

Team E.T.
Fall 2015
─

Final Report
Chris Barker
Ryan Roberts
Mark Wuebbens
CMU | 18-545

 1

Statement of Use
The members of Team E.T., Chris Barker, Ryan Roberts, and Mark Wuebbens, hereby
grant permission to any person to reproduce or reuse any portion of this report or
our source code for academic purposes, provided we are given credit for our work.

Our source code can be found at the following URL:
h​ttps://github.com/545/Atari7800

Feel free to contact us with questions about the project at:
chrisbarker@cmu.edu
ryanroberts@cmu.edu
mwuebben@andrew.cmu.edu

https://github.com/545/Atari7800
https://github.com/545/Atari7800
mailto:chrisbarker@cmu.edu
mailto:ryanroberts@cmu.edu
mailto:mwuebben@andrew.cmu.edu

 2

Contents
Statement of Use
Contents
Acknowledgements
Overview

Background
Objective
Results
Development Tools

FPGA
Software

Design
System

System Block Diagram
6502C Sally

Overview
Registers
Addressing Modes
Interrupts
RDY Signal
Halt Signal
Our Model
Verification

Maria
DMA Control

Display List List Format
Display List Format
DMA Implementation

Line RAM
Writing
Reading

Timing and Control
Maria Timing
External Signals

Memory Map
Memory
TIA

Graphics

 3

Overview:
Timing:
Playfield:
Movable Graphics:
Register Reference Tables:

Sound
RIOT

Overview
RAM
Ports
Timer
Our Implementation

Hardware Interface
VGA
Hidden Control Register

Approach
Design Partitioning
Tools and Design Methodology
Testing and Verification
Status and Future Work

Lessons Learned
What we wish we had known

Vivado Tips
Good Decisions
Bad Decisions
Words of Wisdom

Personal Statements
Chris Barker
Ryan Roberts
Mark Wuebbens

Sources

 4

Acknowledgements
We would like to thank a few people whose work was vital to our project.

● Daniel “DanB” Boris - for the wealth of information he provides about all things
Atari. Specifically:
○ The only source anywhere on the hidden control register, as well as many

other posts on the atari7800wiki:
https://sites.google.com/site/atari7800wiki/7800-control-register

○ His response to our question on the AtariAge forums:
http://atariage.com/forums/topic/245073-hidden-control-register-for-atari-
7800/

○ His site on Atari HQ, especially his commented disassemblies of the BIOS
and Robotron code ​http://www.atarihq.com/danb/a7800.shtml

● Daniel Beer - For his RIOT and TIA implementations as part of his Atari 2600
project
○ http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/

2006to2007/dbb26/dbb28_meng_report.pdf
● Arlet Ottens - For his 6502 implementation

○ https://github.com/Arlet/verilog-6502

● 18-545 staff - For all their support and guidance

● The AtariAge Forums and Atari Enthusiasts everywhere. Keep being awesome!

https://sites.google.com/site/atari7800wiki/7800-control-register
http://atariage.com/forums/topic/245073-hidden-control-register-for-atari-7800/
http://atariage.com/forums/topic/245073-hidden-control-register-for-atari-7800/
http://www.atarihq.com/danb/a7800.shtml
http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2006to2007/dbb26/dbb28_meng_report.pdf
http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2006to2007/dbb26/dbb28_meng_report.pdf
https://github.com/Arlet/verilog-6502

 5

Overview

Background
The Atari 7800 ProSystem was released in 1986 by the Atari Corporation. It was
intended to replace the company’s unsuccessful Atari 5200 and was the first console
to feature built in backwards compatibility. The 7800 will play any 2600 game and can
even use 2600 controllers.

Objective
Our goal for this project was to implement the Atari 7800 game system on the
Zedboard FPGA platform. Specifically, we aimed to implement a fully functioning
system capable of playing any of the various game cartridges that are compatible
with the 7800 including the 2600 games for which the 7800 has backwards
compatibility.

This required implementing all of the various game and graphics modes available on
the 7800 which are determined by the type of cartridge for each game. Game
cartridges vary in the amount of included RAM and ROM, and also by the inclusion of
an additional sound processing chip known as POKEY. All of these factors affect the
modes which the 7800 must run in.

An additional goal for this project is to design a sleek case for our FPGA system to
mimic a real video game console experience.

Results
We completed a fully functioning Atari 7800, minus two major features. Firstly, our
system requires games to be run from read only memory (ROM) on the board, and is
incapable of interfacing with physical game cartridges. Secondly, our system has
extremely limited backwards compatibility with Atari 2600 games - the games appear
recognizably on the TV and accept user input, but have major graphical glitches
rendering them unplayable. Additionally, a limited set of Atari 7800 games have
graphical problems. However, the majority of 7800 games run flawlessly. We used
real Atari 7800 controllers for input and have working VGA video and AUX audio.

We built the following components from scratch:

● “Maria” graphics chip
● VGA Controller

○ Frame buffer for Atari 2600 mode

 6

○ Chrominance-luminance converter
● Sound system
● Hardware interface to cartridge and controllers
● Memory map and memory clock management
● CPU halt and interrupt management
● Control Register

We used existing implementations of these components [​Acknowledgements​]:

● 6502 Core
● RIOT I/O Chip
● TIA Graphics and I/O
● Xilinx clock divider and RAM IP

Development Tools

FPGA
We used the Zedboard Zynq-7000 board. This board was selected because it had a
considerable amount of logic cells along with enough block RAM to suit the 7800’s
needs.

Software
All development was done using Vivado. We used a few of the Xilinx IP blocks built in
Vivado such as block RAM and clock generators.

We used Github as a version control program for the project and as a wiki for various
technical documents and useful links.

Design

System
The system consists of three main components. The main components are the 6502C
“Sally” core, the MARIA graphics chip, and the TIA sound and graphics chip. The 6502C
is a custom MOS 8 bit microprocessor common in gaming systems of this era. The
MARIA graphics chip is the 7800’s main graphics chip, controlling the drawing of
sprites and the playfield for all 7800 games. The TIA sound and graphics chip handles
sound and button inputs for the controllers. The TIA also handles graphics when an
Atari 2600 game is run.

There are also several peripheral components to the system - the RIOT IO Chip,
Cartridge interface, and two 2 KB SRAM blocks. The RIOT IO Chip handles system

 7

button presses, such as power and reset, and the directional input of the controllers.
The Cartridge contains the program ROM but may also contain additional RAM or a
POKEY audio chip for extra sound capability. The SRAM is low latency memory and is
used to store variables and the program stack.

The system communicates and performs computations through shared Address and
Data buses with most communication happening through memory mapped registers
in each component.

System Block Diagram

6502C Sally

Overview
The 6502C is a custom MOS 8 bit microprocessor with 56 instructions and 13
addressing modes.

 8

Registers
 The 6502C has 6 registers:

PC - ​The 16 bit program counter. This stores the current instruction being
executed

S - ​The lower 8 bits of the stack pointer. The upper 8 bits are always 1. Points to
the top of the stack.

X - ​8 bit index register. Used to calculate addresses in certain addressing modes.

Y - ​8 bit index register. Used to calculate addresses in certain addressing modes.

A - ​8 bit accumulator register. Used primarily for arithmetic and logical operations.

P - ​8 bit status register. Each bit represents one flag and can be set and cleared
using special instructions

Bit 0 C- ​The carry flag. Represents the carry out of any ALU operation.

Bit 1 Z - ​The zero flag. Set to one when any ALU operation results in a 0.

Bit 2 I - ​The interrupt flag. If this is set, IRQs are disabled.

Bit 3 D - ​The decimal flag. If this is set, the ALU operates in BCD mode.

Bit 4 B - ​The brk flag. Set whenever a software interrupt (BRK) is executed.

Bit 5 - ​Unused. Always set to 0.

Bit 6 V - ​The overflow flag. Whenever an ALU operation results in a value
larger than can be represented in 8 bits, this is set

Bit 7 S - ​The sign flag. This is set when the ALU operation results in a
negative value.

Addressing Modes
There are 13 addressing modes, though not all of them can be used on each
instruction.

Accumulator - ​The accumulator is implied as the operand.

Immediate - ​The operand is preceded by # and is used directly.

Implied - ​The operand is implied by the instruction, so no operand is given.

Relative - ​The offset specified is added to the PC to compute the new address.

Absolute - ​A 16 bit address is specified and used.

