
Ethernet on the Zynq ZC706

18-545 Advanced Digital Design

Terence An, Eddie Nolan, Dale Zhang

December 12, 2015

Contents

1 Introduction 3

2 Ethernet Background 4
2.1 Logical Link Layer . 4

2.1.1 Ethernet Frame . 4
2.1.2 Physical Medium Attachment (PMA) 5
2.1.3 Physical Coding Sublayer (PCS) 6

2.2 Data Link Layer . 8
2.2.1 Logical Link Control . 8
2.2.2 Media Access Control (MAC) 8

3 Basic Approach 9
3.1 Building PL Ethernet . 9
3.2 The PHY IP . 10
3.3 Modifying the pipeline . 10

4 PetaLinux Networking 12
4.0.1 Introduction . 12
4.0.2 Relevant Hyperlinks and Documentation 12
4.0.3 Supplies . 12

4.1 Using PetaLinux . 13
4.1.1 Creating Boot Media . 13
4.1.2 Building XAPP1082’s PetaLinux Configuration 13
4.1.3 Connecting to the UART of the Zynq ZC706 14
4.1.4 PetaLinux Networking Setup 14
4.1.5 Bugs and Roadblocks . 15
4.1.6 Other Notes . 17
4.1.7 Code Listing . 17

5 Alternate Approaches 19
5.1 Building our own Ethernet . 19
5.2 Packet Processing Language . 19
5.3 Using Ethernet IP . 19
5.4 Packet Redirection Wiki . 20

6 Lessons Learned 21

1

CONTENTS CONTENTS

7 Miscellaneous 22
7.1 Personal Statements . 22

7.1.1 Terence An . 22
7.1.2 Edward Nolan . 22
7.1.3 Dale Zhang . 23

2

Chapter 1

Introduction

This report is a guide to start building ethernet on the Zynq ZC706 board. It was
originally written as the final project for a 18-545 project which our team didn’t
complete because we were unable to build an ethernet adapter in programmable
logic and have it properly communicate with the Processing System. The intention
of this report is to aid future groups in completing an ethernet adapter, as well
as providing the necessary background and deterring groups from fruitless avenues.
This guide expects a minimal understanding of Vivado because most students in
18-545 have had limited exposure to it. We will attempt to provide the pertinent
references as needed.

That being said, going through Lab 2 in Vivado Design Suite Tutorial [11] will
probably be the fastest way to understand the work flow. Also, chapter 2 and
chapter 4 of UltraFast Design Methodology Guide for the Vivado Design Suite [10]
will be superbly helpful in learning to use Vivado, especially for using Intellectual
Property (IP) in Vivado. Finally, if you still want more details on using IP, you can
refer to the Vivado guide on Designing with IP [8] and Designing IP Subsystems
Using IP Integrator [7]. If you’d like more information on Vivado in general, refer
to the Getting Started [9] guide and the Designs Flows Overview [6].

3

Chapter 2

Ethernet Background

In this chapter we’ll provide the basics of ethernet, just enough to get you started.
Our discussion will start at the lowest level, and work our way up to the peripheral
port on the processing system. If any of these sections are found to be lacking,
you can find more information from the 802.3ab standard available on the IEEE
Standard Association. Wikipedia is also your friend. While the intention of this
book is to help you build your own ethernet, we dissuade people from actually
implementing the physical transmission circuitry (PHY) yourself (the PCS and the
PMA). The PMA layer is reasonable, but the PCS layer is incredibly involved. If
that is all you intend to build for the semester, then perhaps it is possible. Instead
we recommend you use the Vivado IP. So we’ll simply provide an overview of what
these parts do, and if you’d like to build these subsystems yourself, you’ll have to
refer to the 802.3 documentation.

2.1 Logical Link Layer

The logical link layer may also be referred to as the physical layer. This network
layer deals with how the bits are formatted into frames and how they’re transmitted.
If you’ve worked on any networking projects previously, you could probably just skip
this section.

2.1.1 Ethernet Frame

In Figure 2.1 you can see the basic format. However, there is another format for
supporting larger frames called jumbo frames, so if frames don’t look like what
you’re expecting that is a possibility. But it isn’t very likely, because although most
switches and routers support jumbo frames, they’re not widely used. While we show
the format of the frame, the logical link layer doesn’t ascribe any meaning to these
bits.

The layer one bit sequence is what you’d expect to find on the wire, and the
layer two format is what you’d expect to reach the operating system.

If there are other headers you’re expecting, they’d be in the beginning of the
payload. All information used by higher network layers would be found there as
well. The standard maximum transmission unit is 1500 bytes, so if you’re making a
large download, it’ be broken up into roughly 1500 byte chunks, each sent according

4

http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html

2.1. LOGICAL LINK LAYER CHAPTER 2. ETHERNET BACKGROUND

Figure 2.1: Ethernet Frame Format
source:https://en.wikipedia.org/wiki/Ethernet_frame

to some higher level protocol like TCP or UDP and your application will receive
them in these chunks.

