

Rohit Banerjee
Xiaofan Li

18-545 DESIGN DOCUMENT
VOICE CONTROLLED PACMAN

Rohit Banerjee
Xiaofan Li

Page 1 of 25

Table of Contents
Background Information .. 2

Purpose ... 2

History ... 2

Platform .. 3

System Implementation ... 4

Z80 CPU ... 4

Memory Map .. 6

GPU ... 7

Tile Unit ... 8

Sprite Unit ... 10

Top Level Graphics Module .. 11

Sound .. 12

Mixer ... 13

PWM amplifier .. 14

External I/O ... 14

Voice Control .. 14

Alternative Inputs ... 15

Software .. 16

The mysterious rst #0x28 .. 16

The Main Loop .. 17

The Jump Table ... 19

Tools .. 20

Schedule ... 20

Challenges Faced .. 21

CPU integration ... 21

GPU design .. 21

Sprite and Tile encoding ... 21

Reverse Engineering the Assembly ... 23

Personal Statements .. 23

Rohit Banerjee
Xiaofan Li

Page 2 of 25

Background Information:

Purpose

The goal of this project was to produce an emulated version of the original 1980 Pacman

game that takes voice commands as control inputs. We intend to create this game using

ROMs obtained from video game enthusiast websites1 as well as a Z80 CPU obtained from

OpenCores.

History

Pac-man is an arcade game that was developed by NAMCO and released in 1980. The

game was novel as the most popular arcade games at the time were space-shooters such

as Space Invaders and Asteroids2. Pac-man managed to create a new genre of arcade

games and became one of the best-selling arcade games ever with inflation adjusted

revenue being approximately 8 billion $USD3. It success and popularity also led to it become

an important part of pop culture.

The games involves the player controlling Pac-man through a maze while making him eat

pellets. When all of the pellets in the maze are eaten, the game proceeds to the next stage.

The four ghosts (Blinky, Pinky, Inky and Clyde) roam the maze trying to catch the Pac-man.

If Pac-man collides with one of the ghosts, he loses a life and both the ghost and Pac-man

reset to their starting positions. In addition to the regular pellets, there are also 4 larger

flashing pellets known as power pellets. Eating a power pellet causes the ghosts to turn

deep blue and move slower. In this state, Pac-man can eat the ghosts and cause them to

temporarily return to the “jail” that they were in at the start of the game. Higher levels cause

the ghosts to move slightly faster and also reduces the time for which they remain vulnerable

when the power pellets are eaten.

In additional to its economic success, Pac-man is regarded as one of the most influential

games of all time as it showed the potential of characters in video games and also was the

first game to feature power-ups and cut scenes4.

1 http://www.emuparadise.me/M.A.M.E._-_Multiple_Arcade_Machine_Emulator_ROMs/Pac-
Man_(Midway)/15250
2 https://en.wikipedia.org/wiki/Pac-Man
3 http://www.usgamer.net/articles/top-10-biggest-grossing-arcade-games-of-all-time
4 https://en.wikipedia.org/wiki/Pac-Man

Rohit Banerjee
Xiaofan Li

Page 3 of 25

Platform

We decided to use the NEXYS 4 FPGA for this project as the logic requirements for the

project were not particularly intensive and also because the NEXYS 4 has sufficient amounts

of block RAM.

System Implementation:

A diagram of the top level architecture used in our implementation is as follows:

Fig 1: Top level system architecture

As seen from Fig 1, the major parts of the system are as follows:

 Z80 CPU

 GPU

 VGA

 Audio unit

 Voice control

 Memory

Rohit Banerjee
Xiaofan Li

Page 4 of 25

The following sections will cover each of the components that make up the system in greater

detail.

Z80 CPU

The 8-bit Z80 processor used in the original pacman game machine was

available on OpenCores as T80 processor. However, the implementation from the

website was not completely usable. Specifically, the timing for communicating with the

memory systems, the interrupt system, IO communication and some instructions such

as DJNZ are not implemented. In general, the CPU is not as easy to work with as

advertised.

The timing requirement for the Z80 processor depends on the type of memory

requests and the type of instruction executed. Since we are running on a FPGA, RAM

refreshment has been turned off with System Verilog preprocessor macros. Memory

fetches, RAM accesses and PC jump instructions all have different timing

requirements. Furthermore, the module pacman_mm in the top module arbitrates

among accesses between the framebuffer, the RAM and ROM accesses. For access

conflicts between the GPU and CPU (this case happens when GPU tries to read from

and CPU tries to write to the framebuffer at the same time), GPU takes precedence

over the CPU.

