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Lecture 4:
“Floating Point”
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18-600 Foundations of Computer Systems

➢ Required Reading Assignment:
• Chapter 2 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron

➢ Assignments for This Week:
❖ Lab 1
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Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Creating floating point number

• Summary of floating point number

• Quick introduction of assembly language
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Fractional Binary Numbers

• Representation
• Bits to right of “binary point” represent fractional powers of 2

• Represents rational number:

• • •
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• What is 1011.1012?
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Fractional Binary Numbers: Examples

 Value Representation

5 3/4 101.112

2 7/8 010.1112

1 7/16 001.01112

 Observations
▪ Divide by 2 by shifting right (unsigned)

▪ Multiply by 2 by shifting left

▪ Numbers of form 0.111111…2 are just below 1.0

▪ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

▪ Use notation 1.0 – ε
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• Numerical Form: 
(–1)s M 2E

• Sign bit s determines whether number is negative or positive

• Significand M (mantissa) normally a fractional value in range [1.0,2.0).

• Exponent E weights value by power of two

• Encoding
• MSB s is sign bit s

• exp field encodes E (but is not equal to E)

• frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac
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Precision options
• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits
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Representable Numbers

• Limitation #1
• Can only exactly represent numbers of the form x/2k

• Other rational numbers have repeating bit representations

• Value Representation
• 1/3 0.0101010101[01]…2

• 1/5 0.001100110011[0011]…2

• 1/10 0.0001100110011[0011]…2

• Limitation #2
• “Fixed precision” not one-size-fits-all

• More to the left (fewer digits to the left of it, but more to the right)? Smaller magnitude. 

• More to the right (more digits to the left of it, but fewer to the right)? Less precision.
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Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Creating floating point number

• Summary of floating point number

• Quick introduction of assembly language
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IEEE Floating Point

• IEEE Standard 754
• Established in 1985 as uniform standard for floating point arithmetic

• Before that, many idiosyncratic formats

• Supported by all major CPUs

• Driven by numerical concerns
• Nice standards for rounding, overflow, underflow

• Hard to make fast in hardware
• Numerical analysts predominated over hardware designers in defining standard
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Visualization: IEEE-like Floating Point Ranges

+−

0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN
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Notice:
• Two different range types (Normalized, Denormalized)
• Special values [Not-A-Number(NaN), infinity)
• Weirdness (+/- Zero)
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Visualization: IEEE-like Distribution of Values

• Example IEEE-like format

• Distribution is dense near zero for greatest precision
• Distribution is uniform and close nearest to zero in denormalized space

• Distribution grows from there in normalized space

• The normalized range allows precision to be increasingly traded for magnitude 
as moving away from zero toward extremes
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Encoding Exponent: Normalized Values
• Need to encode positive and negative exponents

• As before, don’t want sign bit, as it makes the number line discontinuous and breaks math

• Don’t want 2s compliment, because we want a smooth transition to denormalized numbers (We’ll see this 
shortly)

• Subtract “half” of range from value to provide a negative range and put zero near center. The value subtracted is 
called the bias.

• The range can’t be exactly half: There are an odd number of numbers once 0 is considered

• Since dividing by 2 integer-style rounds down (truncates), the bias will be half minus 1

• I.e., The bias is 2k-1-1, where k is the number of exponent bits. 

• Subtracting when interpreting implies adding when encoding. 

• Examples:

• Single precision (8-bit exponent): Bias = (28 -1)=127

• Double precision (11-bit exponent): Bias = (211 -1)= 1023
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Encoding Significand: “Normalized” Values

• Significand encoded in unsigned binary
• “Negative sign” is encoded as a separate, leading flag

• Encoded with implied leading 1: M =  1.xxx…x2

• We know there is a leading 0 in the significand
• 0 is the special case of an all 0 bit pattern (to keep int and float 0s comparable)

• So, why store it. Just assume it is there and put it back upon decode. 

• Get extra leading bit for “free

• xxx…x: bits of frac field encode number [1.0, 2.0)
• Minimum when frac=000…0 (M = 1.0)

• Maximum when frac=111…1 (M = 2.0 – ε)
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Encoding Normalized Numbers

• (–1)s

• If negative, set s=1, so (–1)s = -1, making the number negative

• If negative, set s=0, so (–1)0 = 1, making the number non-negative

• M
• Encode number in Base-2 scientific notation, shifting point until leading digit is a 1

• Forget the 1, we know it is there. Store as many of the high-order bits as possible in the 
allocated number of bits, drop the rest. They are low-order, anyway.

• 2E

• Figure out the exponent from the scientific notation

• Figure out the bias, based upon the number of bits allocated to the exponent
• The bias is 2k-1-1, where k is the number of exponent bits.

• Add the bias to the exponent. 