Ethernet frames are sent across Cat-5 or Cat-6 cables, and you’ll often see the
cables referred to as full-duplex or half-duplex. Duplex refers to the two directions
of traffic, tranmissions and receptions. A half-duplex cable/port alternates between
transmit mode and receive mode, whereas a full-duplex cable/port has two seperate
physical mediums allowing it to transmit and receive at the same time thus removing
the need for any collision detection. You’ll most likely be using the 1000Base-T
standard (802.3ab, the twisted-pair copper standard for 1000Mbs as opposed to
1000Base-X, the fiber optic standard for 1000Mbs) which only operates on full-
duplex.

The frame is transmitted 8 bits at a time over these wires, but they’re encoded,
so if you wanted to parse these bits yourself it’s a little bit more complicated. We’ll
discuss more about this in the PMA section.

2.1.2 Physical Medium Attachment (PMA)

The PMA is the first subsystem that connects to the actual wires which is called
the Medium Dependent Interface (MDI). The signals then are transmitted to a PCS
PMA interface. The PMA is fairly straight forward to implement, you simply have to
properly implement a very brief transmit function, receive function, reset function,
link monitor function, clock recovery function, and a fairly lengthly control function.
The exact details can be found in the 802.3z standard, section 40.4.3. Figure 2.2
gives a succinct overview of how the signals are used and generated.

The MDI consists of 4 wires for each transmission direction and each wire can
take of 5 different voltages which we’ll label as {2,1,0,-1,-2}. The transmit side
constantly changes the voltage, even when idle. During idle, the voltages oscillate
from 2 to 0 to -2 and back. The baud rate is 125 MBaud which matches the clock
rate of 125 MHz so there’s one symbol per 8 ns.

5

https://en.wikipedia.org/wiki/Ethernet_frame

2.1. LOGICAL LINK LAYER CHAPTER 2. ETHERNET BACKGROUND

Figure 2.2: PMA Reference Diagram
source:802.3z Standard 40.4.3, Figure 40-13 [3]

2.1.3 Physical Coding Sublayer (PCS)

The PCS is the subsystem that connects from the PMA to the Media Independent
Interface (MII). Because this guide is for 1000Base-T, our PCS must interface to
Gigabit Media Independent Interface (GMII) or the Reduced GMII (RGMII). In
figure 2.3 you can see an overview of the PCS function. However, it hides a lot
of complexity. Implementing your own PCS is a very large undertaking, despite
the small reference diagram. It might appear as if you only have to implement the
transmit function, the transmit enable, collision detection, and the receive function.
The transmit function alone, is monumental. We have to convert the bit stream into
4 wire code groups, where each byte is encoded using the 4D-PAM5 technique into
4 quinary symbols. We also have to scramble these symbols with a linear feedback
shift technique. The exact specifications can be found in section 40.3.1.3 in the
802.3z standard. The state diagram can be seen in figure 2.4.

6

2.1. LOGICAL LINK LAYER CHAPTER 2. ETHERNET BACKGROUND

Figure 2.3: PCS Reference Diagram
source:802.3z Standard 40.3.1, Figure 40-5 [3]

Figure 2.4: PCS Transmit State Diagram
source:802.3z Standard 40.3.4, Figure 40-9 [3]

7

2.2. DATA LINK LAYER CHAPTER 2. ETHERNET BACKGROUND

Luckily though, the PCS for 1000Base-T doesn’t haven’t to handle collision
detection since 1000Base-T is full duplex. The PCS also uses the MII’s managment
interface to handle Auto-Negotiation which is required in 1000Base-T.

2.2 Data Link Layer

The data link layer is comprised of two sublayers, but this would be the format
an operating system sees. The layer one ethernet frame has its preamble and start
of frame delimiter dropped by the MAC subsystem. Remember that the logical
link layer was agnostic to the ethernet frame format. It is only the MAC that
understands which bits are which part.

2.2.1 Logical Link Control

This sublayer is higher up than the MAC and handles network control frames. It
handles higher level network protocols like IP, Decnet, Appletalk, etc. We can ignore
these for your ethernet subsystem. Technically, a part flow control also resides in
this sublayer, but for LAN protocols like ethernet there is no flow control in this
sublayer.

2.2.2 Media Access Control (MAC)

This sublayer interprets the bit stream into a MAC ethernet frame, checks for frame
errors, and passes on the frame in its disessembled form in reception mode. When
transmitting, it takes the frame, adds the preamble and start of frame delimiter
and adds its own source MAC address. It is important to know that the order of
transmission is by one octel at a time with the low-order bits first. Usually the MAC
handles collision detection as well, and carrier sense, but since we have full-duplex
you can ignore these. In short, the MAC interprets the signals from the GMII and
sends the layer 2 ethernet frame to the processing system.

8

Chapter 3

Basic Approach

I will assume that your project is not to just implement the PHY and you’re trying
to build something on top of the PHY because if all you wanted to do was build the
PHY yourself, the background chapter is all you need. This chapter is about how to
quickly get started on making ethernet in programmable logic, and how you might
modify it to make additions to it.

After numerous failed attempts, we finally settled on using the Zynq PL Ethernet
[4] guide on the Xilinx Wiki; however, we never got it completely working before the
semester ended. Had we discovered it earlier, and decided on going down this route
earlier, perhaps things would have been different. Also, when we actually started
using it, it was in flux. Someone was editting the page still, writing the 2015 version
(XAPP1082 v4.0); so we ended up using the 2014 version (XAPP1082 v3.0). But by
the time you’ve seen this guide, there will definitely be a 2015 version and possibly
even newer ones.

