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1 Introduction 

1.1 Goal 
 For our capstone design project, we wanted to build a computer vision system on 
an FPGA that would be able to recognize the digits 0 through 9 written by hand. We set 
out to accomplish this by implementing an RTL artificial neural network that could both 
make predictions and be trained in hardware. The hardware network would be 
supplemented by a software stack that would manipulate images of digits into a form 
recognizable to the network. 
 

1.2 Motivation 
Computer vision is usually a software task that sometimes involves hardware 

acceleration via GPUs. Thus, our intention was to (a) implement a typically software 
task in hardware and (b) accelerate neural network prediction using the inherent 
parallelism of hardware.  

Our design was initially inspired by the work of Yann LeCun and Clement 
Farabet from NYU with deep learning using convolutional neural networks. However, 
the neural network architecture proposed in [1] was too complicated for a semester-long 
project and certainly more complicated than necessary to classify handwritten digits. 
Large convolutional networks such as the aforementioned one are more suitable when 
the inputs are huge and there are many possible classifications. Our network only 
requires 784 (28x28) input pixels and ten output classifications (one for each of ten 
images). For this reason, we based our neural network design on the neural network 
described in [5] by Nielson. This was a simpler, multi-layer, non-convolutional network, 
which was feasible to build in a semester and well-suited for classifying handwritten 
digits. 
 

1.3 Result 
 Ultimately, our handwritten digit classifier was able to predict the digits 0 through 
9 when written in a variety of different handwriting styles and with varying degrees of 
sloppiness. We can also train the network both in software and dynamically in 
hardware. The network was not perfect and did struggle with certain images; however, 
in RTL simulation it approached the benchmarks for a two-layer network specified on 
the MNIST website. The benchmark on MNIST for a two-layer neural network with 300 
hidden units is 95.3% accuracy [9], and we achieved 94.8% accuracy with two layers 



and 128 hidden neurons. Moreover, when the network predicted a number incorrectly in 
hardware, it showed low confidence values and was generally close to the correct 
prediction. The accuracy of the network largely depended on the amount it was trained, 
but lighting and positioning of the camera also sometimes affected it. 
 
 



2 System Overview 

2.1 System Block Diagram 
  

Our neural network hardware implementation consists of the following major 
blocks: software layer, interface to host, control unit, forward propagation logic, 
backpropagation logic, synapse weight memory, classifier, and a video stack. The host 
sends data and commands to the control unit through a UART interface, and the control 
unit’s FSM sends control signals to the neural network. The block diagram below 
illustrates how these major blocks interact. 

 
 

Figure 1: System Block Diagram 



The control unit sends data and commands to the first forward propagation unit. 
This unit computes the output for the first layer of neurons. That output is propagated to 
the next unit in the sequence and so on until the classifier. The classifier predicts which 
handwritten digit has been sent and then sends this information to the video stack. The 
video stack takes the classification, builds a stylized image of the digit, and writes this 
data to the frame buffer. Finally, the video driver draws the frame buffer’s contents to 
the screen. When in training mode, the output of the neural network is also sent 
backwards through the backpropagation units, and the BRAM holding the weights is 
updated. 
 

2.2 Approach 
Our approach consisted of the following workflow. First, we modularly tested our 

own parts and integrated them. For the purpose of testing, we had C simulator that 
behaved the same as our Verilog design. After making sure our C simulator was 
working, we tested on Verilator, a fast Verilog simulator. Finally, when the system did 
not work as expected, we used ILA to monitor internal signals of the system. By having 
multiple layers of testing, we were able to effectively debug the integrated design. 
 

2.3 Design Partitioning 
 In general, we tried to divide the design into the software, software-hardware 
interface, neural network, and display. Thus, we tried to break down the design into 
portions that were both similar in functionality and equally time-consuming to implement. 
We felt that our system was inherently modular, so breaking it down as described above 
felt natural. These groups also naturally broke down into subgroups. For example, a 
neural network typically consists of a forward propagation and backpropagation; 
therefore, we broke up the NN into forward propagation units, backpropagation units, 
and weight files. Overall, we felt that this partitioning scheme worked well for us 
because it was mostly successful in breaking down the work into equal chunks. In cases 
when it was not, one person was just given multiple chunks to even out the workload. 
For instance, Kais initially was working on software, but this was not as much work as 
the neural network. Consequently, he also worked on the software-hardware interface, 
and the work was balanced. 
 
 
 
  



3 Full Design Specification 

3.1 Neural Network Background 
 
A neural network is composed of the following features: 
● An input layer that takes in data from some external source 
● A set of hidden layers which transform this data in some way and contain: 

○ Summing nodes to add up contributions from previous layer’s neurons, 
○ Some type of activation function that defines the response of each neuron, 

and 
○ Weights for each contribution to the next layer 

● An output layer to output the network’s calculation to some external target 
 
A diagram of a network is shown below: 

 
Figure 2: Neural Network [6] 

 
The input layer in our case contains a 32-bit integer for each pixel in the input 

image. The hidden layer consists of 128 neurons, and the output layer contains 10 32-
bit integer outputs. The number 128 was experimentally determined using a C simulator 
of a neural network. Each output is the activation of that particular digit. In our case, the 
nonlinear activation is an approximation of the sigmoid function.  
 
We can perform a single feed-forward propagation as follows: 



● For each input of the input layer and neuron of the first hidden layer, multiply the 
input by the weight for that input and neuron 

● For each neuron in the hidden layer, sum the weighted contributions from all 
inputs 

● For each neuron, evaluate the activation of the summed contribution by passing 
the sum into an activation function (such as the sigmoid) 

● Repeat with the next layer, this time using the outputs of the previous layer as 
inputs to weight for the next layer 

● Output the last layer’s activations as a prediction vector 
● Use this vector and a classifier (such as a softmax function) to create a 

classification 
 

The actual training of the network works by passing a large number (>100,000) of 
images as inputs to the network and updating the weight matrices backwards by 
backpropagation using gradient descent.  