Indirect - ​A 16 bit address is specified. The value stored at that address is used as
the operand. The JMP instruction is the only one that uses this addressing mode.

 9

Zero-Page - ​An 8 bit address is specified. The upper 8 bits are assumed to be 00
and are concatenated with the supplied 8 bits to make the address.

Absolute Indexed (X) - ​A 16 bit value is specified and is offset by the value in X to
get the final address.

Absolute Indexed (Y) - ​A 16 bit value is specified and is offset by the value in Y to
get the final address.

Zero-Page Indexed (X) - ​An 8 bit value is specified and is offset by the value in X.
The 8 bit result is used as the lower byte of the address, and 00 is used as the
upper byte.

Zero-Page Indexed (Y) - ​An 8 bit value is specified and is offset by the value in Y.
The 8 bit result is used as the lower byte of the address, and 00 is used as the
upper byte.

Zero-Page Indexed Indirect - ​An 8 bit value is supplied and is offset by the value
in X. The 8 bit result is used as the lower byte of the address and 00 is used as the
upper byte. The value stored in memory at this address is used as the address for
the operation.

Zero-Page Indirect Indexed - ​An 8 bit value is supplied and is used as the lower
byte of the address. 00 is used as the upper byte of the address. The value stored
at this location in memory is offset by Y and is used as the address for the
operation.

Interrupts
The 6502 allows for three different types of interrupts. Each of these can be triggered
by asserting the signal to the core and has a separate vector in the address space
from FFFA to FFFF which points to the interrupt sub-routine that is called for that
interrupt.

NMI​ ​-​ This is a non-maskable interrupt. This means it will always be executed
regardless of the value in the I register. In the Atari 7800, it is connected to the
MARIA and is asserted when the MARIA finishes displaying a zone and the
programmer has opted to generate an interrupt for that zone. This means the
interrupt subroutine can change palettes, change the display lists, or do anything
else involving that zone safely.

IRQ - ​This is a maskable interrupt. If the I flag is set, it will be ignored. The I flag is
set automatically upon entering into the IRQ subroutine and is cleared just before
exiting the subroutine. The IRQ line is hooked up to the cartridge in the Atari 7800,
but no cartridge ever asserts it, so it is unused for hardware interrupts. The BRK
instruction is a software interrupt which uses the same interrupt vector as IRQ

 10

RESET - ​This is an interrupt triggered by pressing the reset button on the console.
It will result in running the BIOS code.

RDY Signal
The RDY signal is a standard signal across all derivatives of the 6502 model. It halts
the processor and holds the address and data bus constant. While the RDY signal is
held constantly high by the Atari 7800, it was used in our implementation of the halt
signal, so it is important to mention.

Halt Signal
The halt signal is a custom signal used in the 6502C and is identical to the RDY signal
with one exception. The address and data bus are tri-stated when the halt signal is
asserted, allowing another chip to drive the bus. This signal is necessary because the
MARIA needs to halt the cpu regularly to perform a DMA. Our halt signal was
implemented by putting the cpu in a wrapper module and asserting the RDY signal on
the core while tri-stating the address and data bus.

Our Model
The 6502 model we decided to use is the NMOS 6502 verilog model by Arlet Ottens
[4]. This model was seen as ideal compared to the models available on opencores for
two reasons. Primarily, the core is well documented and uses very descriptive variable
names. This is a huge step up from the opencores models which had sparse
commenting and confounding variable names. Secondarily, it was described in
Verilog, which our team is much more well versed in. This core has one major
drawback. It does not use the two clock system that the 6502 was known for. The
6502 uses two clocks which are inverses of each other. External operations, such as
driving buses, are done when one clock is high, and internal operations, such as
latching data, are done when the other clock is high. Because of this, Ottens declared
that the timing within an instruction may not match up perfectly with the original
6502; however, the core will perform exactly the same from an instruction-atomic
level. This means that each instruction will take exactly the same number of cycles as
the original 6502 design. Because of this, we are confident that this drawback will not
have any effect on the core’s functioning within the system.

Verification
We have personally verified that the core works by running the core with a test suite
found online [5]. We developed a test bench and simulated the entire memory state
using our custom memory module. We loaded the binary for the test suite into the
memory, and it ran to completion. After modifying the core to add the halt signal, we
ran the test again, halting the core for 64 cycles after 64 cycles of execution. This test

 11

suite tests every single instruction and addressing mode as well as testing every alu
instruction with every possible 8 bit operand. Because of this, we are very confident
that this core will suit our needs and perform the tasks required of the SALLY.

Maria
The Maria chip generates the video output for Atari 7800 games. It “makes available a
hardware and software breakthrough” in graphics display [2]. It allows for more
complex scenes than the Atari 2600, which uses the Tia chip and allows for only a
fixed number of sprites. The Maria chip reads graphics data from an in-memory data
structure on a per-scanline basis, giving much more flexible graphics options.

The original console output video in the NTSC or PAL TV formats (for North America
and Europe respectively.) We are using NTSC cartridges and are therefore
implementing a Maria that emulates the NTSC output, however our implementation
converts this format to VGA for compatibility with modern displays.

The Maria operates at 7.154MHz. Its clock is divided by either four or six (to 1.79 MHz
or 1.19 MHz) and input to the CPU, depending on which memory address is being
accessed. In this section, a “clock cycle” refers to a 7.154 MHz period.

The following block diagram ([2], Fig. 1) describes the functional organization and the
registers in the original Maria design. Our design divides the Maria into four modules:
Timing and Control​, ​Memory Map​, ​DMA Control​, and ​Line RAM​. Each is described below,
including its interfaces internally as well as to parts of the system external to the
Maria.

 12

DMA Control
The Maria retrieves graphics data through Direct Memory Access (DMA). The
in-memory data structure is called the Display List List (DLL), or Zone List (ZL). One
item in the DLL is used per scanline and describes what needs to be written into the
Line RAM during that scanline. We start with a description of the data structure
format, and then move to explaining how our implementation processes it.

Display List List Format

The first item in the DLL is in memory at the address specified by the
memory-mapped registers ZPH and ZPL. Each element (Zone) in the DLL is specified
by three bytes:

 13

❖ {DLIen, a12en, a11en, 0, offset[3:0]}
➢ DLIen: Whether the ​Timing and Control​ module should raise a Display List

Interrupt after fetching these three bytes.
➢ a12en, a11en: “Holey” (sparse) graphics data. Indicates whether to ignore

pixel data addresses with bits 12 or 11 asserted, respectively.
➢ Offset: The number of scanlines to use this Zone for, minus one. The sum

of offsets-plus-one for the entire DLL must be 242, the number of scanlines
in NTSC. If the DLL describes more than 242 lines, the 243rd and later lines
will be ignored.

❖ DPH
➢ High byte of the Display List Pointer

❖ DPL
➢ Low byte of the Display List Pointer. These bytes are concatenated to form

a pointer to the Display List (DL) for this zone. The format of the DL is
described next.

The ZP is reset to its memory mapped value at the beginning of every frame. Every
time a zone is completed, the ZP is incremented by three and points to the next Zone
for the next scanline.

Display List Format

The display list specifies an ordered list of one-dimensional Objects to be drawn on
the Line RAM. Each object has a horizontal position, a color palette (3-bit index into
memory mapped registers COLOR MAP), a width in bytes of pixel data, and a pointer
to pixel data. Display list entries consist of either 4 or 5 byte headers. The end of the
display list is indicated by a 2 byte header where the second byte is null.

Each object is written sequentially into the buffer Line RAM, which is latched into the
playback Line RAM at the end of each scanline. See the ​Line RAM​ ​module for how the
graphics data is interpreted.

Four byte object header:

● PPL: Low address of Pixel Pointer (address of graphics data)
● {Palette[2:0], Width[4:0]}

○ Width is two’s complement of number of bytes of pixel data
● PPH: High address of Pixel Pointer

○ Pixel data is loaded into ​Line RAM
● INPUT: Left column (0 to 159) of object in Line RAM. Each column is 2 pixels.

Five byte object header:

● PPL: Same as 4-byte mode
● {WM, 1, IND, 5’b0}

 14

○ WM: Write Mode. Determines whether each byte of graphics data occupies
two 2-pixel cells of Line RAM (1) or four 2-pixel cells (0). This changes WM
for all objects until another 5-byte header changes it.

○ IND: Indirect Mode. If 1, the data at PP is treated as a “character map” - an
array of low bytes of pointers to graphics data in ROM. The upper byte of
the pointer is CHARBASE, a memory mapped register, plus OFFSET. Indirect
mode is used for this object only.