Perhaps you can follow the wiki guide right now, and all the steps work for you
right off the bat. For us, it didn’t turn out this way. The guide in general is great,
and it went smoothly for most of the way until we ran into a problem with the
PetaLinux network stack. We’ll discuss PetaLinux more in depth in a later chapter
because that discussion will be sizeable in and of itself. So for the rest of this
chapter, I’ll be mostly explaining what the steps in the wiki are doing so that you
will be able to modify their setup. There’s no need to cover each instruction, I’ll just
comment on the ones that warrant an explanation for a beginner. Remember, the
instructions I’ll be covering are for version 3, so you’ll have to translate it yourself
for later versions.

3.1 Building PL Ethernet

First of all, we’re not interested in the PS-EMIO design on the wiki since that uses
the built in Marvel chip as the ethernet adapter and it connects to the processing
system through the Extended Multiuse I/O (EMIO). There is very little we can
modify in that design. Rather, scroll down until you find the section titled Building
PL Ethernet. It will tell you to run a tcl script which is how vivado allows you to
script building designs. At the top you’ll see it specify a vivado version number as
well as the board number this script was made for. The script you download from
this wiki will be for the ZC706 board. Following the next few steps will get you a
bitstream, but know that this process can sometimes take up to an hour. So make

9

3.2. THE PHY IP CHAPTER 3. BASIC APPROACH

sure you export it to the SDK. When you export, if you leave the path as “< local
to project >“ you’ll only be able to save one bitstream, so if you wanted a backup
you’d need to make a seperate directory for it.

That was it as far as the programmable logic goes! Of course you should un-
derstand the design and what each block is doing in order to modify it. I’ll go
more into detail about each IP later, but the overall receive pipeline is that the SFP
port connects to the PCS/PMA IP then to the TEMAC through the Serial GMII
(SGMII) interface. The Tristate-Ethernet MAC (TEMAC) connects to the DMA
block through an AXI-stream interface which then connects to the Processing Sys-
tem through the high performance AXI ports. In the transmission direction it’s the
same pipeline but backwards except instead of the HP port, the processing system
connects to the General Purpose interconnect which then connects to the DMA. So
if you wanted to analyze, filter, or modify the packets at the layer 2 level you should
insert your own RTL after the TEMAC.

3.2 The PHY IP

The Vivado IP catalog thankfully has all the parts of the PHY you’ll need. You’ll
have to be comfortable with using and making your own IP to work well in Vivado.
Xilinx already has implementations of the PCS, PMA, MAC, etc. and they’re in
blocks which they call their Intellectual Property (IP). You can find the documen-
tation on all of these on their website (there is a button to open them directly in
vivado, but that button doesn’t do anything. Get used to this). Their IP blocks
communicate via a protocol called AXI4. You’ll want to skim through The Zynq
Book [2] to understand AXI well. In general The Zynq Book doesn’t go enough into
detail, but for AXI it is still alright.

3.3 Modifying the pipeline

This setup they provide will move the whole data frame into memory. So the
easiest place to add your own modifications is to the AXI-stream connect after the
TEMAC and before the DMA. The modification we worked on was adding a filter
to the output AXI of the TEMAC. Vivado HLS is a high level synthesis tool that
allows you to write C and C++, and it’ll be compiled down to an HDL which is
packaged inside of an IP. This IP will be added to your IP catalog so you can select
it inside of Vivado.

The greatest piece of documentation ever written by Xilinx was their HLS tu-
torial [12]. This document is actually helpful, and chapter 2 and 4 will quickly get
you started on making your own IP. The essentials are:

• Your inputs and outputs are your function arguments like in an HDL.

• You’ll need to make your packet input and output ports AXI-stream ports.

– Select the Directive tab on the right panel, and right click your top func-
tion to insert directive.

– Choose the Interface directive and choose the type ap ctrl none. Now
your IP won’t have any control registers and it’ll just always be operating.

10

3.3. MODIFYING THE PIPELINE CHAPTER 3. BASIC APPROACH

– Do the same for your input and output ports, but instead of ap ctrl none,
choose axis.

– This however doens’t actually change your ports to AXI-stream.

– You’ll need to #include ‘‘hls_stream.h’’ to get the stream class. Ctrl-
click that file name to jump to the file.

– You’ll need to #include ‘‘ap_axi_sdata.h’’ to get the packet struct. Again,
Ctrl-click that file name to jump to it.

– Combine these two to set your input port to stream<axis> in_stream where
in stream is your function argument and axis is the struct you defined
using their ap axiu constructor.

• Now you can use in_stream >> x to get a single axis packet out and into a
variable x.

• Likewise you can write to stream using x >> out_stream.

• We have an example filter that can be found here: https://github.com/

Terrorbear/digitaldesign/blob/master/filter.cpp

• If you want one of your ports to connect to the processing system, leave it
unconnected in the block diagram, and add it to the address editor. Vivado
will set up the connections automatically.

After all of this, you should something simple working in HLS, and now you can
package the IP and add the directory to the Vivado IP catalog to insert your IP
into your block diagrams.

