18-600 Foundations of Computer Systems

Lecture 4: "Floating Point"

Required Reading Assignment:

• Chapter 2 of CS:APP (3rd edition) by Randy Bryant & Dave O'Hallaron

> Assignments for This Week:

🛠 Lab 1

18-600 Lecture #4

Carnegie Mellon University 1

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

•

18-600 Lecture #4

Carnegie Mellon University

Fractional Binary Numbers: Examples

Value	Representation
5 3/4	101.11_{2}
2 7/8	10.111_{2}
1 7/16	1.0111_{2}

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Floating Point Representation

• Numerical Form:

(-1)^s **M** 2^E

- Sign bit s determines whether number is negative or positive
- Significand M (mantissa) normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB s is sign bit **s**
 - exp field encodes *E* (but is not equal to E)
 - frac field encodes *M* (but is not equal to M)

S	exp	frac
---	-----	------

Precision options

• Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

• Double precision: 64 bits

S	ехр	frac
1	11-bits	52-bits

• Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

18-600 Lecture #4

Carnegie Mellon University 6

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.0101010101[01]...2
 - 1/5 0.001100110011[0011]...2
 - 1/10 0.0001100110011[0011]...2
- Limitation #2
 - "Fixed precision" not one-size-fits-all
 - More to the left (fewer digits to the left of it, but more to the right)? Smaller magnitude.
 - More to the right (more digits to the left of it, but fewer to the right)? Less precision.

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Visualization: IEEE-like Distribution of Values

- Example IEEE-like format
- Distribution is dense near zero for greatest precision
 - Distribution is uniform and close nearest to zero in denormalized space
 - Distribution grows from there in normalized space
- The normalized range allows precision to be increasingly traded for magnitude as moving away from zero toward extremes

Encoding Exponent: Normalized Values

- Need to encode positive and negative exponents
 - As before, don't want sign bit, as it makes the number line discontinuous and breaks math
 - Don't want 2s compliment, because we want a smooth transition to denormalized numbers (We'll see this shortly)
- Subtract "half" of range from value to provide a negative range and put zero near center. The value subtracted is called the *bias*.
 - The range can't be exactly half: There are an odd number of numbers once 0 is considered
 - Since dividing by 2 integer-style rounds down (truncates), the bias will be half minus 1
 - I.e., The bias is $2^{k-1}-1$, where k is the number of exponent bits.
 - Subtracting when interpreting implies adding when encoding.
- Examples:
 - Single precision (8-bit exponent): Bias = (2⁸ -1)=127
 - Double precision (11-bit exponent): $Bias = (2^{11} 1) = 1023$

Encoding Significand: "Normalized" Values

- Significand encoded in unsigned binary
 - "Negative sign" is encoded as a separate, leading flag
- Encoded with implied leading 1: $M = 1.xxx...x_2$
 - We know there is a leading 0 in the significand
 - 0 is the special case of an all 0 bit pattern (to keep int and float 0s comparable)
 - So, why store it. Just assume it is there and put it back upon decode.
 - Get extra leading bit for "free
- xxx...x: bits of frac field encode number [1.0, 2.0)
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)

Encoding Normalized Numbers

• (-1)^s

- If negative, set s=1, so (-1)^s = -1, making the number negative
- If negative, set s=0, so $(-1)^0 = 1$, making the number non-negative

• M

- Encode number in Base-2 scientific notation, shifting point until leading digit is a 1
- Forget the 1, we know it is there. Store as many of the high-order bits as possible in the allocated number of bits, drop the rest. They are low-order, anyway.

• 2^{*E*}

- Figure out the exponent from the scientific notation
- Figure out the bias, based upon the number of bits allocated to the exponent
 - The bias is $2^{k-1}-1$, where k is the number of exponent bits.
- Add the bias to the exponent.
- Store the biased value in the space provided for the exponent
- Changing exponent provides "normalization"

Normalized Encoding Example

 $v = (-1)^{s} M 2^{E}$ E = Exp - Bias

- Value: float F = 18600.0;
 - $18600_{10} = 100100010101000_2 = 1.00100010101_2 \times 2^{14}$
- Significand

1.001000101012 M =

frac = <u>00100010101</u>00000000000002 (23 bits)

• Exponent

Ε	=	14	(Unbi	ased exponent)	
Bias	=	127			
Exp	=	141	=	10001101 ₂	(BIASED exponent

• Result:

18-600 Lecture #4

Denormalized Values

 $v = (-1)^{s} M 2^{E}$ E = 1 - Bias

- Condition: exp = 000...0
 - The exponent is no longer changing
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Fixed exponent makes numbers equispaced no normalization
- Exponent value: **E** = 1 Bias (instead of **E** = 0 **Bias**)
 - Encoding numbers smaller than normalized range
 - Bias is fixed at one smaller than what it was.
- Significand coded with implied leading 0: $M = 0.xxx...x_2$
 - Can't shift it to find a 1. If there was a leading one, value would be in normalized range.
 - **xxx**...**x**: bits of **frac**
- Zero Value: **exp** = 000...0, **frac** = 000...0
 - Note distinct values: +0 and -0 (why?)

Special Values

• Condition: **exp** = **111**...**1**

• Case: exp = 111...1, frac = 000...0

- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

• Case: exp = 111...1, frac ≠ 000...0

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Tiny Floating Point Example

s	exp	frac
1	4-bits	3-bits

• 8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Bias
as
ro
rm
m
below
above

18-600 Lecture #4

Carnegie Mellon University 20

A Second Look: Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1 = 3$

Notice how the distribution gets denser toward zero.
 8 values
 -15 -10 -5 0 5 10 15
 Denormalized A Normalized Infinity

A Second Look: Value Distribution (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

-1

Why Bias, Not 2s Complement for Exponent?