• Store the biased value in the space provided for the exponent

• Changing exponent provides “normalization”
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Normalized Encoding Example

• Value: float F = 18600.0;
• 1860010 = 1001000101010002  = 1.001000101012 x 214

• Significand
M = 1.001000101012
frac = 001000101010000000000002 (23 bits)

• Exponent
E = 14     (Unbiased exponent)
Bias = 127
Exp = 141 = 100011012 (BIASED exponent)

• Result:

0 10001101  00100001010100000000000 
s exp frac

v = (–1)s M 2E

E =  Exp – Bias
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Denormalized Values

• Condition: exp = 000…0
• The exponent is no longer changing

• exp = 000…0, frac ≠ 000…0
• Numbers closest to 0.0

• Fixed exponent makes numbers equispaced – no normalization

• Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
• Encoding numbers smaller than normalized range

• Bias is fixed at one smaller than what it was.

• Significand coded with implied leading 0: M = 0.xxx…x2

• Can’t shift it to find a 1. If there was a leading one, value would be in normalized range. 

• xxx…x: bits of frac

• Zero Value: exp = 000…0, frac = 000…0
• Note distinct values: +0 and –0 (why?)

v = (–1)s M 2E

E =  1 – Bias
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Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0

• Represents value  (infinity)

• Operation that overflows

• Both positive and negative

• E.g., 1.0/0.0 = −1.0/−0.0 = +,  1.0/−0.0 = −

• Case: exp = 111…1, frac ≠ 000…0
• Not-a-Number (NaN)

• Represents case when no numeric value can be determined

• E.g., sqrt(–1),  − ,   0
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Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Creating floating point number

• Summary of floating point number

• Quick introduction of assembly language
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Tiny Floating Point Example

• 8-bit Floating Point Representation
• the sign bit is in the most significant bit

• the next four bits are the exponent, with a bias of 7

• the last three bits are the frac

• Same general form as IEEE Format
• normalized, denormalized

• representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits
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s exp  frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001  -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1    = 1

0 0111 001 0 9/8*1    = 9/8

0 0111 010 0 10/8*1   = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

v = (–1)s M 2E

n: E = Exp – Bias
d: E = 1 – Bias
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-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

A Second Look: Distribution of Values

• 6-bit IEEE-like format
• e = 3 exponent bits

• f = 2 fraction bits

• Bias is 23-1-1 = 3

• Notice how the distribution gets denser toward zero. 
8 values

s exp frac

1 3-bits 2-bits
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A Second Look: Value Distribution (close-up view)

• 6-bit IEEE-like format
• e = 3 exponent bits

• f = 2 fraction bits

• Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity
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Why Bias, Not 2s Complement for Exponent?

• It makes for nice addition and subtraction of exponents, which is good for multiplication 
and division, right? 

18-600  Lecture #4 23

Notice smooth
transition across 
exponents. Values
change by
1/16 as mantissa
Increments, within 
and across 
exponent 
ranges.



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why not 2s Complement for Mantissa? 

• It worked for us nice before, right? 
• We can’t directly add or subtract them, anyway

• We need to adjust for exponent

• Little-to-no gain

• Added cost to complement, etc. 
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Special Properties of the IEEE Encoding

• FP Zero Same as Integer Zero
• All bits = 0

• Can (Almost) Use Unsigned Integer Comparison
• Must first compare sign bits

• Must consider −0 = 0

• NaNs problematic
• Will be greater than any other values

• What should comparison yield?

• Otherwise OK
• Denorm vs. normalized

• Normalized vs. infinity

18-600  Lecture #4 25



Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Creating floating point number

• Summary of floating point number

• Quick introduction of assembly language
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Floating Point Operations: Basic Idea

• x +f y = Round(x + y)

• x f y = Round(x  y)

• Basic idea
• First compute exact result

• Make it fit into desired precision
• Possibly overflow if exponent too large

• Possibly round to fit into frac
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Rounding

• Rounding Modes (illustrate with $ rounding)

• $1.40 $1.60 $1.50 $2.50 –$1.50
• Towards zero $1 $1 $1 $2 –$1

• Round down (−) $1 $1 $1 $2 –$2

• Round up (+) $2 $2 $2 $3 –$1

• Nearest Even (default) $1 $2 $2 $2 –$2
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Closer Look at Round-To-Even

• Default Rounding Mode
• Hard to get any other kind without dropping into assembly

• All others are statistically biased
• Sum of set of positive numbers will consistently be over- or under- estimated

• Applying to Other Decimal Places / Bit Positions
• When exactly halfway between two possible values

• Round so that least significant digit is even

• E.g., round to nearest hundredth
7.8949999 7.89 (Less than half way)

7.8950001 7.90 (Greater than half way)

7.8950000 7.90 (Half way—round up)

7.8850000 7.88 (Half way—round down)
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Rounding Binary Numbers