11

https://github.com/Terrorbear/digitaldesign/blob/master/filter.cpp
https://github.com/Terrorbear/digitaldesign/blob/master/filter.cpp

Chapter 4

PetaLinux Networking

4.0.1 Introduction

This section will focus on the attempts we made to implement the software-firmware
stack that Xilinx provides through their application notice XAPP1082 and through
a guide on the Xilinx wiki. This involves creating a bootable SD card containing a
copy of PetaLinux, Xilinx’s embedded Linux distribution, that is patched to support
communicating over the SFP Ethernet port, and flashing the FPGA fabric with a
corresponding bitstream that implements the hardware Ethernet support. Although
our eventual goal was to modify the kernel and firmware to support Ethernet traffic
analysis, we ran into bugs that we were unable to fully diagnose and solve.

4.0.2 Relevant Hyperlinks and Documentation

• XAPP1082 PDF

• Xilinx Wiki Guides:

– Zynq Ethernet Guide

– Zynq Boot Setup Guide

• Zynq ZC706 User Guide

• PetaLinux Tools Reference Guide

• Drivers for Zynq ZC706 UART

4.0.3 Supplies

• Hardware:

– It’s necessary to be able to connect to a wired Ethernet connection and
write SD cards with the computer you are using for development.

– If you want to switch between different copies of PetaLinux, it’s con-
venient to have multiple SD cards, so you don’t have to reflash them
repeatedly. The copy of PetaLinux we used was only 200MB so large
storage capacity is unneccessary.

12

http://www.xilinx.com/support/documentation/application_notes/xapp1082-zynq-eth.pdf
http://www.wiki.xilinx.com/Zynq+PL+Ethernet
http://www.wiki.xilinx.com/Prepare+Boot+Medium
http://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
http://www.xilinx.com/support/documentation/sw_manuals/petalinux2014_4/ug1144-petalinux-tools-reference-guide.pdf
http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

4.1. USING PETALINUX CHAPTER 4. PETALINUX NETWORKING

– It’s helpful to have an Ethernet switch or router so you can test the device
without needing access to the full Internet.

• Software:

– I installed the PetaLinux tools on two Ubuntu LTS virtual machines. You
should have virtualization software and enough disk space available on
your computer for 2 virtual machines.

– We also were able to use lab computers that were configured to use the
version of Vivado that corresponded to the version of XAPP1082 we used.

– The specific versions that our project used were XAPP1082 version 3,
PetaLinux and Vivado version 2014.4, Xubuntu 14.04 LTS for installing
the PetaLinux tools. Our lab machines ran RHEL.

4.1 Using PetaLinux

4.1.1 Creating Boot Media

The Zynq Boot Setup Guide linked above demonstrates the way to format bootable
SD cards. You need to create 2 partitions, boot and root, and copy 2 files, BOOT.bin
and image.ub, onto the ’boot’ partition, but the partition table needs to be con-
figured in a specific way using fdisk commands. The relevant part of the guide is
the section under “SD Boot”; ignore the sections that describe JTAG and QSPI
booting. You can find relevant precompiled BOOT.bin and image.ub files in the
XAPP1082 software release: $XAPP HOME/ready to test/pl eth noCso.

4.1.2 Building XAPP1082’s PetaLinux Configuration

The version of the PetaLinux Tools that we used wouldn’t install properly on a
64-bit virtual machine because of issues with 32-bit library support that we were
unable to resolve. However, the Xilinx SDK, which is required to create the boot
image after the kernel has been compiled, only supports 64-bit versions of Linux.
We were able to get around this by creating a 32-bit VM for creating the project
and building the kernel, and a separate 64-bit VM for creating the boot image.

Setting up the 32-bit VM

For Ubuntu, the PetaLinux Tools Reference Guide required the following packages
to be installed:
tofrodos iproute gawk gcc git-core make net-tools libncurses5-dev tftpd

zlib1g-dev flex bison

The PetaLinux Tools are distributed as a self-extracting archive/installer. The
Xilinx Wiki Zynq Ethernet Guide contains a download link. Both the PetaLinux
Tools and the XAPP1082 software release should be extracted. The provided shell
scripts help to automate steps that are described in the Wiki guide. The directories
on the first lines should be modified to reflect the user’s configuration.

13

4.1. USING PETALINUX CHAPTER 4. PETALINUX NETWORKING

Setting up the 64-bit VM

To set up the 64-bit VM, you need to install all the same packages as the 32 bit VM
needs. In addition to extracting the PetaLinux installer, you also need to install
the Xilinx SDK that corresponds to your version of PetaLinux. After you have
finished configuring and building the project on the 32-bit VM, you can copy the
xapp1082 pl eth project directory to the 64-bit VM, then use the provided shell
script to create a bootable image (more detail is available in the wiki guide). The
required files for creating a bootable SD card will be in the project directory in the
subdirectory images/linux.

Note on PetaLinux Setup

In an attempt to diagnose the main problem that we encountered, we needed to
introduce a change to the Xilinx ethernet driver so that it would print debug infor-
mation. We did this by text-editing the patch file that adds driver support to the
kernel, although there are many other ways of modifying the PetaLinux configura-
tion and software that are described in more detail in the documentation. If there
is no need to customize PetaLinux in any way, precompiled images are provided in
the XAPP1082 software release, and the PetaLinux Tools don’t need to be used.