● PPH: Same as 4-byte mode
● {Palette[2:0], Width[4:0]}: Same as 4-byte mode
● INPUT: Same as 4-byte mode

Null terminator:

● PPL
● 0

DMA Implementation

Our ​DMA Control ​module is implemented as an FSM. It is reset to a ​wait​ state. There
are two signals it can receive from ​Timing Control​: ​dp_dma_start​ and
zp_dma_start​. ZP DMA occurs once per frame. ​DMA Control​ dereferences the
memory mapped ​Zone Pointer ​and loads the three bytes of Zone data. ​DP​, ​DLIen​,
A12en​, ​A11en​, and ​OFFSET​ are loaded into registers from ZP, ZP+1, and ZP+2. ​DMA
Control​ returns to the wait state. If ​DLIen​ is asserted, ​DMA Control​ signals ​Timing
Control​ to raise a display list interrupt.

Upon receiving ​dp_dma_start​, DMA for the DP starts. This occurs once per scanline.
DMA Control ​dereferences the ​DP​ register and reads 2 bytes. If the second byte is
nonzero in any of the lowest 5 bits, ​DMA Control ​is in four-byte mode. If the second
byte has zero as its lowest 5 bits, but nonzero in any of the top bits, it is in five-byte
header mode. If all bits are zero, the null terminator is found. This case is described
last.

In 4- or 5-byte mode, the 4 or 5 bytes above are addressed. ​WIDTH​, ​PP​, and ​IND ​are
read into DMA Control. DMA Control sends signals to ​Line RAM ​when ​PALETTE​, ​INPUT​,
and ​WM​ are on the data bus instructing it to latch those values.

In direct mode, ​DMA Control​ places ​PP ​on the address bus and signals ​Line RAM ​to
latch the values on the data bus as graphics data. ​OFFSET ​is added to the upper byte
of ​PP​. This process continues only if Holey DMA rules are not met. If the address is in
cartridge space, ​DMA Control​ holds this address for 4 clock cycles, as the cartridge is
clocked at 1.79MHz. Otherwise, it holds the address for 1 clock cycle. It repeats this
process and increments ​WIDTH​ until ​WIDTH​ is zero. Then it moves to the next Object

 15

(increments ​DP ​by 4) and repeats the DP DMA process- unless ​dp_dma_kill​ is
asserted from ​Timing Control​, in which case it returns to ​wait​.
In indirect mode, ​PP​ is dereferenced to obtain ​CHARPTR​. This takes only one clock
cycle as character maps are required to be stored in fast memory.
{​CHARBASE​+​OFFSET​, ​CHARPTR​} is dereferenced to obtain pixel data, assuming holey
DMA rules are not met. This can take either 1 or 4 cycles. If ​CHARACTER_WIDTH ​in the
Maria’s control register is set, {​CHARBASE​+​OFFSET​, ​CHARPTR​+1} is also dereferenced
to obtain pixel data. Otherwise, ​PP ​is incremented and the process repeats until ​PP
is zero. The state machine moves to the next Object, as in direct mode.

When the null terminator Object header is found, ​DMA Control​ decrements the value
in its ​OFFSET ​register. If ​OFFSET​ is nonzero, or if ​Timing Control ​signals that this is the
last scanline, ​DMA Control ​asserts ​dp_dma_done ​to Timing Control and returns to the
wait ​state. Otherwise, the next 3-byte Zone header needs to be fetched. New values
of ​DLIen​, ​A12en​, ​A11en​, ​OFFSET​, and ​DP​ are loaded, and ​ZP​ is incremented by three.
If ​DLIen​ is 1, ​DMA Control​ signals ​dp_dma_done_dli​ to ​Timing Control ​and returns to
wait​. Otherwise, it asserts ​dp_dma_done​ to ​Timing Control​ and returns to ​wait​.

Line RAM
The ​Line RAM ​module is, at its core, a place for graphics data to be buffered between
being read by ​DMA Control ​and displayed by ​VGA​. It has some additional logic to
implement 2 Read Modes and 3 Write Modes, controlled by the memory mapped
Control Register and a bit in the five-byte Object Header respectively.

Line RAM ​has two RAMs: a buffer RAM and a playback RAM. Each one has 160 five-bit
cells. Each cell contains the data for two consecutive pixels. When ​Line RAM​ receives
an ​lram_swap ​signal from ​Timing Control​, the contents of the buffer RAM are latched
into the playback RAM, and the buffer RAM is reset to all zeroes.

Line RAM​ takes a ​read_mode​ input from the memory mapped ​control register​. It
loads an 8-bit ​input​ register from the data bus when it receives ​input_w​ from ​DMA
Control​, a 2-bit ​write_mode​ register when it receives ​wm_w​ from ​DMA Control​, and
3-bit ​palette​ register when it receives ​palette_w​ from ​DMA Control​.

Writing

Upon receiving ​pixels_w ​from ​DMA Control​, ​Line RAM​ loads a byte of pixel data from
the data bus. Let the value in palette be {P2, P1, P0}. Let the value on the data bus be
{D7, D6, D5, D4, D3, D2, D1, D0}. If wm is 0, the following values are written to buffer
Line RAM starting at input and proceeding upward:

❖ P2, D3, D2, D7, D6
❖ P2, D1, D0, D5, D4

 16

The exception is if the index into Line RAM exceeds 159 or the pixel data is 0. Then no
value is written.

Reading

The output UV data for a given column is determined by indexing 3 palette bits and 2
color bits into the memory mapped COLOR MAP. If the color bits are 0, the
background color is used. Otherwise, color C of palette P is used. See the ​Memory
Map​ ​for more detail. Then, these UV values are converted to RGB by the VGA module.
See the ​VGA​ module for more detail. Here, we focus on how the palette and color bits
are determined.

The VGA display has 640 columns. The original console output 320 pixels, so the VGA
module sends all but the least significant bit of its column counter to ​Line RAM​ to
request Luminance-Chrominance (UV) data for the current pixel. ​Line RAM ​uses all but
the least significant of these bits to index into the playback Line RAM and retrieve one
of 160 five bit cells. Depending on ​read_mode​, the least significant bit, indicating left
or right pixel within the cell, may affect the output UV data. We will call this bit ​R​, for
Right pixel. We refer to the bits in the playback cell as {L4, L3, L2, L1, L0}. Then the
palette used for display is determined as follows:

● RM​ = 0x: {L4, L3, L2}
● RM​ = 10: {L4, 0, 0}
● RM​ = 11: {L4, L3, L2}

The color used for display is determined as follows:

● RM​ = 0x: {L1, L0}
● RM​ = 10, ​R​ = 1: {L0, L2}
● RM​ = 10, ​R​ = 0: {L1, L3}
● RM​ = 11, ​R​ = 1: {L0, 0}
● RM​ = 11, ​R​ = 0: {L1, 0}

Together, the three read modes and two write modes create six graphics modes.
Note that the write mode is applied during the buffering scanline whereas the read
mode is applied during the playback scanline. These graphics modes allow for
different varieties of palette choices and resolution/compression tradeoffs.

Timing and Control
The ​Timing and Control ​module has several responsibilities, including managing timing
for the Maria, generating control signals for the ​DMA Control​ module, and managing
clocking for the whole system.

 17

Maria Timing

The ​Timing and Control​ module takes an enable signal generated by the processor. If it
is not asserted, it will not send commands to the​ DMA Control​ module. It also takes a
signal from ​Memory Map​ indicating whether ZP has been written to yet. Before ZP is
written, ​Timing​ will not send commands to ​DMA Control​.

Both NTSC and VGA operate at 60 frames per second. VGA has 525 rows, 480 of which
are visible. NTSC has 262 scanlines, 242 of which are visible. To convert from the
NTSC interface to VGA, we use two VGA rows per NTSC scanline. This means a
scanline will need to complete in slightly less time: 2/(60 * 525) = 1/(60 * 262.5)
seconds in our system instead of 1/(60 * 262) seconds in the original system.
However, since our DMA implementation takes fewer clock cycles to complete than
the original system, this is not a problem. Our conversion to VGA cuts off the top line
and bottom line from the NTSC format. This is acceptable because on some NTSC TVs,
the top and bottom 25-26 lines were not visible anyway.

Each scanline takes 452 clock cycles. A column counter keeps track of how many
cycles have elapsed since the last scanline incrementation. This is used to generate
control signals as described below.