 
Figure 3: Backpropagation [3] 

 
In this method, we have a target we wish to reach, and we calculate the 

difference from the target. This difference is then weighted by the gradient of the 
activation and applied backwards through each layer. It can be summarized as follows: 
● Perform a feed-forward propagation 
● Calculate the error of the forward-propagated result relative to a target vector 
● Scale this error by the gradient of the activation for this neuron layer 
● Multiply the update vector by the learning rate 
● Apply this weight difference to the current weights to update this layer’s weights 



● Move on to next layer by propagating this error to update all weights in the 
network 

 
If the learning rate is tuned correctly (as we did experimentally), then this 

algorithm will converge to a certain accuracy. This usually occurs after a very large 
number of backpropagations with a training set of enough distinct samples.  

3.2 Simulation Stack 
 A very important piece that made this project succeed was the “simulation stack,” 
as we call it. Once we understood the math behind the network, we built from scratch a 
C-level model of the network on which we based all of our RTL design decisions. Then, 
we used Verilator to build a C++ model of the network to debug and make design 
decisions for the final project. Finally, Vivado Sim and VCS comprised the last layer of 
simulation and were closest to the hardware.  

Figure 4: Simulation Stack 
The C simulator had a variety of modifiable parameters such as number of 

training images, number of training iterations, learning rate, target vector bias, initial 



weight distribution, and many others. This and the fact that we built a file format to store 
a pre-made network allowed for very quick debugging and changes to our network 
structure.   

3.3 Software Stack 
 As shown in Figure 5, the software portion of our design is divided into two 
components: reading from the MNIST database and image capture 
capture/manipulation. The software runs on a host machine with a webcam and serial 
interface to the FPGA.  

 Figure 5: Software Diagram 
 

MNIST is a database compiled by Yann LeCun containing thousands of 
handwriting samples of the digits 0 through 9. We use this database both to train and 
test our neural network. The MNIST training set has 60,000, and the test set has 10,000 
images [9]. They are stored in a special file format called idx, which has a short header 
followed by all the 28x28 8-bit pixel images stored in one file. Thus, our host machine 
code runs a C program to parse the images into separate byte arrays. We chose to use 
MNIST to train our neural network because it is readily available, easy to use, and a 
common training set for digit classification. 
 Since MNIST is mainly used for training, we implemented host software to take 
images of real handwriting samples and demonstrate the capability of the neural 
network. The front-end interface, written in Python using the OpenCV library, allows a 
user to continuously capture images of digits from the host machine’s webcam. The 
webcam images must be manipulated so that they are in the same form as the MNIST 



images: 28x28 pixels, black/white/gray, and 8-bits per pixel. OpenCV’s Python API 
functions that make it simple to perform this manipulation. Therefore, we use it to first 
grayscale and threshold the image. We use inverse thresholding with a threshold of 65, 
meaning that any byte with a value less than or equal to 65 would be made white, and 
any byte greater than 65 would be made black (as shown in Figure 6). Then, we 
normalize the image to try to account for images taken in different lighting by forcing all 
RGB values to be in a certain range. Finally, we downsize the image to 28x28 pixels. 
The manipulated image is stored to disk. At this point, the image is black and white and 
28x28, but to be like MNIST each pixel must be encoded by 8 bits not 32. Since the 
image was grayscaled, all the R, G, and B values for a given pixel are the same. 
Therefore, we run C code to take a webcam image on disk and store just the R values 
in a byte array of length 784, same as the MNIST images. 

 

Figure 6: Inverse Thresholding 
 
To avoid having a software layer, we could have fed the camera input directly 

into the FPGA and done image manipulation in hardware. However, we decided it was 
more practical to use OpenCV’s simple, optimized API for image manipulation. This 
prevented us from having to write our own grayscale, normalization, downsize, and 
threshold modules in hardware and from having to interface with the camera from the 
board. These modules would have added significant complexity and also would have 
taken precious time we really needed to devote to the neural network. Also, with 
OpenCV the webcam we used worked out of the box through USB, preventing us from 
having to do any complex interfacing. Moreover, we would have had to upload the 
MNIST database into BRAM and access it from hardware. Accessing the MNIST 
database from C on the host machine was simpler and gave us more control over 
training and testing. In software, it was easy to choose which images to send whereas 
this would have been harder on the FPGA. 

3.4 Hardware-Software Interface 
 
 To interface with the FPGA, our host computer is connected to it via UART. The 
physical connecting cable is a USB cable. On the FPGA, the cable plugs into a 



Silicon Labs CP2103 USB-to-UART bridge chip. Therefore, the interface on the FPGA 
side consists of an RX and TX pin rather than USB pins. On the software side, the 
CP2103 comes with Virtual COM port drivers. These contain USB drivers but also 
provide an interface that can be written/read like any other serial interface. Our host 
software has a C program that reads MNIST or webcam image byte arrays and writes 
them to the serial port. The baud rate of this serial port is limited to approximately 1 
Mbps (exactly 921,600 bps) on the lab computers. This speed is suitable for sending 
our small images to the FPGA. 
 The UART did become a bottleneck in our system which could have been 
resolved if we had supported a higher bandwidth transfer interface such as USB, 
Ethernet, or PCIe. However, all of these were significantly more difficult to implement 
than UART, and we felt it was important at the time for us implement a transfer quickly 
to leave as much of the semester for building our neural network. 