4.1.3 Connecting to the UART of the Zynq ZC706

The driver download page for the ZC706 can be found in the link section. After the
drivers are installed, remote terminal software can be used to communicate with the
ZC706. We found it easiest to use screen. If the UART shows up as /dev/ttyUSB0,
the ZC706 can be connected to by running screen /dev/ttyUSB0 115200. Permis-
sions issues can often prevent reading from device files so it’s important to ensure
that permissions are set properly.

4.1.4 PetaLinux Networking Setup

SFP Ethernet Port

As described in the Xilinx Wiki guide, to activate the interface for the SFP Ethernet
port, you should run
insmod /lib/modules/3.17.0-xilinx-<kernel build version>/kernel/

drivers/net/ethernet/xilinx/xilinx axienet main.ko

This loads the kernel module that enables the SFP Ethernet interface.
To activate the interface, run
ifconfig eth1 up x.x.x.x

where x.x.x.x is the IP address assigned to the SFP interface.
You should see the following two messages:
eth1: XAXIEthernet: PHY Link carrier lost.

eth1: XAXIEthernet: PHY Link carrier restored.

If the second message does not appear, that means that Petalinux is unable to set
the link up. This is the problem that our team encountered that we were unable to
move past.

14

4.1. USING PETALINUX CHAPTER 4. PETALINUX NETWORKING

Configuration

Unfortunately, the tools that are included by default in the provided PetaLinux
configuration are limited; in particular, there is no DHCP support. In order to set
up an interface, you will need to know you’re device’s:

• Assigned IP address

• Broadcast address

• Network mask

• Default gateway

The default gateway can be set by running:
route add default gateway x.x.x.x

You can set the IP address and activate the interface by running:
ifconfig eth0 up x.x.x.x

Use ifconfig to add the netmask and broadcast address:
ifconfig eth0 broadcast x.x.x.x

ifconfig eth0 netmask x.x.x.x

If your configuration works, you should be able to connect to the internet.

4.1.5 Bugs and Roadblocks

The bug that we were unable to overcome in our project was that Petalinux was
unable to successfully set the link up for the SFP port interface. The Xilinx Wiki
advised us to make sure we saw the message
eth1: XAxiEthernet: PHY Link carrier restored.

before using the SFP interface. We never encountered this message. Here is the
part of the driver code that triggers this message:

if (phy_carrier) {

printk(KERN_INFO

"%s: XAxiEthernet: PHY Link carrier restored .\n",

dev ->name);

netif_carrier_on(dev);

set_mac_speed(lp);

}

The variable phy carrier is set to the value of linkup in the get phy status

function:

static int get_phy_status(struct net_device *dev , DUPLEX * duplex ,

int *linkup)

{

struct axienet_local *lp = (struct axienet_local *)

netdev_priv(dev);

u32 reg1 , reg2;

//reg1 = axienet_mdio_read_local(lp , lp ->gmii_addr ,

MII_BMCR);

reg1 = axienet_mdio_read(lp ->mii_bus , lp ->gmii_addr ,

MII_BMCR);

*duplex = FULL_DUPLEX;

15

4.1. USING PETALINUX CHAPTER 4. PETALINUX NETWORKING

//reg2 = axienet_mdio_read_local(lp , lp ->gmii_addr ,

MII_BMSR);

reg2 = axienet_mdio_read(lp ->mii_bus , lp ->gmii_addr ,

MII_BMSR);

*linkup = (reg2 & BMSR_LSTATUS) != 0;

// printk(KERN_ERR "get_phy_status: BMCR=0x%x, BMSR=0x%x,

duplex =%d, linkup =%d\n", reg1 , reg2 , *duplex , *linkup);

return 0;

}

Reading the driver code showed that the status and control values that the SFP
device was providing to the MII interface didn’t indicate that the Ethernet link was
up. We modified the driver code to uncomment the call to printk, which showed
us that the MII control register value was always 0x1140, while the status register
was always 0x01c8. The values are bitmasks that we interpreted the following way:

MII Basic Mode Status Register

Bit 0: Extended MII registers available

Bit 1: Jabber detected (sticky)

Bit 2: Link is up (sticky)

Bit 3: Capable of auto-negotiation

Bit 4: Remote fault detected

Bit 5: Auto-negotiation complete

Bits 6-A: unused

Bit B: Capable of 10mbps half-duplex

Bit C: Capable of 10mbps full-duplex

Bit D: Capable of 100mbps half-duplex

Bit E: Capable of 100mbps full-duplex

Bit F: Capable of 100mbps 4k packets

Value we get from ZC706: 0x01c8

F E D C B A 9 8 7 6 5 4 3 2 1 0

|0|0|0|0|0|0|0|1|1|1|0|0|1|0|0|0|

MII Basic Mode Control Register

Bits 0-6: unused

Bit 7: Collision test

Bit 8: Full duplex

Bit 9: Autonegotiation restart

Bit A: Disconnect PHY from MII

Bit B: Power down PHY

Bit C: Enable autonegotiation

Bit D: Select 100mbps

Bit E: TXD loopback bits

Bit F: Reset

Value we get from ZC706: 0x1140

F E D C B A 9 8 7 6 5 4 3 2 1 0

16

4.1. USING PETALINUX CHAPTER 4. PETALINUX NETWORKING

|0|0|0|1|0|0|0|1|0|1|0|0|0|0|0|0|

Some of these reported settings and status bits make sense, but some do not;
no status bit is set that says that the PHY is able of any particular Ethernet link
speed, but at the same time both the status and control registers say that the device
is configured for autonegotiation.