All the IO communication is simulated in the CPU’s top module. Whenever a IO

request is issued in the software, the IO values are recorded in the top module.

Fortunately, there is no large storage device or DMA that needs to be simulated.

Furthermore, since the Pacman game uses MMIO memory space (address 0x5000

and above), there needs to be hardware support in our implementation. In the top

module, all the reads and writes to the MMIO space are captured and recorded in

Rohit Banerjee
Xiaofan Li

Page 5 of 25

registers. The data in the MMIO space behave according to the Pacman software

requirement. For example, reads from 0x5000 are inputs from the first IO port (the first

joystick control), while writes to 0x5000 controls interrupt enable/disable.

Rohit Banerjee
Xiaofan Li

Page 6 of 25

Memory Map

Frame buffer:

Name Start Address End Address

Tile indices 0x4000 0x43FF

Tile palettes 0x4400 0x47FF

Other memory:

Name Start Address End Address

General purpose

RAM(undocumented)

0x4800 0x4C01

Sprite Variables 0x4C02 0x4C7F

Tasks and Timers 0x4C80 0x4CCF

Game Variables 0x4D00 0x4DB5

Difficulty Settings 0x4DB6 0x4DBF

Counters 0x4DC0 0x4DD6

Main States 0x4EE0 0x4E65

Coins and Credits 0x4E66 0x4E8A

Sound Tables 0x4E8B 0x4EFF

Stack 0x4F00 0x4FBF

Unused 0x4FC0 0x4FEF

Sprite #,xflip and yflip 0x4FF0 0x4FFF

IN0(Joystick, coin, credit

input)

0x5000 0x5000

Sound RAM(Data for 3

voices)

0x5040 0x505F

Sprite Coordinates 0x5060 0x506F

Flip screen 0x5003 0x5003

We decided to store the sprite data(0x4FF0-0x4FFF and 0x5060-0x506F) as well as

Sound RAM(0x5040-0x505F) in registers as such storage makes it easier for the

sprite and sound modules to interact with the data.

Rohit Banerjee
Xiaofan Li

Page 7 of 25

GPU

A diagram of our GPU architecture is as follows:

Fig 2: GPU architecture

The graphics in Pacman can be divided into 2 major types – tile graphics and sprite

graphics. Tiles are 8x8 pixels large and there is a static mapping of screen locations

to memory addresses. On the other hand, sprites are 16x16 pixels large and can be

placed anywhere on the screen save the top 16 rows and bottom 16 rows.

The Pacman screen is 224x288 pixels large. When measured in terms of tiles, each

row has 36 tiles and there are 28 such rows in total. In an effort to compress memory

required to store graphics data, both sprites and tiles are coloured using palettes.

The Pacman color ROM has a 16 8-bit colors5 each with 3 bits of red and green and

2 bits of blue. In addition the palette ROM has 32 palettes where each palette

contains pointers to 4 colors in the color ROM6. This allows the pixels in the sprites

in the tiles to simply require 2 bits. The mechanism for determining the color of a

pixel is as follows:

5 Pac-Man Emulation Guide v0.1, Oct 2008, Chris Lomont
6 ibid

Rohit Banerjee
Xiaofan Li

Page 8 of 25

1. Use the 2-bit pixel value to index the palette in order to get an address in color

ROM.

2. Use the color ROM address to obtain an 8 bit color value.

In our implementation we divided the GPU into a sprite unit, a tile unit and a top level

module used to overlap sprite and tile colors. It is also important to note that our

implementation used registers to store color ROM data to allow for faster access.

Tile Unit:

As mentioned earlier, the game has a static mapping of screen positions to memory

locations. This mapping is illustrated in the following image:

Fig 3: Mapping of memory locations to screen positions7

As seen in Fig 3, each of the “boxes” corresponds to memory locations that holds

information about the tile the tile to be drawn at that location. RAM addresses

0x4000 – 0x43FF hold the ROM address of the tile to be drawn (this is between 0

and 255 as there are 256 tiles). Memory addresses 0x4400-0x47FF holds the

7 Pac-Man Emulation Guide v0.1, Oct 2008, Chris Lomont

Rohit Banerjee
Xiaofan Li

Page 9 of 25

corresponding palette used to draw a tile at that location. As the graphics unit was a

major component in the Pacman system, we separated the graphics RAM 0x4000-

0x47FF into a separate block of RAM called the frame buffer to allow for

simultaneous development of the main system and the graphics system and also to

reduce conflicts between the GPU and CPU on memory reads.