The ​Timing and Control​ module takes two 10-bit signals, ​vga_row​ and ​vga_col​, as
input from the VGA controller. The module uses these to determine when to assert
the halt signal to the core and send commands to the ​DMA Control​ module. There are
two types of DMA in our design, DP DMA and ZP DMA. We describe their operation in
the DMA Control section, and their timing here.

ZP DMA occurs once per frame, needs to be completed two cycles before buffering of
the first line of a frame begins, and takes 22 cycles to complete, so it starts 24 cycles
before the end of VGA line 520 (three rows before the first scanline in the DLL) when
the column counter is 420. First, the module sends a ​halt​ signal to the CPU and waits
9 cycles for the CPU to finish driving the address bus, then 7 cycles are used to
perform the DMA, and 13 are used to return control to the CPU. The Timing and
Control module asserts ​dp_dma_start​ to ​DMA Control​ after the first 9 cycles.

DP DMA occurs once per scanline. It starts when the column counter is 28, per the
specification, to allow the CPU to perform computation at the start of a scanline. We
assert ​halt​ and wait 9 cycles for the CPU to respond to the signal, then assert a
dp_dma_start​ signal to ​DMA Control​. This DMA is killed at 436 cycles via the
dp_dma_kill​ signal, if it is not yet finished, to allow the CPU to perform computation
at the end of the scanline. Otherwise, when the module receives a ​dp_dma_done
signal from the DMA Control module, it deasserts ​halt​ and waits for the next
scanline to begin. ​DMA Control​ also may send a ​DLI​ (Display List Interrupt) signal at
this time, causing ​Timing Control​ to send a non-maskable interrupt signal to the CPU.

 18

TIming Control​ asserts the non-maskable interrupt signal for six clock cycles after halt
is deasserted to ensure it is seen by the CPU.

The first DP DMA happens on VGA line 521-522 (two VGA rows before the first
scanline)​ ​to buffer for scanline 0, which is not displayed. On VGA line 523-524,
scanline 1 is buffered. on VGA line 0-1, scanline 1 is displayed and is the first visible
line. Scanline 2 is buffered simultaneously. The last visible scanline is displayed on
VGA line 479-480, and the last invisible scanline (which still has a DP DMA) is
“displayed” on VGA line 481-482.

At the completion of each DP DMA, ​Timing and Control​ asserts a signal to the Line
RAM module causing it to latch the contents of the input lineram into the playback
lineram and reset the input lineram. This loads the buffered data to be displayed on
the next two VGA rows.

External Signals

The Maria divides the input clock by two to 3.58MHz and outputs it to the Tia. It
divides the input clock by either 4 or 6 to 1.79MHz and 1.19MHz respectively,
depending on whether memory is mapped to a fast device or slow device, and
outputs it to the CPU.

The ​ready ​signal is output to the CPU. It is 1 by default. When the CPU writes to a
memory mapped register ​wait_sync​, ​ready​ goes to 0. When a scanline completes, it
returns to 1. This allows the CPU to wait for the next scanline to complete.

Memory Map

The Maria, perhaps because it is the fastest clocked chip in the system, is responsible
for memory mapping. It has its own internal memory mapped registers, described
below, and also outputs 4 memory-select signals to other devices in the system letting
them know that the current read or write is intended for them. These devices are
6532 (RIOT), Tia, RAM0, and RAM1. The external memory map is as follows, and we
have implemented it per this specification ([2], Fig 2):

 19

 20

The internal memory mapped registers are as follows ([2], Fig 3):

The memory mapped registers are used as follows:

● COLOR MAP: Indexed by a {Palette[2:0], Color[1:0]} pair by the ​Line RAM​ module.
The value in register P[Palette]C[Color] is output. It represents an 8-bit
chrominance/luminance pair.

● WSYNC: Wait for end of scanline. See ​Timing and Control: External Signals​.
● STATRD: High bit indicates whether NTSC VSYNC would be active, which occurs at

VGA lines 512 through 524.
● ZPH, ZPL: See ​DMA Control​. Concatenated together, these point to the beginning

of the Zone List.
● CHARBASE: Upper byte of character map address. Concatenated with items in the

character map in indirect mode.
● CONTROL:

 21

○ CK: Color Kill. Not currently using. “Eliminates color artifacts for text
modes.”

○ DM: Display mode. Must be 0b10 for the Maria to operate.
○ CWIDTH: Determines whether to read 1 or 2 bytes at a time in Indirect

mode.
○ BCNTL: Determines whether the border should be black or the background

color. Since we are not displaying a border we don’t plan to use this.
○ KM: Kangaroo mode. Determines the behavior of pairs of pixels in 320-

graphics modes when one pixel is visible and the other isn’t. In kangaroo
mode, the invisible pixel is transparent. Without it, it takes on the
background color.

○ TK: Transparency kill. Always display background color when color is 00,
instead of retaining the existing color.

○ RM: Line RAM Read mode. See ​Graphics Modes​.

Memory
The Atari 7800 has two 2KB banks of SRAM referred to as Ram0 and Ram1 which are
used by the Sally to create a stack and to store variables. We implement this memory
by instantiating two distributed RAMs:

(* ram_style = “distributed” *) reg [7:0] ram0 [2047:0];
(* ram_style = “distributed” *) reg [7:0] ram1 [2047:0];
The memory mapping module described in the Maria section detects when addresses
mapping to Ram0 or Ram1 are being accessed and outputs a chipselect signal, which
sets the corresponding enable signal for the RAM modules, as well as the other
memory mapped components: TIA, RIOT, Cartridge, BIOS, and Maria.

We use two separate databuses: a “write” databus and a “read” databus. This allows
the core to perform a write and use data from its previous read on the same clock
cycle. To allow for this, the chipselect signal is buffered. The address bus, write
databus, and write enable signals are sent to the memory component selected by the
current chipselect. The read databus is driven by the memory component selected by
the buffered chipselect.

Complexity arises here because the buffered chipselect needs to be latched at a
different clock edge depending on which memory component is being read from. The
TIA and RIOT are clocked at 1.19 MHz; the cartridge and Maria memory map are
clocked at 1.79 MHz; the RAM blocks are clocked at 1.79 MHz when the core is active;
and the RAM blocks are clocked at 7.14MHz when the Maria is active. We use a gated
clock called mem_clk to determine at what rate to latch the chipselect buffer.

 22

TIA

Graphics

Overview:

The TIA chip is responsible for generating graphics information in 2600 mode. The
Atari 7800 runs in this mode for backward compatibility with 2600 games.

In 2600 mode, the processor accesses the TIA registers in the address range
0x00-0x3c. This memory space, the RIOT memory mapped registers, the 128 bytes of
memory in the RIOT, and the ROM space provided on the game cartridge are the only
memory available to the processor in this mode. This mode has a special 2600
memory map that covers the same 0000-FFFF address space with a large number of
shadows into each of these 4 regions.

Graphics in 2600 mode are implemented by writing values to registers in the TIA to
describe the location and properties of the objects it displays. These objects are: 2
player sprites, 2 player missiles, 1 ball, the playfield, and the background. Because the
TIA has no memory to store graphics data, it requires the core to set up each scanline
as it happens. This makes timing between the TIA and core crucial for proper
execution.

Timing:

A single frame on a TV consists of 262 horizontal scanlines of which there are (in
order)

● 3 Vertical sync (VSYNC) lines
● 37 Vertical Blank (VBLANK) lines
● 192 Visible picture lines
● 30 Overscan lines

Each scanline consists of 228 TIA clock counts (3.58 MHz). The first 68 of these are
horizontal blank (HBLANK), and the remaining 160 clocks are visible on the TV.

Horizontal timing is taken care of by the processor, and the HBLANK and HSYNC
signals are raised in turn. The core must control vertical timing by writing to memory
mapped VSYNC and VBLANK registers in the TIA. The typical method for doing this is

● Assert VBLANK at the beginning of Overscan
● Wait 30 scanlines (usually by setting the timer in the RIOT so the core can

do other things)
● Assert VSYNC

 23

● Wait 3 scanlines
● Deassert VSYNC
● Wait 37 scanlines (usually by setting the timer)
● Deassert VBLANK
● Display 192 lines of game picture

The game picture is displayed line by line by having the core write the data for that
line in the TIA. This means the core must run in perfect line by line sync with the TIA.
Each core clock is equal to 3 TIA clocks, so this gives the programmer 76 cycles per
line (or less) to generate that line. It is customary to update the TIA every two lines to
give the programmer more computation time. The 70 lines of blank give the core
5,320 cycles to update game logic, check for input, and perform other housekeeping
tasks.