This was as far as we were able to get with debugging this issue. Something
we would have wanted to test was whether the SFP port acted differently with a
different module. The XAPP1082 PDF specified that it was tested with a “HP
378928-B21 Cisco Gigabit Ethernet RJ45 SFP Module,” whereas our SFP module
was a different brand and model.

4.1.6 Other Notes

• Make sure jumper J17 is set (see XAPP1082 PDF)

4.1.7 Code Listing

Shell Scripts for the 32-bit VM

1 create project config kernel.sh

#!/ bin/bash

XAPP_HOME =~/545/ xapp1082_2014_4

source ~/545/ petalinux -v2014.4-final/settings.sh

cd $PETALINUX

petalinux -create -t project -s $XAPP_HOME/software/petalinux/bsp/

xapp1082_pl_eth.bsp

cd $PETALINUX/xapp1082_pl_eth

petalinux -config

2 apply patch build kernel.sh

#!/ bin/bash

XAPP_HOME =~/545/ xapp1082_2014_4

source ~/545/ petalinux -v2014.4-final/settings.sh

cd $PETALINUX/xapp1082_pl_eth/build/linux/kernel/download/linux -

xlnx/

git am $XAPP_HOME/software/patch /0001 - ethernet -xilinx -Add -XAPP1082 -

support.patch

cd $PETALINUX/xapp1082_pl_eth

cp subsystems/linux/configs/kernel/xapp1082_defconfig subsystems/

linux/configs/kernel/config

petalinux -build -v

Shell Script for the 64-bit VM

3 create boot image.sh

#!/ bin/bash

source ~/545/ petalinux -v2014.4-final/settings.sh

source /opt/Xilinx/SDK /2014.4/ settings64.sh

XAPP1082_PL_ETH_PROJECT_DIRECTORY=$PETALINUX/xapp1082_pl_eth

17

4.1. USING PETALINUX CHAPTER 4. PETALINUX NETWORKING

cd $XAPP1082_PL_ETH_PROJECT_DIRECTORY/images/linux

petalinux -package --boot --fsbl=zynq_fsbl.elf --fpga=$PETALINUX/

xapp1082_pl_eth/subsystems/linux/hw-description/pl_eth_sfp.bit

--u-boot

18

Chapter 5

Alternate Approaches

5.1 Building our own Ethernet

The first approach we attempted was to build our own ethernet system. From the
background chapter, I hope I’ve gotten across the difficulty of doing so. I thought
I could just watch the line for a preamble, and start reading the bits after a start
of frame delimiter. The more I read and researched the more layers of complexity
I realized existed ontop of such a seemlingly simple operation. Then apart from
just reading bits, transmitting and the other protocols and interfaces to conform to
made this infeasible.

5.2 Packet Processing Language

So we then looked more into a paper [1] I found describing a high level language
Xilinx created to compile down into an HDL. This looked promising, but after a few
email correspondences with Gordon Brebner, one of the authors of the paper, we
learned that the packet processing language (PP) was discontinued by Xilinx. It was
split into two, and the lower level portions became SDNet, a proprietary development
environment made for building networking technologies. Unfortunately a license for
it is very expensive, and it’d also mean we’d have to learn another tool besides
Vivado. The higher level half turned into an open source project called the P4
language. This compiles a high level language into a number of target languages.
Although Gordon was very enthuastic and helpful when it came to this, the P4
language is still very early in it’s infancy and we knew there was going to be very
little support. The other problem was that targetting Verilog wasn’t complete yet,
and we’d have to target SDNet anyways. Perhaps in the future, this would be more
viable.

5.3 Using Ethernet IP

I then tried to use their IP myself, and I tried to figure out a viable block de-
sign from their documentation. You can find my block diagram in Figure 5.1.
As far as I can tell, the clocking, the resets, and the axi connections are cor-
rect. The processing system is connected on the correct EMIO ports and memory
mapped IO are all set in the address editor, and while this design was verified,

19

5.4. PACKET REDIRECTION WIKICHAPTER 5. ALTERNATE APPROACHES

it could not synthesize. And if you look closely at the console in the figure 5.1
you can see one of the most useless error messages I have ever come across. If
it’s hard to see, it says HDL Generation failed for the IP integrator design

/afs/ece.cmu.edu/usr/terencea/Public/18545/.../design 1.bd. It is tauto-
logically true! I didn’t need Vivado to tell me this! How do I go about debugging
this? At this point, I couldn’t find anymore information on the forums. Removing
pieces just added more external peripheral ports so while some may have synthe-
sized, they weren’t ever useful.

Figure 5.1: My PL Block Diagram

5.4 Packet Redirection Wiki

Another wiki guide we tried to follow was Zynq-7000 AP SoC - Performance -
Ethernet Packet Inspection - Linux - Redirecting Packets to PL and Cache Tech
Tip [5]. This one looked promising because we could have redirected traffic into PL
and done all of our network analysis in hardware. However, it seems to be missing
a lot of parts, and there were more edits to this wiki after we first discovered it.
So perhaps in the future this wiki will be more useful. But at the time, some file
headers were for the Kintex, some for Zynq, and some for Virtex. So it looked like
an incomplete tech tip.