3.5 UART Stack 
 To properly handle the UART transfer, we implemented a UART stack to 
interpret a custom byte-level protocol. The stack was split into three parts: the receiver, 
the protocol FSM, and the synchronizer. 
 The receiver interfaced with the signals from the USB-to-UART bridge chip. The 
interface consists of RX and TX lines for serial receive and transfer, respectively. There 
are also RTS (ready to send) and CTS (clear to send) lines for flow control. Since we 
did not transfer anything from the FPGA to the host machine, the RTS and TX lines 
were unused. The receiver asserted the CTS line whenever it was in a state where it 
could receive data. The RX line was most important as this had the actual data. The 
receiver sampled this line at the UART sampling clock frequency of 14 MHz divided by 
the baud rate of approximately 1 Mbps. It looked for an 8-bit UART transfer like the one 
shown in Figure 7 and reconstructed each byte using a shift register. 

Figure 7: UART transfer of one byte [8] 
 
 The protocol FSM receives bytes from the receiver one at a time and interprets 
them based on a simple, custom protocol we designed on top of UART depicted in 



Figure 8. The protocol looks for a START byte, which is made unique by the software 
side of the transfer (anytime a byte with the START byte value is seen on the software 
side, the value - 1 is sent instead). Then, the FSM looks for a TRAIN or TEST byte, 
which denotes whether the following image is a training or a testing sample. Next, the 
FSM buffers the LABEL, which is the digit to which a training image corresponds. Lastly, 
the FSM buffers the next 784 bytes in a shift register to reconstruct the image and 
asserts a start signal when 784 bytes have been seen. 

Figure 8: Custom UART byte-level protocol 
 
 The synchronizer synchronizes the transfer of the image, label, and start signal 
from the UART sampling clock domain to the neural network’s clock domain. It is 
implemented using a register that is clocked on uart_sampling_clk, which outputs to a 
second register clocked on the system clock. The synchronizer was originally used in 
the system because these two clocks were different; however, we later decided it was 
be easier to simply make the clocks the same and avoid synchronization issues. We 
decided this because our bottleneck was UART, and we were getting timing failure in 
the neural network with a 50 MHz system clock. Thus, we simply slowed down the clock 
to 14 MHz to avoid timing failures and synchronization in one step. 
 
 
  



 

3.6 Control Unit 

 
Figure 9: Control Unit 

 
This FSM consists of four states (as shown in Figure 9): 

1. idle 
○ The FSM simply waits for a start signal to indicate the image and label are 

ready 
○ Start and train are buffered on a start  
○ Moves to forward propagation and asserts do_fp on a start 

2. fwd_prop 
○ This state is for performing a forward propagation: it commands the tiles to 

take a weighted sum of inputs to output the activation of a set of neurons 
○ Once forward propagation is complete, the network asserts fp_done, and 

the FSM either commands the network to train on this image via 
backpropagation or just display the prediction 



3. back_prop 
○ This state commands the backprop units to determine error and propagate 

this error backwards through the system 
○ Once all errors are found, the weight file is updated with a weight delta 

and the network asserts bp_done 
4. display 

○ This state is reached after an fp_done and train is not asserted 
○ It commands the write FSM to draw an updated prediction 

3.6 Tile 

3.6.1 Forward Propagation Unit 
 The tiles are forward propagation units that calculate a vector of neural outputs 
based on given weights and inputs. The tiles contain some number of neurons (in our 
case, 128 seems to work well), and each neuron has an associated activation function. 
This activation function is the sigmoid function: 

 
The tile takes in a vector of weights for each neuron and weights all outputs of 

the previous layer by this vector. The resulting vector is summed to give a net neural 
input. This input is then passed through the sigmoid function. The output of the sigmoid 
is the activation of the particular neuron. This is performed for all neurons in the tile and 
output as a vector for the next layer to use.  

Figure 10: Tile 



 
 

Figure 11: Neuron 

3.6.2 Sigmoid Function (PLAN Approximation) 
 We found an efficient piecewise linear approximation of a nonlinear function 
(PLAN) for the activation function [2]. This technique gives a close approximation to the 
sigmoid function as shown below. Alternative was a look up table, but considering the 
large silicon area it takes and the latency to access the block RAM, we use PLAN 
instead. As shown in the table, there are four sections with different linear equations 
when x is positive, and when x is negative, the value is simply Y = 1-Y. 

 
Figure 12: Sigmoidal approximation using piecewise linear technique [2] 

  



 
Table 1: Implementation of PLAN [2] 

 
Our sigmoid, even though it does use this approximation, was still not fast 

enough to synthesize. Therefore, we had to pipeline it into two stages and calculate the 
multiplication and the addition in two separate steps.  

3.6.3 Backpropagation Unit 
 Our goal for the network is to find weights that minimize a function called the cost 
function, which is defined as below: 

𝐶 = !
!

  
! 𝑦 𝑥 − 𝑎! 𝑥  !when y(x) is a desired output, a is the actual 

output, and L refers the output layer L. 
 

We won’t go over full details of mathematical equations and proofs for them, but 
the idea, a technique called gradient descent, is that we keep decreasing the cost 
function C until it reaches the global minimum. 

Another quantity, error, 𝛿, is defined as below: 

 when 𝑧!! is the weighted input for neuron j in layer l. 
Error in the output layer L can be evaluated with the equation below. 

when 𝜎′is the derivative of our activation function. 
𝛿!indicates how fast the cost function changes as a function of activation output in the 
output layer L. Also note that given the cost function in a quadratic form as above, 

when a is the actual output and y is the desired output. 



Small 𝛿! means we are close to optimal. Weight values should be adjusted in a way that 
they minimize 𝛿!. Once 𝛿! is evaluated, 𝛿!, . . . , 𝛿!!! can be calculated with the equation 
below: 

. 