• Binary Fractional Numbers
• “Even” when least significant bit is 0

• “Half way” when bits to right of rounding position = 100…2

• Examples
• Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value

2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (  1/2—up) 3

2 5/8 10.101002 10.102 (  1/2—down) 2 1/2
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FP Multiplication

• (–1)s1 M1 2E1 x   (–1)s2 M2 2E2

• Exact Result: (–1)s M 2E

• Sign s: s1 ^ s2

• Significand M: M1 x M2

• Exponent E: E1 + E2

• Fixing
• If M ≥ 2, shift M right, increment E

• If E out of range, overflow 

• Round M to fit frac precision

• Implementation
• Biggest chore is multiplying significands
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Floating Point Addition

• (–1)s1 M1 2E1 +   (-1)s2 M2 2E2

•Assume E1 > E2

• Exact Result: (–1)s M 2E

•Sign s, significand M: 
• Result of signed align & add

•Exponent E: E1

• Fixing
•If M ≥ 2, shift M right, increment E

•if M < 1, shift M left k positions, decrement E by k

•Overflow if E out of range

•Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+
(–1)s M

Get binary points lined up
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Mathematical Properties of FP Add

• Compare to those of Abelian Group
• Closed under addition?

• But may generate infinity or NaN

• Commutative? 

• Associative?
• Overflow and inexactness of rounding

• (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

• 0 is additive identity? 

• Every element has additive inverse?
• Yes, except for infinities & NaNs

• Monotonicity
• a ≥ b⇒ a+c ≥ b+c?

• Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost
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Mathematical Properties of FP Mult

• Compare to Commutative Ring
• Closed under multiplication?

• But may generate infinity or NaN

• Multiplication Commutative?

• Multiplication is Associative?
• Possibility of overflow, inexactness of rounding

• Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

• 1 is multiplicative identity?

• Multiplication distributes over addition?
• Possibility of overflow, inexactness of rounding

• 1e20*(1e20-1e20)= 0.0,  1e20*1e20 – 1e20*1e20 = NaN

• Monotonicity
• a ≥ b & c ≥ 0  ⇒ a * c ≥ b *c?

• Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost
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Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Creating floating point number

• Summary of floating point number

• Quick introduction of assembly language
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Floating Point in C

• C Guarantees Two Levels
•float single precision

•double double precision

• Conversions/Casting
• Casting between int, float, and double changes bit representation

• double/float → int
• Truncates fractional part

• Like rounding toward zero

• Not defined when out of range or NaN: Generally sets to TMin

• int → double
• Exact conversion, as long as int has ≤ 53 bit word size

• int → float
• Will round according to rounding mode
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Floating Point Puzzles

• For each of the following C expressions, either:
• Argue that it is true for all argument values

• Explain why not true
• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (double)(float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN
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Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Creating floating point number

• Summary of floating point number

• Quick introduction of assembly language
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Creating Floating Point Number

• Steps
• Normalize to have leading 1

• Round to fit within fraction

• Postnormalize to deal with effects of rounding

• Case Study
• Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128 10000000

15 00001101

33 00010001

35 00010011

138 10001010

63 00111111

s exp frac

1 4-bits 3-bits
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Normalize

• Requirement
• Set binary point so that numbers of form 1.xxxxx

• Adjust all to have leading one
• Decrement exponent as shift left

Value Binary Fraction Exponent

128 10000000 1.0000000 7

15 00001101 1.1010000 3

17 00010001 1.0001000 4

19 00010011 1.0011000 4

138 10001010 1.0001010 7

63 00111111 1.1111100 5

s exp frac

1 4-bits 3-bits
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Rounding

• Round up conditions
• Round = 1, Sticky = 1 ➙ > 0.5

• Guard = 1, Round = 1, Sticky = 0 ➙ Round to even

Value Fraction GRS Incr? Rounded

128 1.0000000 000 N 1.000

15 1.1010000 100 N 1.101

17 1.0001000 010 N 1.000

19 1.0011000 110 Y 1.010

138 1.0001010 011 Y 1.001

63 1.1111100 111 Y 10.000

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed
Sticky bit: OR of remaining bits
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Postnormalize

• Issue
• Rounding may have caused overflow

• Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result

128 1.000 7 128

15 1.101 3 15

17 1.000 4 16

19 1.010 4 20

138 1.001 7 134

63 10.000 5 1.000/6 64
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Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Creating floating point number

• Summary of floating point number

• Quick introduction of assembly language
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Summary

• IEEE Floating Point has clear mathematical  properties

• Represents numbers of form M x 2E

• One can reason about operations independent of implementation
• As if computed with perfect precision and then rounded

• Not the same as real arithmetic
• Violates associativity/distributivity

• Makes life difficult for compilers & serious numerical applications programmers
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Today: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Creating floating point number

• Summary of floating point number
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“Machine Programs I: (Basics)”
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