The steps taken by the hardware to draw tiles on the screen is as follows:

1. Get a (row, col) value from the VGA unit

2. Translate the (row, col) value into an 8-bit tile RAM address (0x4000-0x43FF)

and a 6-bit palette RAM address (0x4400-0x47FF).

3. Access the frame buffer to get a tile ROM address and a palette ROM

address.

4. At the same time, use the lower 3 bits of the row and col to determine the 6-bit

index of the pixel in the tile (between 0 and 63 inclusive).

5. Concatenate the 8-bit tile ROM address with the top 4 bits of the pixel index to

obtain a 12 bit pixel address.

6. Use the pixel address to access tile ROM to obtain a byte containing 4 pixels.

Also use the lower 2 bits of the pixel index to access data for the pixel we

want.

7. At the same time use the palette ROM address to access data for a single 32

bit palette from palette ROM.

8. Use the pixel data to index a byte from the 32-bit palette data to get the index

to a color.

9. Use the color index to access an 8-bit RGB value stored in registers.

10. Repeat for all the (row, col) values obtained from the VGA unit.

During our initial verification phase, we used a test bench that displayed all 256 tiles on

screen and allowed the user to choose palettes via switch input (on the FPGA) to debug and

validate this part of the GPU.

Rohit Banerjee
Xiaofan Li

Page 10 of 25

Sprite Unit:

The Pacman game sprite ROM contains a total of 64 16x16 sprites, however there can only

be 8 sprites on screen at any point in time. In addition, sprites cannot be drawn in the top 16

or bottom 16 rows of the game screen. It is also important to note that unlike tiles, sprites

also have the ability to be flipped in the x or y directions. This allows for fewer sprites to be

stored in ROM. Data pertaining to how these 8 sprites should be drawn is stored in RAM at

the addresses shown in Fig 4.

Fig 4: RAM locations for sprites8

As seen in Fig 4, each of the sprites has 4 bytes of data associated with it:

1. X position

2. Y position

3. Concatenation of the sprite index (0-63) and the xflip and yflip(both asserted high).

4. The palette used to color the sprite.

It must be also be noted that the x and y positions that the CPU writes to the above memory

locations assumed that the screen coordinates start at the bottom right of the screen and go

right to left, bottom to top. Thus it was necessary for us to pass the x and y coordinate

through a transformation module that mapped the x and y positions to the top left, left to

right, top to bottom system used by the VGA module before we could do comparisons.

8 Pac-Man Emulation Guide v0.1, Oct 2008, Chris Lomont

Rohit Banerjee
Xiaofan Li

Page 11 of 25

Unlike the tile module, the sprite module does not access RAM, instead, it redirects writes

made by the CPU to the addresses shown in Fig 4 to registers. The steps taken by the sprite

module to draw sprites is as follows:

1. Get a (row, col) value from the VGA unit.

2. Get the sprite with the lowest number that occurs in the region. If no such sprite

exists output RGB values of 0(black).

3. Normalize the (row, col) coordinates between (0-15) i.e. normalize to the dimensions

of a sprite.

4. Use the lowest 4 bits of the normalized row and col values as well as the xflip and y

flip values of the sprite to determine the 8-bit index of the pixel in the sprite.

5. Concatenate the 6-bit sprite number with the top 6 bits of the pixel index to create a

pixel address.

6. Use the pixel address to access sprite ROM to obtain a byte containing 4

pixels. Also use the lower 2 bits of the pixel index to access data for the pixel

we want.

7. At the same time use the palette address for the sprite to access data for a

single 32 bit palette from palette ROM.

8. Use the pixel data to index a byte from the 32-bit palette data to get the index

to a color.

9. Use the color index to access an 8-bit RGB value stored in registers.

During our initial verification phase, we used a test bench that displayed all 63 tiles on

screen and allowed the user to choose palettes as well as xflip and yflip values via switch

inputs (on the FPGA) to debug and validate this part of the GPU.

Top level Graphics module:

The Top level Graphics module contains both the Sprite module and the Tile module and is

used to select which color is sent to the VGA interface. The top level graphics module

(TLGM) receives the color outputs from both the sprite and the tile modules. If the TLGM

detects that the sprite color output is black (which is used as a transparent color in Pacman)

it sends the tile color output to the VGA, else it sends the pixel color output.