20

Chapter 6

Lessons Learned

• We spent far too much time early in the project doing research. This meant
that by the time we felt we had enough knowledge to begin actually working,
it was already fairly late in the semester and time was running short.

• We did not anticipate all the bugs and roadblocks we ran into, some of which
could have been tackled earlier in the semester, i.e. registering our device on
the school’s ethernet to start debugging that earlier.

• We fell victim to some poorly documented/incorrect guides that we spent large
amounts of time trying to force to work. This made it even more discouraging
when we did end up abandoning those methods, since we had spent so much
time only to have to try to start from scratch again.

• Relating to the last item, we also depended on following online guides and
wikis very heavily, and often blindly, without full understanding of why the
guide was supposed to work (or often times, not work).

• Since our knowledge on getting ethernet onto an FPGA was very limited fromt
the start, it was difficult to come up with concrete tasks and distribute them
among team members. We should have probably come up with more well-
defined tasks, and not just telling team members to ”Just get something to
work” by a certain date.

21

Chapter 7

Miscellaneous

7.1 Personal Statements

7.1.1 Terence An

There is a lot to learn, and a lot that could go wrong.
Looking back, the first thing I did wrong was have high expectations. Really.
Building this is challenging, and not in the way you’d expect. In reality, there is a
correct way to build ethernet in PL and have it properly communicate with Linux,
and I suspect that proper solution is probably really short, but really elusive.

The challenge is learning to use Vivado, and trying to find documentation on
what you’re using. There is no guide that gives you just enough working knowledge
to start building anything. It’s a lot of trial and error, and Vivado error messages
are often horrifically useless. Almost every piece of documentation you find will be
technically correct, full of detailed information, and still somehow utterly useless.
Their IP documentation will tell you the exact timings of every signal, where every
piece of I/O is, and at the end of it, you’ll still have no clue how to use this particular
IP. Instead, looking for example designs and design feedback on the wiki and the
forums will be much more helpful. But whatever you do read, know that it often
won’t be correct. You’ll have to fish out the parts you can use, and ignore the rest.
A lot of wiki example designs just don’t work at all. In the end, get used to starting
quickly and restarting often. If this is what you’d like to build, do it! You’ll learn a
lot, and hopefully you can pick up where we left off. Good luck!

7.1.2 Edward Nolan

One of the challenges that we faced this semester was figuring out how to approach a
new topic, networking, that none of us were experts on, without having a blueprint
from previous projects to base our experience on.

I think that in addition to the technical experience I’ve gained from this project,
I will also value the lessons I’ve gained about what works and what doesn’t when
you’re attempting something that you’re unfamiliar with. One of the things that
our team was good at getting done was doing research and gathering background
information. However, there wasn’t enough of a sense of urgency to try to act on
what we found out, and we should have been ready to “fail faster” by testing out
different options to see if they were viable as soon as we could.

22

7.1. PERSONAL STATEMENTS CHAPTER 7. MISCELLANEOUS

Another factor that made our project difficult was dealing with inaccurate, in-
complete, or outdated documentation. The problem that we were unable to over-
come was not mentioned in the Xilinx Wiki guide. Information that came from
forums or unofficial sources was more difficult to understand and act on, despite
being necessary to move forward with the project.

We should also have reached out earlier on for help from people with more
experience with these topics. The Xilinx forums could have been helpful if we had
used them more to ask directly relevant questions, instead of only referencing threads
that were started by other engineers. More reliance on outside expertise could also
have helped us recognize when our project was on the wrong track.

Overall, although our team didn’t achieve what we planned, I enjoyed the ex-
perience, and learned a lot about both networking technology and scheduling and
working in a group project. Good luck to any future 545 Ethernet teams!

7.1.3 Dale Zhang

For me, this class was challenging for a multitude of reasons. First off, I hadn’t
touched Verilog since I took 18-240 a few years ago, and I also wasn’t very comfort-
able with HDL. In addition, in the context of our project, I had very little knowledge
on ethernet and networking, so I had to learn a lot about how our project worked
as I went along.

Over the course of the semester, there are definitely a few things I wish I had
done differently. Since Terence and Eddie were both far more knowledgeable about
Ethernet and networking, I often took a backseat to them when the group was
making decisions. However, at some points in the semester, instead of asking for
their help understanding some of the concepts driving our design, I would try to
do it myself, without very much success. This led to me spending far more time
on some tasks than I should’ve. This definitely limited my effectiveness as a team
member.

Another mistake we made as a team was underestimating how much work ac-
tually needed to go into this project. Towards the beginning of the semester, we
didn’t put in much lab time outside of class periods and mandatory lab time. It first
really caught up to us around mid semester with the first status meeting, where we
saw how far behind we were, and how much more time we would need to commit
for the rest of the semester.

Some advice I’d have for anyone planning to pursue an FPGA Ethernet project
in the future is not to spend too much time trying to do research, and to start
actually working on the board as soon as possible. In addition, ethernet on FPGA
is not very well documented, and much of the documentation available is incorrect
or incomplete.

For the class in general, it’s definitely better to spend the long hours working on
your project earlier in the semester, before your other classes have started to pick
up. In addition, at the beginning of the semester, try and pick a project that you
can be passionate about and that you would really like to see succeed. At times,
I felt very unmotivated to go in an work on the project simply because I wasn’t
particularly excited about our final product.