Finally, using 𝛥𝑤 =  𝛿𝑙𝑦𝑙−1𝑇  , we update weight values in weight file hoping that 
error in the output layer L, 𝛿!, becomes small which leads to the conclusion that actual 
output and ideal value are similar. 
 
A simplified diagram of this is shown below: 

 
 

Figure 12: Backpropagation Unit 

3.7 Weight File 
Each neuron in layer has a quantity “weight” corresponding to the arbitrary 

neuron in the next layer l+1. So, when we have m neurons in layer l and n number of 
neurons in layer l+1, there are total m×n weights from neurons in layer l to neurons in 
layer l+1. In our implementation, we first had 128 BRAMs for 1st layer to enable parallel 
access, but after realizing it can be done with one BRAM, we ended up using 4096 x 
784 BRAM for 1st layer and 320 x 128 for 2nd layer. Thus, it takes 784 cycles to extract 



all the weight values for 1st layer and 128 cycles for 2nd layer. When Δw is calculated 
from backpropagation, the update signal should update all the weights in a certain layer. 
Similarly, it takes 784 cycles to update all the weight values for 1st layer and 128 cycles 
for 2nd layer. 

3.7 Classifier 
We originally planned to implement softmax function for the classifier but ended 

up simply showing the activations for our ten output neurons in bar graph form. Still, it 
represents the confidence of our prediction, and the digit whose value is the maximum 
is our final classification result. 

3.8 Write FSM 
 The write FSM’s main purpose is to draw the webcam feed and the typeset 
image of the prediction onto the HDMI monitor. It also draws the bar graphs to show the 
confidence estimate for each digit. While it does not accomplish this directly, it writes 
the appropriate bytes to the video encoder to achieve this display. The combinational 
logic blocks to generate the typeset image are a separate module as is the FSM to 
generate the bar graphs. 

3.8.1 Camera Feed and Prediction 
 The main portion of the write FSM sets the write address and write data of the 
video encoder on every cycle. On a start signal, the image from the UART stack is 
buffered, and every cycle afterwards the address and data are updated to draw the 
camera feed onto the screen. The FSM takes every byte of the image and writes it to a 
10x10 pixel area on the screen. Thus, the full 28x28 image is blown up to 280x280 
pixels. The same thing is done for a prediction image, except the write process begins 
on an fp_done signal from the neural network, and the image data comes from the 
typeset image module described below. 

3.8.2 Typeset Images 
 The typeset image combinational logic block is effectively a large decoder that 
outputs a 784*8-bit image vector based on the prediction (maximum result of the neural 
network activations). The ten possible image vectors are hard-coded into the logic 
fabric, and the vectors are generated prior to synthesis using a Python script we wrote 
to convert typeset images of digits into SystemVerilog hexadecimal constants.  
 



3.8.3 Bar Graphs 
 The bar graph FSM waits for a start_graph signal asserted by the write FSM 
when both the prediction and webcam feed have been drawn. The start_graph signal is 
also the select line of a mux that muxes the address/data from the write FSM and the 
bar graph FSM. Thus, the bar graph FSM also drives the address and data to the video 
encoder. It draws ten bars, one for each digit. The height and color of each bar is a 
function of how high the activation of the corresponding digit is: higher activation means 
a darker, taller bar and lower activation means a lighter, smaller one.  

3.9 Video Stack 

3.9.1 Video Encoder 
 The video encoder decides which pixels to write to the frame buffer. It consists of 
parts for the camera image input, typeset image prediction, and bar graphs. The camera 
image input and the typeset image prediction were both handled by the write FSM 
described above. This FSM looped through bytes of an image buffer and wrote them in 
10x10 pixel blocks to the screen to scale the 28x28 image up to 280x280. The FSM 
drew whichever image was available first, then switched to draw the other one if it was 
queued. The bar graphs were drawn as pixel lines if the output of the network went 
above a certain threshold. All data was drawn into frame buffer for display over HDMI.  

3.9.2 Frame Buffer 
 The frame buffer design is a simple, dual-ported BRAM that contains 24 bits for 
each pixel. The frame buffer is written to by the video encoder and can be read at the 
same time (and at a different clock) by the HDMI output FSM. The framebuffer is 
initialized with our background image and then updated using bar graph and image 
data.  

3.9.3 HDMI Chip 
 Writing to the HDMI Chip is done with a simple FSM that loops through all of the 
frame buffer, incrementing the frame buffer address when data enable on the HDMI 
encoding is asserted. The HDMI signals themselves are generated much like VGA 
signals are: there are HSYNC, VSYNC, and DE lines driven by a set of counters and 
comparators.  
 
 Programming the HDMI chip itself took slightly more work. First, an I2C master 
protocol FSM was created. This protocol FSM can perform I2C read and write 
transactions as defined by the waveform below:  



 

 
Figure 13: I2C Bus Protocol [4] 

 
In the above example, to write a register, first we send address as the device 

(HDMI chip) address, then the first data byte is the register offset, then second data 
byte is data to write to register.  
 

To program the HDMI chip (ADV7511), the following sequence of register write 
operations were performed: 
 

Device Address Data1 (register 
offset) 

Data2 (data to write) Operation Description 

8’b11101000	(0xE8) 8’b00100000	(0x20) N/A Write to bridge device on 
VC707 board (address 
0xE8) to enable 
configuration of HDMI chip 
over I2C 

