Memory System Architecture

Storage Systems

Erik Riedel
Electrical and Computer Engineering
Carnegie Mellon University
riedel@cs.cmu.edu

“I/O certainly has been lagging in the last decade.”
- Seymour Cray (1976)

“Also, I/O needs a lot of work.”
- David Kuck, 15th ISCA (1988)

Application Performance

- 1996 - 1997
 - CPU performance improves by
 \[N = \frac{400}{200} = 2 \]
 - program performance improves by
 \[N = \frac{100}{55} = 1.81 \]
- 1997 - 1998
 - CPU performance - factor of 2
 - program performance
 \[N = \frac{55}{32.5} = 1.7 \]
- 1998 - 1999
 - CPU performance - factor of 2
 - program performance
 \[N = \frac{32.5}{21.25} = 1.53 \]
- 1999 - 2000
 - CPU Performance - factor of 2
 - program performance
 \[N = \frac{21.25}{15.6} = 1.36 \]
Performance for Web Surfing

- Assume 50 seconds CPU & 50 seconds I/O
- **1996 - 1997**
 - CPU performance improves by
 - \(N = \frac{400}{200} = 2 \)
 - program performance improves by
 - \(N = \frac{100}{75} = 1.33 \)
- **1997 - 1998**
 - CPU performance - factor of 2
 - program performance
 - \(N = \frac{75}{62.5} = 1.2 \)
- **1998 - 1999**
 - CPU performance - factor of 2
 - program performance
 - \(N = \frac{62.5}{56.5} = 1.11 \)

Who Cares About I/O Anyway?

- Most popular applications in the computer architecture literature are the SPEC benchmark suite
 - lots of scientific code, small working sets, small data sets
- Most popular application in the world is Windows 9x/NT
 - last time I checked, most programs didn’t have a lot more data in them, but did have a lot more instructions
- Most widely used computer is an ATM
 - one rarely visits an ATM more than once a day
 - what is the likelihood that your account data will be *cached* at the ATM when you walk up to it?
 - more likely, your account data will be lounging around on some disk drive halfway between here and Minnesota
- Most people don’t do CPU-intensive scientific computing
 - Mom doesn’t really need to compute finite-element meshes or eigenvalues to make breakfast
 - she does need to program her microwave
 - and find a decent french toast recipe
Magnetic Storage Is Cheaper Than Paper

- **File cabinet:**
 - cabinet (four drawer) $250
 - paper (24,000 sheets) $250
 - space (2x3 @ 10$/ft²) $180
 - total $700
 - 3¢/sheet

- **Disk:**
 - disk (4 GB) $200
 - ASCII = 2 million pages 0.01¢/sheet (300x cheaper)

- **Image:**
 - 200,000 pages 0.4¢/sheet (8x cheaper)

- **Conclusion - Store Everything on Disk**

But What Do We Have To Store?

Databases
Information at Your Fingertips™
Information Network™
Knowledge Navigator™

- One popular suggestion:
 - You might record everything you
 - read - 10 MB/day, 400 GB/lifetime
 - (eight tapes today)
 - hear - 400 MB/day, 16 TB/lifetime
 - (three tapes/year today)
 - see - 1 MB/s, 40 GB/day, 1.6 PB/lifetime
 - (maybe someday)
 - All information will be in an online database (somewhere)
Let's start at the bottom and work our way up...

What's Inside A Disk Drive?

Image courtesy of Seagate Technology Corporation
And If You Look More Closely

Platters

Tracks

Sectors

Two sides write on top and bottom

And If You Look Even Closer

- Addressable unit is a sector

- Sector breaks down into several different fields
 - Typical size: 512 bytes
 - Typical format
 - sync followed by address field (cyl, head, sector, crc)
 - crc used to verify cyl, head, sector info
 - gap followed by the data
 - ecc over the data
 - verify data and correct bit errors
 - header, ECC and gaps typically use between 40 and 100 bytes
Disk Drive Performance

- **Seek time**
 - move head to the desired track
 - today’s drives - 15 to 5 ms
 - average Seek = (0.33)(distance from outer to inner track)

- **Rotational latency**
 - \(\frac{1}{\text{speed of disk}} \)
 - today’s drives - 5,400 to 12,000 RPM
 - average rotational latency = (0.5)(rotational latency)
 - on average, distance to desired sector is 1/2 of a disk rotation

- **Transfer time**
 - time to transfer a sector
 - today’s drives - 20 to 160 MBytes/second

- **Controller time**
 - overhead on-drive electronics adds to manage drive
 - but also gives prefetching and caching

Disk Drive Performance (con’t)

- **Average access time** =
 - (seek time) + (rotational latency) + (transfer) + (controller time)

- **Track and cylinder skew**
 - cylinder switch time
 - delay to change from one cylinder to the next
 - may have to wait an extra rotation
 - solution - drives incorporate skew
 - offset sectors between cylinders to account for switch time
 - head switch time
 - change heads to go from one track to next on same cylinder
 - incur additional settling time

- **Prefetching**
 - disks usually read entire track at a time
 - assuming that request for the next sector will come soon

- **Caching**
 - limited amount of caching across requests, but prefetching is preferred
System-Level View - Bandwidth

- Disks are pretty far away...

System-Level View - Latency

- And slow too...
How Does the CPU Talk to the Drive?