To all future students reading this, good luck with the class and have fun!

23

Bibliography

[1] Michael Attig and Gordon Brebner. 400 Gb/s Programmable Packet Parsing
on a Single FPGA. 2012. url: http://www.xilinx.com/programmable/
about/research-labs/ANCS_final.pdf.

[2] Louise H. Crockett et al. The Zynq Book - Embedded Processing with the ARM
Cortex - A9 on the Xilinx Zynq 7000 All Programmable SoC. 2014, p. 484.

[3] IEEE. 802.3 IEEE Standard for Information Technology - Telecommunica-
tions and Information Exchange Between Systems - Local and Metropolitan
Area Networks - Specific Requirements - Part 3: Carrier Sense Multiple Ac-
cess with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications. 2002, pp. 1,562.

[4] naveenku. Ethernet Performance with Jumbo Frame Support and PL Ethernet
in Zynq-7000 AP SoC. 2015. url: http://www.wiki.xilinx.com/Zynq+PL+
Ethernet.

[5] E. Srikanth. Zynq-7000 AP SoC - Performance - Ethernet Packet Inspection
- Linux - Redirecting Packets to PL and Cache Tech Tip. 2013. url: http:
//www.wiki.xilinx.com/Zynq-7000+AP+SoC+-+Performance+-+Ethernet+

Packet+Inspection+-+Linux+-+Redirecting+Packets+to+PL+and+Cache+

Tech+Tip.

[6] Xilinx. Design Flows Overview. 2015. url: http://www.xilinx.com/support/
documentation / sw _ manuals / xilinx2015 _ 4 / ug888 - vivado - design -

flows-overview-tutorial.pdf.

[7] Xilinx. Designing IP Subsystems Using IP Integrator. 2015. url: http://www.
xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug994-

vivado-ip-subsystems.pdf.

[8] Xilinx. Designing with IP. 2015. url: http://www.xilinx.com/support/
documentation/sw_manuals/xilinx2015_4/ug896-vivado-ip.pdf.

[9] Xilinx. Getting Started. 2015. url: http://www.xilinx.com/support/

documentation / sw _ manuals / xilinx2015 _ 4 / ug910 - vivado - getting -

started.pdf.

[10] Xilinx. UltraFast Design Methodology Guide for the Vivado Design Suite. 2015.
url: http://www.xilinx.com/support/documentation/sw_manuals/

ug949-vivado-design-methodology.pdf.

[11] Xilinx. Vivado Design Suite Tutorial. 2015. url: http://www.xilinx.com/
support / documentation / sw _ manuals / xilinx2015 _ 4 / ug888 - vivado -

design-flows-overview-tutorial.pdf.

24

http://www.xilinx.com/programmable/about/research-labs/ANCS_final.pdf
http://www.xilinx.com/programmable/about/research-labs/ANCS_final.pdf
http://www.wiki.xilinx.com/Zynq+PL+Ethernet
http://www.wiki.xilinx.com/Zynq+PL+Ethernet
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+-+Performance+-+Ethernet+Packet+Inspection+-+Linux+-+Redirecting+Packets+to+PL+and+Cache+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+-+Performance+-+Ethernet+Packet+Inspection+-+Linux+-+Redirecting+Packets+to+PL+and+Cache+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+-+Performance+-+Ethernet+Packet+Inspection+-+Linux+-+Redirecting+Packets+to+PL+and+Cache+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+-+Performance+-+Ethernet+Packet+Inspection+-+Linux+-+Redirecting+Packets+to+PL+and+Cache+Tech+Tip
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug888-vivado-design-flows-overview-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug888-vivado-design-flows-overview-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug888-vivado-design-flows-overview-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug896-vivado-ip.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug896-vivado-ip.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug949-vivado-design-methodology.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug949-vivado-design-methodology.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug888-vivado-design-flows-overview-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug888-vivado-design-flows-overview-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug888-vivado-design-flows-overview-tutorial.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Xilinx. Vivado Design Suite Tutorial High-Level Synthesis. 2014. url: http:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/

ug871-vivado-high-level-synthesis-tutorial.pdf.

25

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/ug871-vivado-high-level-synthesis-tutorial.pdf

	Introduction
	Ethernet Background
	Logical Link Layer
	Ethernet Frame
	Physical Medium Attachment (PMA)
	Physical Coding Sublayer (PCS)

	Data Link Layer
	Logical Link Control
	Media Access Control (MAC)

	Basic Approach
	Building PL Ethernet
	The PHY IP
	Modifying the pipeline

	PetaLinux Networking
	Introduction
	Relevant Hyperlinks and Documentation
	Supplies

	Using PetaLinux
	Creating Boot Media
	Building XAPP1082's PetaLinux Configuration
	Connecting to the UART of the Zynq ZC706
	PetaLinux Networking Setup
	Bugs and Roadblocks
	Other Notes
	Code Listing

	Alternate Approaches
	Building our own Ethernet
	Packet Processing Language
	Using Ethernet IP
	Packet Redirection Wiki

	Lessons Learned
	Miscellaneous
	Personal Statements
	Terence An
	Edward Nolan
	Dale Zhang