8’b01110010	(0x72) 8’b01000001	(0x41) 8’b00010000	(0x10) Power up transmitter 

8’b01110010	(0x72) 8’b10011000	(0x98) 8’b00000011	(0x03) Fixed reg - must be set 

8’b01110010	(0x72) 8’b10011010	(0x9A) 8’b11100000	(0x70) Fixed reg - must be set 

8’b01110010	(0x72) 8’b10011100	(0x9C) 8’b00110000	(0x30) Fixed reg - must be set 

8’b01110010	(0x72) 8’b10011101	(0x9D) 8’b00000001	(0x01) Fixed reg - must be set 

8’b01110010	(0x72) 8’b10100010	(0xA2) 8’b10100100	(0xA4) Fixed reg - must be set 

8’b01110010	(0x72) 8’b10100011	(0xA3) 8’b10100100	(0xA4) Fixed reg - must be set 

8’b01110010	(0x72) 8’b11100000	(0xE0) 8’b11010000	(0xD0) Fixed reg - must be set 

8’b01110010	(0x72) 8’b11111001	(0xF9) 8’b00000000	(0x00) Fixed reg - must be set 

8’b01110010	(0x72) 8’b00010110	(0x16) 8’b00110000	(0x30) Setup video output mode 

 



4 Testing Methodology 

4.1 Simulators 
 The simulators were crucial to the project’s success and the only reason we got 
anything to work at all. Had we begun writing the network directly in Verilog we would 
have not got much done in the end. The simulation drove our debugging efforts 
because whenever something did not work, we could step cycle by cycle in our C 
simulator to see where values differed.  
 

One incredibly useful technique was using the waveform viewer in Vivado Sim 
and comparing values of intermediate vectors with those in Verilator and C simulators to 
see exactly at which time step there was a difference. This would be completely 
impossible to debug with just hardware alone or without the higher-level simulators.  

4.2 ILA 
Integrated Logic Analyzer (ILA) IP core enabled us to monitor the internal signals 

of a design. It is incredibly useful debugging feature in Vivado. We actively used ILA 
when we had random classification results for forward propagation in order to narrow 
down from where the randomness was coming. 
 
 
  



5 Status and Future Work 
Our system perfectly classifies handwritten digits from 0 to 9 under well-designed 

environment; we need bright light so that there is no noise in the webcam image 
capture, and a person should draw the number reasonably large and thick. It would 
have been better if we could create noise tolerant image I/O system or just simply have 
a lamp right next to webcam. Also, we could get our system to work even if a person 
writes digits relatively small or thin. 

Since now the network is working with digits, we can expand the classifier to 
letters. To do this, we may need to change the size of neural network with the aid of our 
simulator. We could also expand our system to split images of multiple digits or letters 
to detect numbers and words. 
 
 
  



6 Schedule and Management Decisions 

6.1 Tool Chain  

6.1.1 FPGA Board 
 We chose the VC707 (Virtex 7) as our FPGA board because we anticipated that 
our neural network design would require a large amount of LUTs and DSP blocks. 
Ultimately, this choice was correct because we our final synthesized design used 
approximately 50% of the LUTs and 80% of the DSPs. The board also suited our needs 
well because Sohil had an existing implementation of an HDMI controller for the chip on 
our board. Furthermore, the UART-to-USB bridge chip on our board came with 
convenient software drivers that made a UART transfer manageable. 

6.1.2 Xilinx Tools 
 We used Vivado Design Suite (as everyone was required to do this semester) for 
our FPGA synthesis and programming. Vivado does have certain advantages, namely 
that it can support the Virtex 7 board, Vivado Sim is a useful pre- and post-synthesis 
simulator, and ILA is a life-saver when debugging the design once it has been 
programmed. However, its robustness is questionable. We witnessed it crash a number 
of times at random and once when we simply unplugged the programming cable (which 
was not even in use).   

6.1.3 Simulators 
 Our group used VCS to perform module-level testing and verify basic 
functionality with simple SystemVerilog testbenches. For integration testing, we used a 
tool called Verilator, a free Verilog HDL simulator [7]. This was very useful both for 
testing the neural network on its own and for testing integration between the software 
side of system with our hardware. Verilator allows you to call your Verilog from C code, 
meaning we could combine our C transfer programs with our RTL code. 

6.1.4 Version Control 
 For version control, we used git and GitHub extensively. In general, our team 
was disciplined about committing and pushing changes. At the beginning of the 
semester, we agreed on a style for our commit messages that would be helpful to each 
other. Proper use of git sometimes gave us the flexibility of working remotely if we could 
not come into the lab. Requiring groups to use git and GitHub was definitely a good 
decision on the part of the professors. 



6.2 Schedule  

6.2.1 Initial Plan 
  Initially, we planned out the first month of work and decided we would update the 
schedule based on our progress in the previous month. We roughly maintained this 
pattern and updated our schedule periodically. These checkpoints and our planned 
weekly tasks are detailed in the table below. Our second checkpoint came very quickly 
after the first one because we had to do our design review, and we had all been very 
busy and unable to make that much progress. For the most part, we tried to keep our 
schedule as aggressive as possible, knowing that even if we were not able to fully meet 
it we would likely still make good progress.  
 

Week of Kais Sohil DJ All 

9/14 Camera input 
and manipulation 

HDMI Ethernet Finalize design, work on 
peripherals 

9/21 C image I/O NN tiles Memory C simulator of NN, finish 
peripherals 

9/28 Parse MNIST, 
finish image I/O 

Backprop for 
simulator 

PCIe Finish C simulator 

10/5 CHECKPOINT Activation 
function 

Start backprop  Integrate forward 
prop 

Work on simulator 
integration and test 

10/12 Start design 
review 

Create RTL 
Verilator 
simulation env 

Experimentally 
determine best NN 
design using sim   

Start basic RTL blocks, 
experiment with simulator 
to finalize design,  
backprop in sim on hold 

10/19 
CHECKPOINT 

Control unit Verilator 
simulation env, tile 

Weight file Finish design review 

10/26 Integrate sw and 
UART stack 

Integrate NN Integrate NN Integrate forward 
propagation components 

11/2 Integrate sw, 
UART stack, and 
control unit 

Backprop unit Weight update Work on individual 
backprop pieces and 
integrate fwd prop 