Since synchronization is so important, it is necessary for the programmer to be able
to wait for the beginning of the next scanline before executing more code. This is
accomplished by writing any value to the WSYNC register.

COLOR​:

Color is output in a chrominance-luminance format just as it is in the MARIA. There
are four chrominance-luminance registers which control the color of the objects
(some are paired). These registers and the objects they color are

● COLUMP0 - Player 0 and Missile 0
● COLUMP1 - Player 1 and Missile 1
● COLUMPF - Playfield and Ball
● COLUMBK - Background

Each register is 7 bits with 4 bits selecting from 16 available colors and the remaining
three bits controlling the brightness of the selected color.

Playfield:

The playfield is described using 20 bits split into three registers (PF0, PF1, PF2). PF0
constructs the first 4 bits of the playfield, PF1 constructs the next 8, with PF2
construction the final 8 bits, ending at the center of the screen. The playfield is drawn
where a 1 is seen while the background is drawn where a 0 is seen. Writing a 0 to the
CTRLPF register causes the playfield to be duplicated on the right side of the screen.
Writing a 1 causes the playfield to be reflected onto the right side.

Movable Graphics:

The remaining objects (player sprites, missiles, and the ball) are movable objects.
They can be positioned horizontally by writing to their reset registers. Each object will
be positioned at wherever the electron beam was when its register was last reset.

 24

Because of the write timings, this means the programmer can only position each
object with a granularity of 15 clocks. This is fine tuned using horizontal motions.

Vertical positioning can be controlled by writing to each objects enable register for
the scanline on which the programmer wishes it to appear.

Each object is described more specifically below:

● Missile - The missiles can be horizontally positioned by writing to their reset
registers (RESM0, RESM1). They can additionally be reset to the center of
their respective player sprite by writing a 1 to their reset player registers
(RESMP0, RESMP1). They will remain locked to the player sprite until a 0 is
written to the register. They can be enabled by writing a 1 to their enable
registers (ENAM0, ENAM1). Their width can be controlled by writing to bits
4 and 5 of the number size registers (NUSIZ0, NUSIZ1) where the possible
widths are 1, 2, 4, and 8 bits wide.

● Ball - The ball can be reset by writing to its reset register (RESBL). It can be
enabled by writing a 1 to its enable register (ENABL). It can be stretched in
width by writing to bits 4 and 5 of the Playfield Control register (CTRLPF)
with the same widths as the missiles. The ball can be given 1 cycle vertical
delay by writing to the vertical delay register (VDELBL). The reason for this
is so the ball can still move smoothly vertically if the TIA is only updated
every other line.

● Players - The player graphics can be reset by writing to their reset registers
(RESP0, RESP1). They take shape by writing to their player graphics registers
(GP0, GP1) which are each 8 bits wide. This allows the sprite to be 8 bits
wide and as tall as desired. For each line that the sprite is on, simply write a
1 to a bit to enable the sprite for that clock and a 0 to disable the sprite for
that clock. A reflection of the player sprite can be drawn by writing a 1 to
the reflection registers (REFP0, REFP1). Multiple copies of the players can be
drawn using the bottom 3 bits of number size registers (NUSIZ0, NUSIZ1).
Missiles are generated for these copies. The player sprites can also be
vertically delayed like the ball using the vertical delay registers (VDELP0,
VDELP1).

Horizontal Motion:

Horizontal motion allows the programmer to move the objects relative to their
current horizontal position. This allows for finer grained control of the sprites. Each
object has a 4 bit register (HMP0, HMP1, HMM0, HMM1, HMBL) which uses two’s
compliment to load a value from 7 to -8. When the HMOVE register is written to, all
registers execute their horizontal motion. This must be done directly after a WSYNC
to ensure that all registers have time to execute during HBLANK time and should not

 25

be modified for at least 24 cpu cycles after the HMOVE is written. The programmer
can write to the HMCLR register to set all horizontal motion registers to 0.

Collisions:

The TIA handles collisions internally. There are 15 possible two object collisions which
are stored in 15 1-bit latches and can be read in the collision registers on the D6 and
D7 pins of the data bus where a 1 indicates that a collision has occurred between
those objects. Conventionally they are read during VBLANK when all possible
collisions have occurred, though this is not required. All collision registers can be
cleared by writing to the collision reset register (CXCLR).

Inputs:

The TIA handles inputs on the buttons for the console. There are two types of inputs
dumped and latched.

Dumped inputs were originally used for paddle controllers to play pong. For our
system, they are connected to the left and right buttons on the 7800 controllers.
These inputs are only used if the programmer has 2-button mode enabled (7800
mode only).

Latched inputs are the standard used for the fire buttons on the 2600 and 7800 (in
1-button mode). The latch can be enabled using bit 6 of the VBLANK register. If
enabled, the latch register will remain high until a low value is seen on the fire button
input. It will then remain low until the programmer resets the latch. If disabled, the
core reads the input port directly.

 26

Register Reference Tables:

 27

A more detailed description of the TIA can be seen in the Stella Programmer’s Guide
[9]

Our implementation:

Our TIA graphics and input implementation was developed by Daniel Beer for his
Atari 2600 project.

Shortcomings:

Atari 2600 mode proved to be the greatest shortcoming in our project. We tried to get
VGA running in sync with the TIA as it does with the MARIA but ended up resorting to
using frame buffers. We had two frame buffers that we would swap between as the
TIA finished writing to them. Unfortunately, Beer’s TIA implementation had some
bugs in it. That combined with the fact that we were unsure if our core was 100%
cycle accurate led to it being difficult to debug the TIA. We also ran short on time after
spending most of the semester getting 7800 mode working, so we could not put the
effort that we wanted toward debugging 2600 mode. In retrospect, we should’ve
written our own TIA graphics, so that we could understand and debug it properly.

 28

Sound
The Atari 7800 was originally intended to have a dedicated sound chip, but when that
design fell through, the designers decided to use the sound output from the TIA. This
was one of the largest sources of criticism for the console since its sound was
noticeably weaker than the rest of the console.

The Tia has two 1 bit audio channels. Each is controlled are controlled by three
registers

AUDVx - ​4 bit register. This register controls the volume of the channel.

AUDFx - ​5 bit register. This register controls the frequency of the channel. A
31139.5 Hz clock is divded by the value in this register plus 1 to get the frequency
of the channel.

AUDCx - ​4 bit register. This register controls the tone of the output. There are 11
unique tones. These tones can vary from pure flute tones to pulsing rocket sounds
and explosions.

The output is created by shifting a bit out of a 9 bit shift register that is clocked by the
divided clock. Depending on the tone, a new bit is shifted in. In most cases, this is
based off of a 4, 5, or 9 bit polynomial counter, but in some cases it’s based off a
combination. This creates a pattern for each tone that varies in length from 1 bit long
to 511 bits long. The creation of these patterns is beyond the scope of this report.
More information on how these patterns are created can be found at [6].

 29

This diagram shows the beginning of each pattern. For our implementation, we
generated each pattern and stored it as an array in the fabric. We then iterate
through the pattern specified by the AUDC registers and output the bit.

This diagram shows our design for the sound. The original clock is divided by the
value in AUDF+1. That clock is used to clock our iteration through the pattern array
for the specified tone. The output bit is then scaled up to a 16 bit digital audio value.
This is done in such a way that a 1 output with an AUDV value of 15 is very close to
int_max, and a 0 output with an AUDV value of 15 is very close to int_min. The two
channels are mixed and then sent to the audio codec (ADAU1761).

 30

RIOT

Overview
The RIOT IO Chip or MOS 6532 was a popular IC in the late 70s and early 80s. It
integrated 128 bytes of RAM, two 8 bit bidirectional ports, and a programmable
interval timer. Its multiple functions meant that it could be used to replace multiple
ICs. It was used in both the Atari 2600 and 7800.

RAM
The 128 bytes of RAM is laughable by today’s standards, but in early computers, it was
a significant amount of space. The 7800 did not use the RAM in the 6532, but it was
the only RAM available in the 2600. For that reason, the chip’s RAM is only used in
Atari 2600 mode. While it will technically be possible to use it in 7800 mode,
programming guides advised against it, so it is unlikely any program will actually use
it.

