp	frac

Precision options

- Single precision: 32 bits

s	exp		
1			frac

- Double precision: 64 bits

s	\exp		
1	11-bits	frac	

- Extended precision: 80 bits (Intel only)

s	exp		
1	15-bits	63 or 64-bits	

Representable Numbers

- Limitation \#1
- Can only exactly represent numbers of the form $x / 2^{\mathrm{k}}$
- Other rational numbers have repeating bit representations
- Value Representation
- $1 / 30.0101010101[01] \ldots 2$
- $1 / 5 \quad 0.001100110011[0011]$...2
- $1 / 10 \quad 0.0001100110011[0011]$...2
- Limitation \#2
- "Fixed precision" not one-size-fits-all
- More to the left (fewer digits to the left of it, but more to the right)? Smaller magnitude.
- More to the right (more digits to the left of it, but fewer to the right)? Less precision.

Today: Floating Point

- Background: Fractional binary numbers

- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

IEEE Floating Point

- IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
- Numerical analysts predominated over hardware designers in defining standard

Visualization: IEEE-like Floating Point Ranges

Notice:

- Two different range types (Normalized, Denormalized)
- Special values [Not-A-Number(NaN), infinity)
- Weirdness (+/- Zero)

Visualization: IEEE-like Distribution of Values

- Example IEEE-like format
- Distribution is dense near zero for greatest precision
- Distribution is uniform and close nearest to zero in denormalized space
- Distribution grows from there in normalized space
- The normalized range allows precision to be increasingly traded for magnitude as moving away from zero toward extremes

\rightarrow Denormalized \triangle Normalized \square Infinity

Encoding Exponent: Normalized Values

- Need to encode positive and negative exponents
- As before, don't want sign bit, as it makes the number line discontinuous and breaks math
- Don't want $2 s$ compliment, because we want a smooth transition to denormalized numbers (We'll see this shortly)
- Subtract "half" of range from value to provide a negative range and put zero near center. The value subtracted is called the bias.
- The range can't be exactly half: There are an odd number of numbers once 0 is considered
- Since dividing by 2 integer-style rounds down (truncates), the bias will be half minus 1
- I.e., The bias is $2^{k-1}-1$, where k is the number of exponent bits.
- Subtracting when interpreting implies adding when encoding.
- Examples:
- Single precision (8 -bit exponent): Bias $=\left(2^{8}-1\right)=127$
- Double precision (11-bit exponent): Bias $=\left(2^{11}-1\right)=1023$

Encoding Significand: "Normalized" Values

- Significand encoded in unsigned binary
- "Negative sign" is encoded as a separate, leading flag
- Encoded with implied leading 1: $\boldsymbol{M}=1 . x x x . . . x_{2}$
- We know there is a leading 0 in the significand
- 0 is the special case of an all 0 bit pattern (to keep int and float 0 s comparable)
- So, why store it. Just assume it is there and put it back upon decode.
- Get extra leading bit for "free
- xxx...x: bits of frac field encode number [1.0, 2.0)
- Minimum when frac=000...0 ($\mathrm{M}=1.0$)
- Maximum when frac=111... $1(\mathrm{M}=2.0-\varepsilon)$

Encoding Normalized Numbers $\mathrm{v}=(-1)^{\mathrm{S}} \boldsymbol{M} 2^{\mathrm{E}}$

$\cdot(-1)^{\mathrm{s}}$

- If negative, set $s=1$, so $(-1)^{s}=-1$, making the number negative
- If negative, set $\mathrm{s}=0$, $\mathrm{so}(-1)^{0}=1$, making the number non-negative

- M

- Encode number in Base-2 scientific notation, shifting point until leading digit is a 1
- Forget the 1, we know it is there. Store as many of the high-order bits as possible in the allocated number of bits, drop the rest. They are low-order, anyway.
- 2^{E}
- Figure out the exponent from the scientific notation
- Figure out the bias, based upon the number of bits allocated to the exponent
- The bias is $2^{k-1}-1$, where k is the number of exponent bits.
- Add the bias to the exponent.
- Store the biased value in the space provided for the exponent
- Changing exponent provides "normalization"

Normalized Encoding Example

$$
\begin{aligned}
& v=(-1)^{\mathrm{S}} M 2^{E} \\
& E=\operatorname{Exp}-\text { Bias }
\end{aligned}
$$

- Value: float $F=18600.0$;
- $18600_{10}=100100010101000_{2}=1.00100010101_{2} \times 2^{14}$
- Significand
$M=$
1.00100010101_{2}
frac $=$
$\underline{00100010101000000000000_{2}}$
(23 bits)
- Exponent
$E \quad=\quad 14$ (Unbiased exponent)
Bias $=127$
$\operatorname{Exp}=141=10001101_{2}$ (BIASED exponent)
- Result:

Denormalized Values

$$
\begin{aligned}
& \mathrm{v}=(-1)^{\mathrm{S}} \boldsymbol{M} 2^{E} \\
& \boldsymbol{E}=\mathbf{1}-\text { Bias }
\end{aligned}
$$

- Condition: exp = 000... 0
- The exponent is no longer changing
- $\exp =000 \ldots 0$, frac $\neq 000$... 0
- Numbers closest to 0.0
- Fixed exponent makes numbers equispaced - no normalization
- Exponent value: $\boldsymbol{E}=1$ - Bias (instead of $\boldsymbol{E}=0$ - Bias)
- Encoding numbers smaller than normalized range
- Bias is fixed at one smaller than what it was.
- Significand coded with implied leading 0: $\boldsymbol{M}=0 . x x x . . . x_{2}$
- Can't shift it to find a 1 . If there was a leading one, value would be in normalized range.
- $\mathbf{x x x}$...x: bits of frac
- Zero Value: $\exp =000 \ldots 0$, frac $=000 . . .0$
- Note distinct values: +0 and -0 (why?)

Special Values

- Condition: exp = 111... 1
- Case: $\exp =111 . . .1$, frac $=000 . . .0$
- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., 1.0/0.0 $=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- Case: exp = 111...1, frac $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty, \infty \times 0$

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Tiny Floating Point Example

s	\exp	frac
1	4-bits	3-bits

- 8-bit Floating Point Representation
- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac
- Same general form as IEEE Format
- normalized, denormalized
- representation of $0, \mathrm{NaN}$, infinity

A Second Look: Distribution of Values

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits

- Bias is $2^{3-1}-1=3$

A Second Look: Value Distribution (close-up view)

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits

- Bias is 3

Why Bias, Not 2s Complement for Exponent?

- It makes for nice addition and subtraction of exponents, which is good for multiplication and division, right?

		exp	frac	E	Value		
	0	0000	000	-6	0		
	0	0000	001	-6	1/8*1/64 $=1 / 512$	closest to zero	
Denormalized numbers	0	0000	010	-6	$2 / 8 * 1 / 64=2 / 512$		
	0	0000	110	-6	6/8*1/64 $=6 / 512$		Notice smooth transition across exponents. Values change by
	0	0000	111	-6	$7 / 8 * 1 / 64=7 / 512$	largest denorm	
	0	0001	000	-6	$8 / 8 * 1 / 64=8 / 512$	smallest norm	
	0	0001	001	-6	$9 / 8 * 1 / 64=9 / 512$		
	0	0110	110	-1	14/8*1/2 = 14/16		
	0	0110	111	-1	15/8*1/2 $=15 / 16$	closest to 1 below	Increments, within and across
Normalized	0	0111	000	0	8/8*1 $=1$		
numbers	0	0111	001	0	$9 / 8 * 1=9 / 8$	closest to 1 above	
	0	0111	010	0	10/8*1 $=10 / 8$		exponent
	0	1110	110	7	14/8*128 = 224		ranges.
	0	1110	111	7	15/8*128 $=240$	largest norm	
	0	1111	000	n/a	inf		

Why not 2s Complement for Mantissa?

- It worked for us nice before, right?
- We can't directly add or subtract them, anyway
- We need to adjust for exponent
- Little-to-no gain
- Added cost to complement, etc.

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
- All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Floating Point Operations: Basic Idea

- $x \operatorname{tax}_{\mathrm{f}}^{\mathrm{y}}=\operatorname{Round}(\mathrm{x}+\mathrm{y})$
- $\mathbf{x} x_{f} y=\operatorname{Round}(x \times y)$
- Basic idea
- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac

Rounding

- Rounding Modes (illustrate with \$ rounding)
- Towards zero
- Round down ($-\infty$)
- Round up (+ $+\infty$
- Nearest Even (default)

$\$ 1.40$	$\$ 1.60$
$\$ 1$	$\$ 1$
$\$ 1$	$\$ 1$
$\$ 2$	$\$ 2$
$\$ 1$	$\$ 2$

$\$ 1.50$
$\$ 1$
$\$ 1$
$\$ 2$
$\$ 2$

$\$ 2.50$	$-\$ 1.50$
$\$ 2$	$-\$ 1$
$\$ 2$	$-\$ 2$
$\$ 3$	$-\$ 1$
$\$ 2$	$-\$ 2$

Closer Look at Round-To-Even

- Default Rounding Mode
- Hard to get any other kind without dropping into assembly
- All others are statistically biased
- Sum of set of positive numbers will consistently be over- or under- estimated
- Applying to Other Decimal Places / Bit Positions
- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way-round up)
7.8850000	7.88	(Half way-round down)