Rohit Banerjee
Xiaofan Li

Page 12 of 25

Sound

The original Pacman sound used the NAMCO WSG – a 3 channel waveform

generator. In this setup voices 1 and 2 play the background song while voice 3 is

used for SFX. Each of the voices has a frequency and a volume associated with it. In

addition, the sound ROM contains 16 waveforms (of which only the first 8 are used).

Like the on-screen sprites, the frequency, volume and waveform indices for each of

the voices are mapped to RAM addresses as shown in the figure below.

Fig 5: Address mapping for sound9

The sound system is clocked at 96KHz. Every clock cycle, each of the voices

perform the following actions to choose the sample to send to the amplifier:

1. Add the voice frequency to the voice amplifier

2. Concatenate the waveform index with the top 5 bits of the accumulator to

create a sample address.

3. Use the sample address to get a byte from the sound ROM.

4. Send the lower nibble of the byte to the amplifier.

9 Pac-Man Emulation Guide v0.1, Oct 2008, Chris Lomont

Rohit Banerjee
Xiaofan Li

Page 13 of 25

In our implementation, we had our sound module redirect CPU writes to the RAM

locations shown in Fig 5 to registers, similar to the sprite module. A block diagram of

our sound system is shown below:

Fig 6: Block diagram of sound system

Mixer:

Since, Pacman only uses mono sound our mixer simply added the samples

produced by each of the voice registers and then shifted the result left by 2 bits to

produce the resultant output. This output was then sent to our PWM amplifier.

Rohit Banerjee
Xiaofan Li

Page 14 of 25

PWM amplifier:

The NEXYS 4 outputs sound via PWM. Thus we had to write a sample to PWM

conversion module in order to send sound input to the speaker. Thus our PWM module

accomplished the following:

1. Have a PWM counter continuously run much faster than the sampling rate of

the sound system (96 KHz).

2. Convert the sound samples sent by the mixer into PWM duty threshold values

(simple combinational unit).

3. If the PWM counter is less than the threshold value obtained in step 2 output a

1 to the speaker, else output a 0.

Our testing for the PWM audio was done on the Pacman waveforms themselves.

External I/O

Voice Control

As we proposed in the pitch presentation, we implemented a voice control

feature. Theoretically, the voice control feature is possible to implement without

consuming much resources because of the nature of the problem: after all, we are

only trying to control the game with only 4 words -- up, down, left and right. It is

definitely possible to store moderate amount of data to distinguish about 4 seconds’

of audio.

We designed a datapath to control recording, storing and comparing of audio

data read from the audio hardware on the board. We also verified that this process

works with simulation. However, when we tested it in real time, the comparison is not

accurate enough to output clear answers. We suspect that it was because we have

time-space shifts in recording the sample for the comparisons. Without a FFT module

to transform the audio signal into frequency space, we cannot account for time-space

shifts in audio inputs. As we realized this fact in the last week of testing and did not

have enough time to research the FFT module, we do not have a working voice control

feature.

Rohit Banerjee
Xiaofan Li

Page 15 of 25

Alternative Inputs

As a “fail-safe” plan, we also implemented input controls from the switches. The first

two switches can generate a 2-bit input signal that translates to the 4 possible

movement directions. The input is generated and written to RAM space at 0x5000 and

0x5040 which correspond to the P1 and P2 input addresses.

Rohit Banerjee
Xiaofan Li

Page 16 of 25

Software

The Software used was downloaded from online as a series of ROM files. Sparsely

commented disassembled code was found online on MsPacman game which shares

similarities with the ROM file we are using (we did find Pacman assembly code but it

was not well commented at all). I suspect that documenting such reverse engineered

source code was strictly forbidden by the copyright owner. Thus, much of the code

was still mysterious to the people who published the assembly code. For example,

from the comments on the code, no one seemed to understand the working of the rst

#0x28 function but it was called many time throughout the source code. Through

reverse engineering and intense assembly reading, we were able to understand more

about the Pacman and MsPacman assembly code than any published websites online

(that we can find). In this section, we will explain two important findings of the assembly

code.

1. The mysterious rst #0x28

This figure is the complete assembly code on the function at 0x28 from the

mspacman.asm webpage:

The key to understanding this routine is at 0x2c, “bc gets the word after the call”. This

literally means that the register BC gets the word after the “rst #0x28” instruction in

the program ROM file. Below is one of the call sites of rst #0x28:

Rohit Banerjee
Xiaofan Li

Page 17 of 25

As we can see, the bytes “0001” after the rst instruction will be put into the register BC

and the return value will be modified to point to the next rst instruction.