Ports
This is the main feature that the RIOT is used for. Both ports are used as inputs. The
directional inputs of the controllers is handled by PortA, and the system buttons are
handled by PortB. These inputs are latched into a register at each clock edge to be
used by the programmer.

Timer
The timer can be used to allow the programmer to time things like scanlines while
executing other code. It is given the same clock as the system clock. It is used in 2600
mode, but is likely not used in 7800 mode (since it would be running on a different
clock as the core and wouldn’t be very useful). A value from 1 to 255 can be loaded
into any one of the four interval registers, and the value will be decremented by one
at each interval.

The four interval registers and their intervals are

● TIM1T - 1 clock cycle
● TIM8T - 8 clock cycles
● TIM64T - 64 clock cycles
● T1024T - 1024 clock cycles

 31

The timer can be read by reading the INTIM register. When the timer reaches 0, it
remains there for 1 cycle. It then flips to FF and begins decrementing at every clock
cycle so the programmer can determine how long it has been since the timer reached
0.

Our Implementation
We used the code developed by Daniel Beer for his project of recreating the Atari
2600 on an FPGA. We have verified the code ourselves and are convinced that it will
suit our needs for the RIOT IO chip.

Hardware Interface
The Atari 7800 interfaces with two types of hardware peripherals: game controllers
and game cartridges. In order to communicate with these peripherals in our own
implementation, we built custom circuitry to connect the peripherals. This circuitry
interfaces with the Zedboard through the FMC port on the board. The FMC port was
chosen over other IO ports on the board (like the PMOD ports) because this single
port provided 68 individual IO pins through a single interface, which was enough pins
to connect both the cartridge and controllers to. We purchased an FMC breakout
board from a third party seller which brought the FMC pins out onto a development
matrix (similar to a perf board matrix). This allowed us to solder wires from our
circuitry directly to the FMC port.

One issue we ran into with the hardware interface is that the Zedboard operated at a
2.5 voltage level and the hardware peripherals of the Atari expect to operate at 5
volts. This meant that we couldn’t just connect the peripherals directly to Zedboard.
Instead we had to wire connections through a set of logic level shifters which could
automatically convert from 2.5 to 5 or from 5 to 2.5 volts. Although these level shifters
solved the issue of different operating voltages, they resulted in a fairly dense and
ugly spanse of circuitry and the protoboard this circuitry was built on added to the
overall footprint of our system.

Since both of the peripherals we wanted to connect with were relatively wide (12 pins
for two controllers and 32 for the cartridge) we used ribbon cable for the circuit
implementation. Ribbon cable works especially well in bussing applications and was
quite a boon in this project.

 32

Controllers
Both Atari 2600 and 7800 game controllers use the standard 9 pin DSub connection
shown below to connect to the system.

In our system pins 7 and 8 are attached directly the 5v and Gnd lines of the Zedboard.
This solved a persistent and confounding issue we had involving inconsistent
reference grounds between the Zedboard, the FMC breakout circuit, and our power
supply/probes. This configuration was also optimal for demo day since it meant we
didn’t have to haul around an external power supply.

Pin 6 is attached to the 5v line which effectively ties the controllers to two-button
mode. This configuration was the only way we could get consistent responses from
the paddle buttons, so the hardware handles interpreting trigger responses based off
the paddle buttons when the system is running in one-button mode. The joystick pins
are driven active low and thus are attached to pull up resistors in our circuit.

Cartridge Interface

The cartridge interface consists of address and data bus pins in addition to power and
ground pins. The pinout is shown below:

 33

Unfortunately we were never able to implement a fully working cartridge interface
with our system. The final product had ROM images of the cartridges built directly
into the hardware of the system. In the end, this part of the project was sunk by the
real world intricacies of analog circuitry and by a late start on this portion of the
project. Although we built and tested a circuit which could drive the cartridge inputs
according to specification, we were never able to get the cartridges to respond as we
expected. When we tested actual cartridges with repeated read signals to a single
particular address the data we read back from the cartridges was garbage. Instead of
responding by driving a consistent data value on the bus, our probing revealed the
cartridge driving either all ones, or floating values, or values that started high and
then decayed to zero with time. When we compared the waveforms we were driving
cartridges with to the waveforms from the Atari, we noticed that the Atari clock wave
looked very much like a saw tooth whereas our clock wave looked much more square
but included a lot of ringing. We hypothesize that this might be the cause of our
issues, but ran out of time by the end of the semester to verify the problem and
devise an appropriate work around.

 34

VGA
The original Atari 7800 output 8-bit chrominance/luminance (UV) values over an RCA
cord to an NTSC TV. Our FPGA system has VGA output, so we convert the 8-bit UV
values to 12-bit RGB. We could not find a UV-RGB conversion algorithm, probably
because the perceived color output by a UV pair is television-dependent. but we did
find the following image of the color palettes displayed on a CRT TV [7]:

Each row has a different chrominance value and each column has a different
luminance value. We wrote a script to extract the RGB values from the cells in the
image. Our UV-RGB converter simply indexes into a 256-entry ROM for each of red,
green, and blue. The VGA controller itself is quite simple. It has a row counter from 0
to 524 with VSync at 490-491 and a column counter from 0 to 799 with HSync at
656-751. The row and column counters are output to the ​Maria​ for synchronization
purposes.

In 2600 mode, the VGA module manages a full 160x192 pixel frame buffer. This is
because the VSYNC signal generated by 2600 games does not align with the VSYNC
signal frequency expected by VGA, so we could not implement row-by-row
synchronization. Instead, the TIA writes to the frame buffer according to its own
synchronization signals, and the VGA module reads from it at its own pace. To reduce
jitter, we implemented a two-frame buffer queue, where the TIA writes to one and
swaps it with the VGA read buffer when it is done writing a frame. A greater number
of frame buffers would have reduced jitter further.

 35

BIOS
The BIOS is stored in a special ROM internal to the console. It is located in the address
space from 0xF000 to FFFF. Since this overlaps with cartridge space, there exists a bit
in the control register to control whether data is read from the BIOS or the cartridge.
The BIOS performs the following tasks (in order)

● Basic memory and core functionality test
● More complex memory test
● Copy authentication BIOS code into RAM
● Set up the MARIA DLLs and ZP to draw the boot screen (rainbow Atari logo)
● Authenticate cartridge
● Jump to start of the game in either 2600 or 7800 mode

The authentication process is a result of a number of unlicensed pornographic games
that were made for the Atari 2600 console. Atari did not want these games on the
7800, so they created an authentication algorithm which iterates through the data on
the cartridge generates a series of bytes that are compared with the values on the
cartridge from 0xFF80 to 0xFFF9. If the data matches, the game is launched in 7800
mode. Otherwise, the game is launched in 2600 mode.

Hidden Control Register
The hidden control register is aptly named because there is extremely little
documentation about it online. Most the information about it came from the Atari
7800 schematic and a blog post by Dan B.

It is essentially a latched register that is only used during the BIOS. It is written to
whenever the TIA is written to and has four bits which are written to by their
corresponding bits on the data bus.

● Bit 0 (Lock bit) - When this bit is 1, the control register will no longer be
written to. The BIOS writes a 1 to this bit just before entering Atari 2600
mode and any Atari 7800 game is expected to write a 1 to this register
immediately at the beginning of the game.

● Bit 1 (MARIA enable) - When this bit is 1, the MARIA is enabled as the video
driver. It also enables the 4KB of RAM in the Atari 7800. This bit cannot be
enabled at the same time Bit 3 is enabled.

● Bit 2 (BIOS enable) - When this bit is 1, the cartridge is enabled for all reads
from 0x8000 to 0xFFFF. When it is 0, the BIOS is enabled for all reads from
0x8000 to 0xFFFF, though BIOS code is only located at 0xF000 to 0xFFFF.

 36

● Bit 3 (TIA enable) - When this bit is 1, the tia is enabled as the video driver,
and the console is locked in 1-button mode. This bit cannot be enabled at
the same time Bit 1 is enabled.

Approach

Design Partitioning
Our project consisted of four distinct phases: Research, Design, Implementation, and
Integration.

The research phase involved digging up and reviewing as many technical specs on the
Atari 7800 as we could find. It also involved searching for previous solutions or
projects that were similar to what we intended to produce in order to find starting
ground and inspiration for our own design.