Rounding Binary Numbers

- Binary Fractional Numbers
- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position $=100 \ldots 2$
- Examples
- Round to nearest $1 / 4$ (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
$23 / 32$	10.00011_{2}	10.00_{2}	(<1/2-down)	2
$23 / 16$	10.00110_{2}	10.01_{2}	(>1/2-up)	$21 / 4$
$27 / 8$	10.11100_{2}	11.00_{2}	($1 / 2-$ up)	3
$25 / 8$	10.10100_{2}	10.10_{2}	$(1 / 2-$ down $)$	$21 / 2$

FP Multiplication

- $(-1)^{s 1}$ M1 $2^{E 1} \times(-1)^{52}$ M2 $2^{E 2}$
- Exact Result: $(-1)^{s} \boldsymbol{M} 2^{E}$
- Sign s: $\quad s 1^{\wedge} s 2$
- Significand M: M1× M2
- Exponent E: E1 + E2
- Fixing
- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
- Biggest chore is multiplying significands

Floating Point Addition

- $(-1)^{s 1} \mathrm{M} 12^{E 1}+(-1)^{52} \mathrm{M} 22^{E 2}$
-Assume E1 > E2
- Exact Result: $(-1)^{s} \boldsymbol{M} 2^{E}$
-Sign s, significand M :
- Result of signed align \& add
- Exponent E: E1

Get binary points lined up

$$
(-1)^{5} M
$$

- Fixing
-If $M \geq 2$, shift M right, increment E
-if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
- Closed under addition?
- But may generate infinity or NaN
- Commutative?
- Associative?
- Overflow and inexactness of rounding
- $(3.14+1 e 10)-1 e 10=0,3.14+(1 e 10-1 e 10)=3.14$
- 0 is additive identity?
- Every element has additive inverse?
- Yes, except for infinities \& NaNs
- Monotonicity
- $a \geq b \Rightarrow a+c \geq b+c$?
- Except for infinities \& NaNs

Yes

Yes
No

Almost

Almost

Mathematical Properties of FP Mult

- Compare to Commutative Ring
- Closed under multiplication?
- But may generate infinity or NaN
- Multiplication Commutative?
- Multiplication is Associative?
- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20=inf, 1e20* (1e20*1e-20) =1e20
- 1 is multiplicative identity?
- Multiplication distributes over addition?
- Possibility of overflow, inexactness of rounding
- 1e20* (1e20-1e20) $=0.0,1 \mathrm{e} 20 * 1 \mathrm{e} 20-1 \mathrm{e} 20 * 1 \mathrm{e} 20=\mathrm{NaN}$
- Monotonicity
- $a \geq b \& c \geq 0 \Rightarrow a^{*} c \geq b^{*} c$?

Almost

- Except for infinities \& NaNs

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Floating Point in C

- C Guarantees Two Levels

-float single precision
-double double precision

- Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion, as long as int has ≤ 53 bit word size
- int \rightarrow float
- Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
- Argue that it is true for all argument values
- Explain why not true
- $\mathbf{x}==$ (int) (float) \mathbf{x}
- $x==$ (int) (double) x
int $x=$...;
- $f==$ (float) (double) f
float $f=$...;
- $d==$ (double) (float) d
double $d=\ldots$;
- $f==-(-f)$;

Assume neither

- $2 / 3=2 / 3.0$
d nor f is NaN
- $\mathrm{d}<0.0 \quad \Rightarrow \quad((d * 2)<0.0)$
- $d>f \quad \Rightarrow \quad-f>-d$
- $d * d>=0.0$
- $(d+f)-d==f$

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Creating Floating Point Number

- Steps
- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding
- Case Study
- Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

s	\exp	frac
1	4-bits	3-bits

- Requirement
- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
- Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result
 Round bit: $1^{\text {st }}$ bit removed

- Round up conditions
- Round =1, Sticky = $1 \rightarrow>0.5$
- Guard = 1, Round = 1, Sticky $=0 \rightarrow$ Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

- Issue
- Rounding may have caused overflow
- Handle by shifting right once \& incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	$1.000 / 6$	64

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $\mathrm{M} \times 2^{\mathrm{E}}$
- One can reason about operations independent of implementation
- As if computed with perfect precision and then rounded
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number

18-600 Foundations of Computer Systems

Lecture 5:
 "Machine Programs I: (Basics)"

September 11, 2017 Next Time ...