2. The main loop:

In the code segment beginning at 0x42, the register BC is inserted into the memory

location pointed to by the data pointed to by 0x4c80. From this memory access pattern,

we are certain that this is some kind of a queue and the rst #28 instruction is inserting

data into this queue. Thus if we can find the location where we pop off things from this

queue, then we would be sure. Furthermore, I was suspecting it is not only a queue,

but it’s some kind of a task list because the data we are inserting are actually static

ROM data. So if we can find some places where this data is used to affect program

control flow, then this guess can surely be verified. A long time later, we found the

following code segment:

Rohit Banerjee
Xiaofan Li

Page 18 of 25

This code segment is actually the main loop of the game. As we can see at 0x23a3,

when we push 0x238d onto the stack, this value will later be used as the return value

for whatever task routine it executes later. This will be explained in the next section.

Now, we can see that this routine is in fact getting data from the data pointed to by

0x4c82 and writing -1 to it before it calls rst #0x20. Because of the proximity of 0x4c80

and 0x4c82 and the similarity of the data access between the two locations, I was

certain that this is the place where this queue is popped off. However, do I necessarily

know the data it gets from the queue will affect the control flow?

Rohit Banerjee
Xiaofan Li

Page 19 of 25

3. The jump table

The segment below was a very confusing piece of code at first because it does not

make any sense whatsoever. However, the second byte of every two-byte word has

similar values, which means they are probably all jump targets that point to the

beginning of some function calls of code segments:

After verifying this guess in the assembly code by finding those targets and reading

the code treating it as the beginning of a function call, I was certain that rst #0x20 is

Rohit Banerjee
Xiaofan Li

Page 20 of 25

used to index a jump table and change control flow. This can further be verified by

reading the code located at 0x20. Interestingly, many of the functions listed in the

above table has comments such as “I can’t find a jump to here”. It seems like whoever

wrote the comment was really confused and pondering if whatever he is reading is

actually useless dead code.

Tools:

In this project we used Vivado for synthesis and simulation during integration. We

also used vcs to simulate module when we were debugging them in isolation. Python

was our language of choice for scripting and we used Github for version control and

collaboration.

Schedule:

 Week 1-2: Choose topic (we ran a bit late during the start due to team

assignment issues).

 Week 3: Acquaint ourselves with CPU and assign responsibilities, also

perform further research on Pacman hardware.

 Week 4: Verify CPU

 Week 5: Implement VGA, write scripts to create block RAMs/ROMs

 Week 6-7: Implement tile unit and validate

 Week 8: Establish top level module for system, start work on sprite unit

 Week 9: Write scripts to test sprite decoding scheme

 Week 10-11: Finish sprite unit, begin integration

 Week 12: Continue integration, check assembly source code, finish GPU top

module. Complete sound module.

 Week 13-14: Test and debug software, work on voice recording unit.

We had a few difficulties keeping the schedule initially due to the lack of

documentation on key components of our system such as the GPU and incorrect

information regarding graphics encoding from our literature sources. We were able to

make up this time later in the semester during our integration testing period.

However, the software issues we encountered late in the semester while testing the

game software were hard to recover from and resulted in us not being able to get a

fully functional Pacman game.

Rohit Banerjee
Xiaofan Li

Page 21 of 25

Challenges Faced:

CPU integration:

Learning to interface with a full sized CPU has proven to be challenging. Because of

good design principles, the processor interfaces require other hardware

implementation and customization. Thus we had to read the hardware specs in detail

and configure the hardware. Also it took us a long time to get the timing correct to IO

with the memory systems.

GPU design:

One of the problems that we encountered early during our design phase was the fact

that there was no documentation NAMCO NVC293 video shifter10 the original

Pacman GPU. Hence, we chose to use a VGA display because of its simplicity and

subsequently engineered all of the other components to be compatible with the VGA

interface.

Sprite and Tile encoding:

Another issue we encountered while validating the tile and sprite units was that the

images that we obtained on the VGA display were garbled. Further inspection

revealed that the decoding scheme that we were originally using11 for sprites and

tiles ROM data was incorrect. As such we used Python scripts to validate the

decoding scheme in software before implementing those schemes in hardware.