Since our aim was to recreate an existing system the design phase of this project was
somewhat trivial after thoroughly researching the Atari 7800 design. We did make
some key decisions in this phase however. First we affirmed that it was necessary to
implement our own version of the MARIA. Additionally we made the decision to port
the Atari 7800 video output to a VGA interface.

In the implementation phase we created and verified the individual pieces of the
system. For some parts of the system, like the core and the TIA chip, we were able to
start with an existing design and alter this design as necessary to suit our needs as
well as verify their functionality. The largest effort in this phase was directed towards
reverse engineering the MARIA chip from behavioral descriptions and technical
documents.

The bulk of our efforts in this class were spent in the integration phase. In this phase
we brought our individual pieces together into the full system and debugged the
issues with our design and implementation at a system level, usually by comparing
what our device was doing to what we expected it to do according to the Atari 7800.

Tools and Design Methodology
We used Vivado as our design tool for synthesis and Vivado’s simulator. After
designing any component, we would simulate it extensively before synthesizing it.
While this worked pretty well for finding design flaws, there were still some problems
that were only able to be observed on debug cores in the real system. For example,
race conditions between different signals would not always be obvious in simulation,
but could be debugged with a bit of effort using the debug cores.

 37

We used the bench equipment, including the power supply, meters, and scope probe,
to build and test the hardware interface. We also used it to probe an original Atari
7800 system to aid in designing the hardware interface.
Testing and Verification
Each module was tested individually using a separate test bench. First, we simulated
the test bench with some input. For the Core, this was the test suite; for the MARIA,
this was a hand written program that was designed to display a custom image; for the
sound module, we inspected the effects of changing the tone, frequency and volume
registers using the switches on the board; and so on. Afterward, we synthesized the
modules to see if we could get some response on the board to indicate it was
functioning correctly. After we were convinced each module was working correctly,
we integrated them and ran full system simulation, using the Vivado simulator’s
waveform viewer to find bugs in our design. Lastly we synthesized the full system and
used ILA cores to trigger on positions in the code and screen positions where we
knew bugs were occurring.

Testing and verifying the peripheral circuitry involved building many quick test circuits
to drive the FMC ports, a cartridge, or the controllers and then probing the responses
on the scope probe. Often times we probed both our circuitry and an Atari 7800 we
bought in order to compare functionality.

Status and Future Work
On demo day, we had a system with five fully working 7800 games saved as ROM
images on the board, two broken 2600 games, and a controller interface. Although we
were happy with our end result, further results that we would have liked to see are:

● Working cartridge interface
● Fix TIA graphics, VGA interface, and timing issues
● Further testing of the Maria and individual 7800 games to expand our working

library
● Make a sleek and cool case for the system

Lessons Learned

What we wish we had known

 38

● Figure out Vivado’s intricacies early. If we had learned about synthesis attributes
earlier, we would’ve had a much easier time debugging on ILA cores.

● ILA cores work best if you use your board’s base clock as the reference clock.
● Clocking can be really hard to get right. Figure out your clocks early.
● Don’t make assumptions about ambiguities in specs. Figure it out through more

research and testing. If you do make assumptions, take note of it as it may be a
problem later.

Vivado Tips
● When using ILA cores, if you have a mysterious port width mismatch error during

Generate Bitstream, change the clock for your debug cores to the base clock for
your board (100MHz for us.)

● If you can’t find the net that you want to mark debug on, use the keep attribute. If
that causes your design to fail, try something like this:

logic important_net;
(* keep = “true”*) logic important_net_kept;

 assign important_net_kept = important_net;
And then mark debug on important_net_kept.

● If Vivado claims a certain net is undriven and will be tied to zero, it might just be
because that net is optimized out in the synthesized design, and it will still do what
you expect.

● If Vivado is giving you weird error messages related to your debug cores, it can
help to go into the constraints and remove any useless lines. Vivado doesn’t do a
very good job of curating its constraints file when it modifies debug cores, so it
often leaves extra lines in that cause errors. Unfortunately, this means you’ll have
to resynthesize your design.

Good Decisions
● Choosing a realistic, obtainable project that wasn’t too easy. We originally wanted

to do the Atari 2600, but that would have likely been too easy. The Atari 7800
challenged us throughout the semester without leaving us utterly unsuccessful in
the end.

● Deciding to start with an already-implemented core design. This saved us a lot of
time and frustration early on.

● Working together in the lab as a group frequently. We had two meeting times per
week scheduled but often met more than that. Our important in lab activities
included

 39

○ Debugging in a pair. This was important because people who worked on
different parts of the system had wider perspective about what might be
causing a bug.

○ Designing in a pair. This was particularly important with the Maria since it
was such a complex system.

● Testing the Maria incrementally. We first designed the VGA controller and tested
some output patterns with RGB colors, then with chrominance-luminance colors
as this is what the Maria outputs. Then we tested an output pattern with all the
read/write graphics modes and set up a manual DMA interface to make sure the
Line RAM was updating correctly in response to DMA commands. Finally, we set
up a display list list in memory and verified that it displayed the correct pattern on
screen. Because of this incremental testing, when it came time to integrate the
system, we knew any display issues were not the fault of the display system.

● Stepping stone goals. These allowed us to set achievable goals that could actually
be reached and let us know if we were behind schedule.

● Doing a lot of debugging in simulation. This helped fix a lot of easy system
integration bugs.

● Designing sound early. Since sound is almost completely independent of the rest
of the system, designing it early meant we didn’t have to worry about it for the
rest of the semester. Our sound design did not change since the day we designed
it.

● Keeping each other updated on progress even when we were working on different
parts. In general, having an active dialogue between the group encouraged
progress and helped us overcome tough obstacles.

● Bringing larger monitors to our work station allowed higher productivity especially
when using Vivado’s large clunky GUI.

Bad Decisions
● Not implementing our own TIA and postponing testing 2600 games until it was too

late to fix them. The TIA is not nearly as complex as the MARIA, and we could have
likely designed it ourselves in a short time. This would have given us a lot more
understanding of how it worked and allowed us to debug 2600 mode a lot earlier.

● We took too slow of a start at the beginning of the semester. Although we were
able to produce good results by the end of the semester, we could have saved
ourselves the several weeks of intense work towards the end by spreading the
load more evenly across the semester.

● Debugging in simulation for too long because we couldn’t figure out ILA. The
problem that prevented us from using ILA was the fact that a free-running clock
was not used as the reference clock. Vivado gave us weird errors that did not lead
us to this problem for at least a week or two.

 40

● We waited too long to begin implementing hardware interface and thus when we
ran into a series of frustrating obstacles during the process we ran out of time to
debug the cartridge interface.

● Forgetting to turn in many of the status reports, they’re due every Monday folks.
● Probing indiscriminately on the zedboard. This led to some a couple accidental

shorts and two dead Zedboards.

Words of Wisdom
● Start working ​hard ​early
● Research extensively. Don’t brush over ambiguities
● Figure out Vivado early

Personal Statements

Chris Barker

What I did
I was the Maria guru for the duration of the project. During the research and design
phases, Mark and I worked together to understand what sparse specifications for the
Maria we could find. We came up with a set of subsystems and interfaces between
these. During the design phase, it was crucial that we hashed out the details together
since it was such a complex system. Then we each wrote the implementation for two
of the four subsystems.

From then on, I was responsible for the Maria. I wrote the VGA controller and the
chrominance-luminance converter, tested these two modules, and then moved on to
test the Maria. I started by testing the Line RAM output in all of the read/write
graphics modes, then moved on to test the DMA commands to the Line RAM without
using memory, and then integrated it with the memory system.

Several features were still not implemented after my first pass with Mark, including
indirect mode graphics, display list interrupts, and DMA timeouts. I implemented and
tested these next.

By the time I had finished implementing and testing the Maria, all the components of
the system were complete and it was time for integration. I worked closely with Ryan
to debug the internal system execution, starting with the BIOS code and later moving
onto games. We spent a few weeks in simulation until the core was able to complete
the BIOS. During this time, there were several issues with the halt signal, the display
list interrupt signal, memory mapping, switching clock frequencies, and race

 41

conditions. For most of these issues, knowledge of the Maria, Sally, and memory
system were necessary to understand what the problem was, which is why it worked
so well for Ryan and I to do this side by side.