• It makes for nice addition and subtraction of exponents, which is good for multiplication and division, right?

-	S	exp	frac	Е	Value		-		
	0	0000	000	-6	0				
	0	0000	001	-6	1/8*1/64	=	1/512	closest to zero	
Denormalized	0	0000	010	-6	2/8*1/64	=	2/512		
numbers	 0	0000	110	-6	6/8*1/64	=	6/512		Notice smooth transition across
	0	0000	111	-0	//0^1/04	=	0/512	largest denorm	
	0	0001	000	-0	0/0*1/04	=	0/512	smallest norm	exponents. values
	 0	0110	110	-0	14/8*1/2	=	14/16		change by 1/16 as mantissa
	0	0110	111	-1	15/8*1/2	=	15/16	closest to 1 below	Increments, within
Normalized	0	0111	000	0	8/8*1	=	1		and across
numbers	0	0111	001	0	9/8*1	=	9/8	closest to 1 above	
	0	0111	010	0	10/8*1	=	10/8		exponent
									ranges.
	0	1110	110	7	14/8*128	=	224		8
	0	1110	111	7	15/8*128	=	240	largest norm	
	0	1111	000	n/a	inf				

Why not 2s Complement for Mantissa?

- It worked for us nice before, right?
 - We can't directly add or subtract them, anyway
 - We need to adjust for exponent
 - Little-to-no gain
 - Added cost to complement, etc.

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider –0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Floating Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

• Rounding Modes (illustrate with \$ rounding)

•		\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
	 Towards zero 	\$1	\$1	\$1	\$2	-\$1
	• Round down (– ∞)	\$1	\$1	\$1	\$2	-\$2
	• Round up (+ ∞)	\$2	\$2	\$2	\$3	-\$1
	 Nearest Even (default) 	\$1	\$2	\$2	\$2	-\$2

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under- estimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 7.8949999 7.89 (Less than half way)
 - 7.8950001 7.90 (Greater than half way)
 - 7.8950000 7.90 (Half way—round up)
 - 7.8850000 7.88 (Half way—round down)

Rounding Binary Numbers

• Binary Fractional Numbers

- "Even" when least significant bit is **0**
- "Half way" when bits to right of rounding position = 100...2

• Examples

• Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s **M** 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent *E*: *E*1 + *E*2
- Fixing
 - If $M \ge 2$, shift *M* right, increment *E*
 - If *E* out of range, overflow
 - Round *M* to fit **frac** precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$ •Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 Sign s, significand M:
 Result of signed align & add
 - •Exponent E: E1

• Fixing

If M ≥ 2, shift M right, increment E
if M < 1, shift M left k positions, decrement E by k
Overflow if E out of range
Round M to fit **frac** precision

Carnegie Mellon University 32

Mathematical Properties of FP Add

 Compare to those of Abelian Group Closed under addition? 	Yes
 But may generate infinity or NaN 	Ves
 Commutative? 	No
 Associative? 	NO
 Overflow and inexactness of rounding 	
• (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10)	= 3.14
 0 is additive identity? 	
 Every element has additive inverse? 	Yes
 Yes, except for infinities & NaNs 	Almost
 Monotonicity 	
• $a \ge b \Rightarrow a+c \ge b+c$?	Δlmost
 Except for infinities & NaNs 	/

Mathematical Properties of FP Mult

 Compare to Commutative Ring 	Yes
 Closed under multiplication? 	
 But may generate infinity or NaN 	Ves
 Multiplication Commutative? 	No
 Multiplication is Associative? 	NO
 Possibility of overflow, inexactness of rounding 	
• Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)=1e	e20
 1 is multiplicative identity? 	Yes
 Multiplication distributes over addition? 	Νο
 Possibility of overflow, inexactness of rounding 	
• 1e20*(1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 =	NaN
 Monotonicity 	
• $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?	Almost
 Except for infinities & NaNs 	
18-600 Lecture #4	Carnegie Mellon

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - $\bullet \texttt{double/float} \rightarrow \texttt{int}$
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - $\bullet \texttt{int} \rightarrow \texttt{double}$
 - Exact conversion, as long as **int** has ≤ 53 bit word size
 - int \rightarrow float
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

int x = ...;
float f = ...;
double d = ...;

Assume neither **d** nor **f** is NaN

- x == (int) (float) x
 x == (int) (double) x
- f == (float)(double) f
- d == (double)(float) d
- f == -(-f);
- 2/3 == 2/3.0
- $d < 0.0 \Rightarrow ((d*2) < 0.0)$
- $d > f \qquad \Rightarrow -f > -d$
- d * d >= 0.0
- (d+f) d == f

18-600 Lecture #4

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Creating Floating Point Number

• Steps	S	ехр	frac
 Normalize to have leading 1 	1	4-bits	3-bits

- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study

• Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	1000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize	S	exp	frac
	1	4-bits	3-bits

• Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Postnormalize

• Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number
- Quick introduction of assembly language

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^{E}
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Creating floating point number
- Summary of floating point number

18-600 Foundations of Computer Systems

Lecture 5: "Machine Programs I: (Basics)"

September 11, 2017

Carnegie Mellon University 46

18-600 Lecture #4