Fig 6: Sample output of python script for sprites

10 https://en.wikipedia.org/wiki/Namco_Pac-Man
11 Pac-Man Emulation Guide v0.1, Oct 2008, Chris Lomont

Rohit Banerjee
Xiaofan Li

Page 22 of 25

Reverse Engineering the Assembly

In order to bypass the start-up hardware verification and certain hardware

requirement such as coin slots and start button. We had to patch the software to skip

certain part of the software. This turned out to become a huge challenge since

reverse engineering poorly documented assembly code was obviously very time

consuming. In this end, the tests were skipped but the collision detection bug was

most likely caused by some unknown effects of the software patch.

Rohit Banerjee
Xiaofan Li

Page 23 of 25

Personal Statements:

Rohit

I worked primarily on the GPU and sound hardware for the game. Working with the

GPU allowed me to understand a lot about how the typical image compression

techniques using palettes and flips work. I also found working with the sound system

particularly interesting as this was the first time I had attempted to generate sound

from an FPGA. Trying to convert sound samples into a single bit PWM output was

particularly frustrating in the beginning however, hearing the classic Pacman sound

being played by our hardware was immensely satisfying.

In addition, I also wrote the python scripts that allowed us to convert the ROM files

(code, sprite, tile, palette and sound) into .coe files and thus load them into BRAMs on

the board. I also wrote the scripts that allowed us to validate the decoding scheme

used for sprite and tile data when we found that our literature sources were incorrect.

In the later stages of the project, I worked on integrating the sound and GPU with the

main CPU. I also worked on the voice control module that used the on board

microphone. I was able to get the voice control module to record but, unfortunately I

was not able to get it to recognize commands. I was however, able to learn a lot about

PDM (Pulse density modulation) sampling in the process.

My advice to other teams would be to not underestimate the time it takes to complete

integration. It took us significantly longer (about 2-2.5x as long) to integrate individual

components than it did to design and verify each of the individual components in

isolation. Also, take the time to read over the synthesis warnings that Vivado gives as

it tends to be rather temperamental (on some synthesis runs it tied random pins to

power or ground for no reason). Lastly, abuse the ILA (integrated logic analyser) cores

and their triggering capabilities as they are an invaluable resource while debugging.

Rohit Banerjee
Xiaofan Li

Page 24 of 25

Li

I worked on designing of all major components, the integration of the Z80

processor with the rest of the hardware devices, understanding and patching of the

software, and the implementation of external IO controls.

Hardware-wise, my design was mostly successful and worked well after

integration. The only exception is the voice control module, where we ran out of time

and prioritized debugging the collision detection over the voice control module. In

software, while reversing and understanding the assembly code was challenging and

rewarding, the most troublesome bug -- the collision detection bug -- was most likely

caused by the lack of total understanding of the software.

I had the most fun when I was integrating the CPU and reversing the software.

During the CPU integration, I had to go through the Z80 specification and

experimented with the timing requirements. This part was easy to debug because it

was possible to be simulated and tested on a cycle-by-cycle basis. When I was

reversing the software, I understood some embedded system coding techniques.

Tricks such as the above mentioned rst #0x28 are very intriguing. I wonder whether

the reason for deploying such coding styles was because the programmer needed to

save ROM space for optimize for performance.

At the end of the project, the collision detection bug gave me much headache.

At first I was devoted into finding a software solution. After many hours of reversing

the source code and reading the software collision detection code, I was not sure what

parameter values the collision routine was called with because simulation could not

run long enough to trigger the collision code. With standard fuzzing techniques

(changing the input values to the routine), I was about to conclude that the routine was

called with values stored in the framebuffer to detect collisions. However, I believed

that fixing the issue with software inputs was not possible without simulation because

of the complexity and uncertainty about the software structure. After that, I devised a

hardware module to attempt to fix the issue in the GPU. Basically, the GPU would read

the tile information and perform the collision detection in hardware. Unfortunately, we

ran out of time trying to write this module.

In general, I believe we did a good project as our setup and requirements are different

from the other teams. We set out to do Pacman with voice control so we understood

that we had to know and control all the hardware modules and the software assembly.

Rohit Banerjee
Xiaofan Li

Page 25 of 25

Taking a hardware module from online sources and hoping it works without knowing

enough to modify the module will not work in the long term. Moreover, the GPU had

no documentation online, which means we had to re-design and rewrite this module

completely to merge it into the other parts of the projects. Therefore, I think we learned

a lot through researching online and tinkering with different modules on our own.