- Basic ways of doing I/O
 - programmed I/O (the old way)
 - CPU directly moves data between memory and storage
 - DMA (direct memory access)
 - CPU tells DMA engine to move data between memory and storage

- Popular drive interfaces
 - IDE
 - low-end, programmed I/O (until recently, now with UltraDMA)
 - SCSI (Small Computer Systems Interface)
 - always been DMA, multiple requests outstanding

- Let’s focus on SCSI
 - originally developed in 1979 by Al Shugart
 - Shugart Associates => Seagate
 - designed to support logical addressing of data
 - standardized by ANSI in 1984, finalized in 1986
 - first product delivered by NCR in 1983

Overview of SCSI

- Device independent I/O bus
 - allows variety of devices to be linked via a single bus
 - defines a set of electrical characteristics and a protocol for the bus

- SCSI devices
 - bus can address up to 8 devices (0..7)
 - devices can either be initiator or target
 - initiator is the device that begins a transaction
 - target carries out the requested task
 - devices can be both initiator and target (just not at the same time)

- Host adapter
 - connects host system to bus
 - (usually has id 7)
Overview of SCSI (con’t)

- **Messaging**
 - *commands, messages* and *status* are sent using asynchronous transfers
 - sender and receiver use request/acknowledge handshake
 - asynchronous transfers relatively slow (lots of overhead)
 - *data* transferred synchronously - enabling maximum bandwidth
 - between 20 and 160 MB/s today
 - depending on how well you play electrical games
 - higher transfer rates typically imply shorter cables

- **Flavors of SCSI**
 - SCSI (5 MB/s)
 - Fast SCSI (10 MB/s)
 - Wide SCSI (10 or 20 MB/s)
 - 16-bit transfers by adding additional data lines in cable
 - Ultra SCSI (20 MB/s)
 - Single-Ended vs. Differential
 - differential enables longer cable lengths (up to 25 meters)
 - Ultra2, Ultra3, LVD

And, For Our Next Trick

- **FibreChannel**
 - It’s a network, only we’ve made it fast

- eliminates addressing limits
- provides redundant links
- enables multiple-host access
SCSI Bus Transactions

- Transactions composed of eight distinct bus phases
 - everything begins and ends with the BUS FREE phase
- Protocol phases
 - ARBITRATION - one or more initiators indicate their wish to use the bus
 - by putting their IDs on the bus
 - if more than one initiator, the one with the largest SCSI ID wins
 - SELECTION - choose a target to communicate with
 - RESELECTION - on completion, target re-establishes the connection

System-Level View - More Bandwidth

- Multiple disks, multiple busses
- System Bus 422 MB/s
- Memory 133 MB/s
- PCI 40 MB/s
- Disks 10 MB/s each
- SCSI 40 MB/s
Disk Arrays

- Interleave data across multiple disks
 - striping provides aggregate bandwidth
 - stripe unit depends on application

But What If Something Goes Wrong?

- The problem with disks is that if a drive fails, your data is gone (can’t “reboot” to solve all problems)
 - backups help this, but backing up takes a long time and effort
 - backup doesn’t help recover data lost during that day
 - any data loss is a big deal to a bank or stock exchange
- One solution is to mirror every data write onto two drives
 - the probability of two drives failing is very low
 - doubles the cost of storage
 - has a bit of performance benefit too
RAID - Redundant Arrays of Inexpensive Disks

- Write one unit per drive
- Compute the parity and store it on the eight drive
- Cheaper than mirroring
 - reduces overhead to 1/8

Error Recovery

- Parity
 - count number of 1’s in a byte and store a parity bit with each byte of data
 - parity bit is computed as
 - If the number of 1’s is even, store a 0
 - If the number of 1’s is odd, store a 1
 - This is called even parity (# of ones is even)
 - example
 - 0x54 == 0101 0100
 - Three 1’s --> odd parity
 - Store 9 bits 101 0100 1
 - correct single-bit errors
 - works cheaply because disk failures are erasures, not errors

- Recovery
 - replace failed disk, reconstruct data using remaining disks and parity
 - if you’re smart, can do this without the customer noticing
 - hot spares to swap in, replace failed drives during monthly PM
RAID 5 Functions

Fault-Free Read

Fault-Free Write

Degraded Read

Degraded Write

Different Levels of RAID

- RAID 1 - mirroring
 - uses twice as many disks to shadow the data
- RAID 3 - bit interleaved
 - reduces cost to 1/N, where N is the number of disks in a group
- RAID 4 - block interleaved
- RAID 5 - block-interleaved, distributed parity
 - parity is interleaved across disks in the array to balance load
Where Do We Go From Here?

- IBM Microdrive
 - 20 grams
 - 340 MB
 - 15 ms seek
 - 4500 RPM
 - can be powered by AA battery

- MEMS-based Storage
 - micromachines
 - 0.7 micron data tracks
 - single chip
 - compute, memory, storage

Images courtesy of International Business Machines Corporation and Carnegie Mellon Data Storage Systems Center

Review

- I/O matters
 - we may be at the bottom of the hierarchy
 - but this is where all the permanent data lives
- Lots of data to store
 - and increasing
 - plus, if that isn’t enough, there’s always the need to retrieve it
- Disks are most popular storage media
 - does caching and block prefetches, just like cache memory
 - interleaves across multiple “banks” just like main memory
 - much bigger, much slower
- Connections to CPUs and memory are a major concern
 - can’t just run a few address and data lines
- Fault-tolerance complicates things
 - disks have to hold onto the data, no matter what