11/9 Webcam live 
feed 

Backprop unit Backprop unit Backprop unit and system 
integrated with the sw 

11/16 Webcam feed 
and integration 

Backprop unit Backprop unit Backprop unit and system 
integrated with the sw 

11/23 Polish demo Polish demo Polish demo Polish the demo, start 
final presentation and 
write-up, BUFFER WEEK 



11/30 Demo Demo Demo Demo, BUFFER WEEK 

 

6.2.2 How the Semester Ended 
 We were perhaps too optimistic about how long it would take us to get forward 
propagation integrated and working on the board. So, our planned schedule fell apart 
after the design review when we encountered some nasty integration bugs and other 
difficulties. Below, we have detailed how the last few weeks of the semester actually 
transpired. In the end, we only got forward propagation working a week before final 
presentations and spent the remaining two weeks trying to get backpropagation to work 
while polishing up our demo in parallel. Also, note the “-”s denote that everyone was 
mostly working on the same task. 
 

10/19 
CHECKPOINT 

Control unit Verilator 
simulation env, 
tile 

Weight file Finish design review 

10/26 Integrate sw 
and UART 
stack 

Integrate NN Integrate NN Integrate forward 
propagation 
components 

11/2 Integrate sw, 
UART stack, 
and control unit 

Backprop unit Weight update Work on individual 
backprop pieces and 
integrate fwd prop 

11/9 - - - Debug fwd prop 
integration 

11/16 - - - Debug fwd prop 
integration 

11/23 - - - Debug fwd prop 
integration 

11/30 Polish demo Backprop Polish demo Fwd prop and polish 
demo 

12/7 - - - Backprop and polish 
demo 

 
 

6.3 Team Workflow 
Most weeks, our team workflow was as follows. We had a meetings at the 

beginning of the week to take stock of last week’s progress, set goals for the week, 
divide up tasks, and established when we would meet next to work together. We spent 



50-75% of the week on individual components implemented in parallel and the last 25-
50% on integration and testing. Kais kept account of the schedule on GitHub, the tasks 
in progress, and who was doing them. 

This workflow continued until the end of the semester when almost all of our work 
was integration and debugging of the forward or backpropagation. During those few 
weeks, neither the tasks nor the partitioning of work changed. Thus, we almost always 
worked together on the same task with the rationale that multiple eyes would be able to 
catch bugs more quickly. 

6.4 Work Partitioning  
 In general, the work was partitioned as follows. Kais worked on the software and 
software-hardware interface. DJ and Sohil worked on the neural network, where DJ 
focused more on the weight file and Sohil focused more on the computation. The 
display work was shared by everyone: Sohil owned the HDMI video stack because it 
was his code from a previous project while DJ and Kais both worked on the write FSM. 
 
 
  



7 Learnings and Future Wisdom  

7.1 Good Decisions 
● Keeping a schedule the whole semester was a particularly good decision. It 

served as a benchmark for progress and also incentivized us to work harder 
when we fell behind.  

● Building and using a C simulator of the neural network was well worth our time. 
Even though implementing the simulator prevented us from getting to RTL until 
October, this was not time wasted. The simulator helped us become familiar with 
neural networks, and thus it made RTL easier. Furthermore, it was a useful 
reference implementation to compare against when we started implementing the 
RTL network. Lastly, it served its original purpose by helping us find an accurate 
design for our network. 

● Learning how to use ILA was incredibly useful. It was the only way we could have 
understood what our bug was when we were getting random predictions from our 
neural network on the FPGA. 

● Choosing a different type of project (rather than a game) was also a good 
decision. Working on something that had not been done in 18-545 before was 
interesting, and it was very fulfilling to get a different kind of FPGA project 
working. 

 

7.2 Bad Decisions 
● We thought we needed to devote all of our time to the neural network. As a 

result, we shied away from getting our hands dirty with more complex transfer 
interfaces like PCIe and Ethernet. This came back to bite us because our 
bottleneck remained UART even at the end of the semester. We think that if we 
had tried to understand the AXI interface to some of the IP blocks Xilinx provides 
for PCIe and Ethernet interface, we could have had a faster transfer and higher 
resolution images. 

● It is far easier to debug a single module than to debug the integrated part. If we 
had fully tested each module then integrated, we could have saved more time 
instead of all three of us spending couple hours finding out a small bug in some 
function. 

 



7.3 What We Wish We Had Known 
 First, we wish we had known just how long integration takes. We were naive to 
think we could integrate all of the forward propagation in a week. Integration issues 
hampered us for at least three weeks, meaning it took us 3x longer to integrate than to 
actually write the RTL. 
 We also wish we had known beforehand how long synthesis runs could take. We 
were initially taken aback when our neural network started to take almost one hour and 
thirty minutes to perform synthesis, implementation, and create the bitstream. Had we 
known that this would be the case, we would have started parallelizing synthesis runs 
much earlier in the semester. 
 Finally, we wish we had known that even though ILA adds time to your synthesis 
run, it is incredibly useful for debugging and well worth the wait. Initially, we hesitated to 
use ILA because we thought it would just take too long to be useful. 
 
 
  



8 Individual Pages 

8.1 DJ 

8.1.1 What I Did 
I started by watching online lectures related neural network architecture and tried 

to understand the math behind it since I wasn’t familiar with the concept. I might be one 
of few students who had previous experience in medium size projects using Vivado, so 
when we were doing lab1, 2 or our own projects, I helped my teammates to get familiar 
with Vivado. 

We originally wanted to transfer webcam-captured data to FPGA using Ethernet. 
However, I struggled to get AXI EthernetLite working and changed to PCIE because 
F11 Sidekicks and F13 Astro Team used PCIE. I contacted Gun Charnmanee, a friend 
of mine, who was on F13 Astro Team and got access to their Git repository. We realized 
that we didn’t have a PCIE ribbon cable in lab and while waiting it to be delivered we 
searched for alternatives. Luckily, we found that UART is relatively simple compared to 
options we had had so far although the speed is slower than other options. We thought 
the maximum speed of UART would be enough for our project and decided to stick to it. 
We started off creating simulator in C, and my part was weights.c which contains 
initWeight, freeWeight, updateWeight, etc. Sohil who was in charge of tile and I had 
miscommunication on how we define the number of layers and accessing the weight 
file, but we managed to get over it. With Kais, I also worked on creating piece-wise 
sigmoid function that would replace our original linear sigmoid function for better 
accuracy. 

I modified Sohil’s HDMI code so that now it has two squares on the screen 
whose size is now enlarged to 280 x 280. Once we were sure that C simulator is 
working, we started implementing RTL. I needed to implement two versions of weight 
file, one with 3-D array version for Verilator purpose and one with Vivado IP for actual 
design. For the latter, I wasn’t sure how many BRAMs I would use, because if I use only 
one BRAM (1st layer: 32 x 784 x 128) for one neuron (1st layer: 784 neurons, 2nd layer: 
128 neurons, 3rd layer: 10 neurons), it would take 784 x 128 cycles to extract all the 
weight values for 1st layer. We decided to use 128 BRAMs for the first layer so that it 
would take only 784 cycles to get all the weight values (1st layer: 32 x 784). I created tcl 
file to ease this job. I also implemented sigmoid function in hardware. 

With this many BRAMs, it took so long for synthesis (3 hours). Also, there were 
some random error messages that I had never seen before. The weirder thing was that I 
copied the entire project to Vivado installed in my laptop, version of 2015.1, and the 
error message was gone. (the error occurred with 2015.2 version) We were kind of 
stuck at this point, and I wanted to make synthesis quicker. Then, I realized that what 



TA said on Piazza totally makes sense, and rather than having 32x784 for each BRAM, 
I decided to have 4096x784 so that 128 neurons’ weight values are concatenated. 
We still struggled getting forward propagation working. I found some minor mistakes 
resulted from the fact that addition “+” precedes shift “>>” in Verilog. The major issue 
was when we tried to synthesize the project, it kept raising “RAM issue” saying that it 
runs out of RAM. We could get this around when Sohil pipelined sigmoid function, but 
now the classification results were random even though there is no randomness in our 
system. (should be deterministic!) In my individual research, when the system clock 
frequency was too high, the system sometimes broke even though it didn’t raise any 
timing violations. So I suggested reducing clock frequency from 200MHz to 100MHz, 
and now the random behavior was gone. Getting our system deterministic was very 
optimistic for us, and we were able to easily find out that why it resulted in wrong, 
deterministic classification; we were accessing weight values from the wrong direction. 
Forward propagation finally worked at this point. 

I created new COE file just in case we needed better trained weight values, got 
back propagation elements in weight file done, and drew sky-blueish background bmp 
file of the display. When I saw forward propagation working, I thought we are pretty 
much done, got my parts done, and did not work as hard as before because I was quite 
busy at the last week of the semester. Thanks to Kais’s and Sohil’s relentless efforts to 
get back propagation working correctly and fix minor display errors, we were able to get 
back propagation working and get more polished demo. 

8.1.2 Class Impressions 
I spent quite much time for this class every week. We excelled hard from the 

beginning and were able to get our project done relatively early. I really enjoyed the 
class, and especially this course gave me an immense experience for team project. I 
was able to learn a lot both by doing my parts and from the teammates. I was quite 
surprised when I first saw that the system actually well classifies handwritten digits. I 
definitely recommend this Capstone for current juniors though Professor Nace won’t be 
teaching next year. I will study machine learning by myself next spring as I came to 
believe in wide applicability of the technique. 
 
 
  



8.2 Kais  

8.2.1 What I Did 
I started off the semester by reading about neural networks online like my 

teammates. Fortunately, I was the one who proposed the idea of building a neural 
network, and I had worked with them last summer at my internship. So, I did not have to 
do as much background reading as Sohil and DJ. Also, I took on the role of project 
manager for the team, and for the rest of the semester I maintained our schedule, 
assigned tasks, and made sure our team would finish on time. 

Regarding technical work, I mostly owned everything from the webcam to the 
control unit, meaning I wrote the software stack to manipulate images, the UART 
interface on both the software and hardware side, as well as the control unit. I assumed 
this role when DJ and I were deciding which transfer protocol to use and maintained it 
through our work on the simulator and the neural network.  

When the software to control unit flow was finished and integrated, I worked on 
the write FSM. Thus, I modified DJ’s image enlargement code to display the camera 
feed, prediction, and activation bar graphs. I also worked on the piecewise-linear 
approximation of the sigmoid function with DJ and experimented with other activation 
functions.  

Additionally, I did a fair portion of the forward propagation debugging near the 
end of the semester. I spent a lot of hours poring over ILA signal captures to find a bug 
in our neurons’ accumulators. I realized that the accumulators were not getting reset to 
0 properly between each forward propagation. This fix and reducing the clock frequency 
corrected our seemingly random predictions. In the final week, I helped Sohil get 
backpropagation working, as well. 
 I did not keep any formal account of the time I spend on this project, so the best I 
can do is estimate. 18-545 along with 18-740 were my two hard classes, so I dedicated 
a great amount of time to this class. For the first two months of the semester, I probably 
spent around 10-15 hours a week outside of class working on our project. However, in 
November and the first week of December I spent almost every day in the lab from the 
time I got out of class until at least 10 pm or midnight. I would run synthesis (which took 
at least an hour), do other work for 545 or another class in the meantime, and then 
debug once the synthesis run was complete. If I were to estimate, I spent at least 40 
hours a week in lab during the last month of the semester. 
  

8.2.2 Class Impressions 
Overall, I really enjoyed this class and would highly recommend it to future 

students. It was very fulfilling to be able to take a project from concept to working 



prototype, and I really enjoyed our project idea in particular. This semester, I also took 
18-740 in which I did computer architecture research. Despite liking computer 
architecture, I thought this class was actually better and provided a stark contrast 
between building systems (which I found exciting) and research into systems (which I 
often found tedious). Moreover, even though Sohil, DJ and I did not know each other 
that well before this semester we had a great team dynamic and became good friends 
through the course. Our team dynamic definitely contributed to the positive experience 
and success I had in the class. 

I felt that the TAs and professors gave as much help as they could. It seemed 
like they were often not really in a position to help because of the nature of the class. 
Other than Vivado bugs, a lot of our issues were very specific to our project. However, 
in one instance Professor Lucia gave us insight into a bug with our UART sampling 
clock that fixed in one hour the issue we had been working on for one week. 

The class was actually more demanding than I imagined it would be at the 
beginning of the semester. Getting our project to work well took long hours in the lab 
beating our heads against difficult bugs. The class also required a significant amount of 
planning and working around people’s schedules, but this was a valuable experience in 
time management of a real-world project. 

Finally, I thought the labs were handled well this semester. From past semesters’ 
reports, I knew that the labs often distracted teams from working on the project. 
However, this semester it was good that the labs supplemented our work on the project. 
For example, Lab 3 spurred us to get our UART transfer working ahead of time. 



8.3 Sohil 

8.3.1 What I Did 
For me this project involved a lot of learning in the field of machine learning and 

neural networks. Much of the beginning of the semester I spent researching neural 
networks, how they worked, what parameters we can assign them, how to initially form 
a good distribution of weights, etc. Once I got that done, I started by writing all the 
equations out for the network in matrix form and thinking about how these operations 
could be done in hardware. I began by writing the tile, neuron, and simulation kernel in 
the C simulation environment. I also decided early to make the simulator very versatile 
and flexible, using as many parameters as I could. It was hard to debug forward 
propagation without backpropagation, so I worked hard to get backpropagation also 
functional as quickly as possible. I used the simulator then to tune parameters and run 
overnight simulation runs and gather data.  

We also wanted to make sure we could get the peripherals working as soon as 
possible just as a proof of concept: therefore, we could quickly pivot if needed. I worked 
to get HDMI and the display stack working in the beginning of the class since I was 
familiar with the HDMI encoder chip and how to use it. I also had much of the code for 
this part already written prior to this class. After we confirmed that the display was going 
to work, we could move onto the more difficult parts of the project.  
 Eventually, when we decided on an ideal configuration for the system, we 
decided to begin writing the Verilog version. This version was more hardcoded than the 
simulator because we were fairly confident at this point what the parameters of the 
system would be. Therefore, we hardcoded the number of layers, number of neurons, 
number of inputs/outputs, etc. Next, I worked on the same parts that I was responsible 
for in the simulator in the RTL version. At this point, we sort of owned blocks of the 
design: Kais had the software, DJ weights file and much of the Vivado environment, and 
I owned the tile and neuron units. By having units we were in charge of, it greatly sped 
up our debugging and design time as we were then experts in each of our fields.  
 After the RTL was written, I introduced the team to Verilator, which as a way to 
turn our Verilog into C++ code that would be compatible with our C simulator testing 
environment. By using the same testing environment, I saved a lot of headache of 
debugging and overhead of writing new code. Now much of the code was shared 
between the C version and the RTL simulation. We performed the same tests as we 
had in the C simulator and confirmed that the RTL was working.  
 After this point, the rest of the semester was just tireless debugging. Forward 
propagation gave up huge problems on the FPGA that we worked together and 
eventually solved. Backpropagation took far longer to design and implement in RTL, but 
in fact it worked in hardware almost immediately. I spent most of the last week working 



on getting backpropagation designed, without much hope for success. However, 
because it worked in hardware almost immediately, we were able to get it running in the 
end. I could not have done any of this without amazing simulation tools, both 3rd party 
like Verilator and ones we designed ourselves.  

8.3.2 Class Impressions 
 This was an amazing experience of a class that I would highly recommend 
anyone interested in digital design to take. This kind of opportunity where we are given 
an entire semester to spend with a bright team to design whatever we want was 
definitely unique for me. I loved the design freedom I had, where the whole project was 
our choice from the start to finish. Scheduling tasks and following a plan we set 
ourselves was an amazing learning experience. I’m amazed at how much we were able 
to accomplish in just a semester. Thinking back, there was so much work that was 
done: whether it was implementation, debugging, or research. I can’t imagine what 
kinds of things a great team and I could come up with next just by putting some time 
into it.  
 The teaching for the class was also great in my opinion. I enjoyed the readings 
we were assigned and know that much of what I read was applied directly during the 
semester and will become even more applicable as I move forward in life. Professors 
and TAs were very understanding of our bugs and issues and lent their help wherever 
possible. I’m glad the few lectures that we had contributed more to our understanding of 
design methodology and good project practices in real life than to actual technical 
content.  
 Of course this class was a huge time commitment. Beware to those who 
overestimate their own abilities and take on a project far too difficult. We originally had 
far higher ambitions at designing a convolutional neural network, and the complexity of 
just this simple one we built was plenty to keep us busy. Future groups should take care 
when choosing a project.  
 In the end, I know I came away from this class knowing a lot more than I went in: 
about the technical side of things and about how to actually run a project without it 
failing. I learned about my own limitations and strengths, and will think back to my 
experience here when I am out in industry designing my next project.  
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