Once we had finished getting the CPU to run through the BIOS in simulation,
simulation runs took an entire night to run and sometimes crashed Vivado, so it was
time to switch to synthesis. We encountered a new slew of bugs with BIOS here,
particularly with the reset signal and timing violations that didn’t occur in simulation.
After we got past these, it was time to debug game code. This is where several bugs in
the Maria finally got fixed, once we could see how the games expected their graphics
to work. We discovered graphics data could be in slow or fast memory for both direct
and indirect mode, whereas we had previously thought they could only be in slow
memory for indirect and fast memory for direct. We discovered display list interrupts
should be triggered *before* a zone is rendered, rather than after. We discovered
that indirect mode character maps had a different format than we expected. And so
on. These bugs took quite a while to find thanks to long, nondeterministic synthesis
runs, trouble with ILA cores, and the time it took to parse Robotron and Ms. Pac Man
code to determine the format of their display lists.

In the last couple of weeks, I worked on the controller and cartridge interfaces on the
verilog side, and built the frame buffer and VGA controller for 2600 mode.

Maria expecting 7.14MHz read latency from a cartridge ROM clocked at 1.79MHz

Time Spent

 42

During the research phase - the first 4 weeks when we had readings and labs to do - I
spent about 8-10 hours per week on the course. For the next 4 weeks, the
implementation phase, I spent 12-18 hours per week. For the remainder of the
course, the integration and debugging phase, I spent 15-35 hours per week in the lab.
There was one day in the last week when I was in the lab for 15 hours. The three of us
were here until 4:30 a.m. listening to Christmas songs and trying to get 2600 mode to
work. I would warn you to spread your work evenly over the semester, but that will
never happen. Just try to spread it more evenly than I did.

Class Impressions
This course was a bit of a shock to me in that I had to set my own goals and
deadlines. At first, I thought of the readings, labs, proposal, status updates, and the
design review as the outcomes of the class that I had to meet for a grade. That may
be true for the readings and labs, but the proposal, status updates, and design review
are byproducts that should come nearly effortlessly if you’re working sufficiently hard
on the self-guided portion. Once I realized that, I was more effective in the project.

This class will be a huge pain if you don’t genuinely want to implement your project.
Digital design is challenging, and Vivado is rough, and I had other classes to keep up
with as well, but the thought of building a working game console kept me going. If you
are passionate about design, this is a great class for you. You have nearly complete
freedom to choose what system you think will be cool. Money, lab equipment, and
equally passionate teammates are at your disposal - all you have to do is put your
skills to work.

Ryan Roberts

What I did
In the early stages of the project, I did most the research on which core to use. After
looking on Open Cores, I found that most the 6502 cores were written in an extremely
cryptic manner and were poorly documented. It was then that I found Arlet Ottens’
6502 implementation and told everyone else in the class about my findings. While his
core did not entirely follow the spec, it was very well documented, which made it a lot
easier for us to understand what the Core was doing during debug. I then validated
the core using the test suite. Because of this, I was the team member with the most
knowledge of the core. I worked extensively with Chris to debug the full system
implementation as we tried to navigate the BIOS. In the beginning we had a lot of
problems with integrating the core into the rest of the system, and this is where my
knowledge shined as Chris and I were able to many system bugs in a short time. Once
we had the system exiting the BIOS, I continued to debug the system with Chris. At

 43

this point, most the bugs in the system were graphics related, so he took charge,
while I helped as best I could.

I also researched and implemented the sound early on in the project. It proved
somewhat difficult to find sources that understood how the sound on the TIA chip
worked at a low level, and it was even harder to find sources that were well written.
After a lot of digging, though, I had enough knowledge to implement it. I took
advantage of the fact that we had a lot of logic elements to program the sound
patterns directly into the fabric. This reduced the complexity of the sound design a
good deal. Once I was confident I had implemented the sound correctly, I wrote a test
bench to test it, and validated its tone authenticity with an online tool called Tone Toy
[10]. I then integrated it into the full system, and, since the sound system is almost
entirely independent of the rest of the console, we had no issues after that.

I was also the one who found Daniel Beer’s implementations of the RIOT and TIA
online and integrated them into our project. I took it upon myself to understand how
the RIOT worked, though we didn’t have to make any changes to the code. In the end
of the project, I learned a lot about how the TIA worked and worked with Chris to
attempt to debug the TIA implementation as best we could. Unfortunately, we ran
short on time and had to go with what we had at the end of the project.

Time Spent
In the beginning of the class while doing research, I spent anywhere from 6-12 hours
per week. As we got closer to integration, that number continued to increase, and
once integration began (early November), I would spend anywhere from 20-40 hours
per week in the lab. Especially in the final two weeks of the project, Chris and I spent
almost every day in the lab from about 10:30 AM to 10:30 PM.

Course Impressions
Wow what a great course! This is the first time that I’ve ever been given such an open
ended assignment as “do something cool with an FPGA.” The professors and course
staff were an absolute joy to work with, and my teammates and I had a ton of fun
implementing this project in the lab. Even though we spent a lot of time on it, it didn’t
feel like a lot of work! My only complaint about the course is that I wish we were given
a bit more information on how to get started with Vivado. We were just kind of told to
get started when a bit of direction would have been extremely helpful. Overall, I’m
extremely thrilled with the class and very proud of my group’s performance.

 44

Mark Wuebbens

What I did
In the initial stages of the project I spent a lot of time looking for and reading through
technical documents for the Atari 7800. When we determined that we could start with
an existing implementation of most system components I focused my efforts on
researching behavioral descriptions of the Maria since we needed to implement this
part from scratch. Thus while Ryan worked on finding and verifying a core
implementation, Chris and I started on a first draft Maria design. The initial design
required Chris and I working closely together to decode several often conflicting
Maria specifications. During this stage we specified a top level interface and split the
design into several key subsystems, which we then implemented separately. Although
the design at this point was buggy and not fully complete, it was a crucial stepping
point since our Maria implementation pinned down much of the top level interface
for the system.

After this point almost of all the main system components were implemented. Ryan
and Chris began debugging things like the BIOS at a system level while I worked on
developing an interface for the Atari peripherals. This endeavor was what I spent the
bulk of my effort on for the rest of the class. First I made the decision to interface to
the peripherals through the FMC port of the Zedboard, since this port was wide
enough to include all of the signals I would need. I found and purchased a breakout
board adapter for the FMC port online which allowed me to solder connections
directly to a perf board matrix on the adapter which were connected to IO pins on the
FMC. I also discovered that the normal operation voltage of the zedboard ports was
2.5 volts whereas the Atari peripherals operated at 5 volts, so I found logic level
shifter ICs that would do the work of stepping up or down the voltage levels between
the FMC and peripherals.

The peripherals had many pins and wide buses to connect to so I spent over a week
creating ribbon cable interconnects to serve as wiring for both the FMC and
peripheral sides of the circuit. I stripped, tinned, and then crimped either male or
female adapters to both sides of each wire on the interconnects to ensure reliable
connections and allow quick prototyping and redesign of the circuitry. (For groups in
the future planning on using ribbon cable to wire wide buses, I recommend looking
into appropriate male/female ribbon cable adapters to save on time and hassle.) I
also soldered wiring to female DSub adapters to connect the controllers to. These
tasks were made much harder and quite frustrating by the lack of usable soldering
irons in the lab.

 45

Finally I worked on debugging this circuit connection to the system. Fixing the circuit
connecting the controllers required attaching pull up resistors to the directional pins
and a hack that involved tying the trigger pin to high to force the controllers into
two-button mode. Unfortunately attempts to get the cartridge interface working were
stymied. Although my circuit appeared to be drive the cartridge pins according the
Atari specification, the cartridge never responded with data in the way we expected it
to, and thus the system was not able to interface with any physical cartridges the way
had hoped it would. I ended up running out of time to debug and fix this problem.

Time Spent
At the beginning of the course I probably spent on average 8-10 hours a week either
doing research or meeting and working with my group on the project. As the
semester ramped up and the class got into full swing I spent around an average of 15
hours a week, usually working on the peripheral interface but also meeting and
talking with my group about the system as a whole.

Course Impressions
I found this one of the most uniquely challenging, but also rewarding classes at CMU.
I was intrigued by the open ended nature of the projects and staggered by the sheer
volume and complexity of the systems that my team and others implemented in a
semester. I am left with a strong impression of how important a good team and
effective teamwork and communication is in designing complex systems.

I was quite pleased with cheerful available staff for the course and with the
professors who are clearly very passionate about digital design and quite willing to
share their knowledge and experience in the area.

 46

Sources
[1]​ 7800 Software Guide:

http://www.atari7800.org/manuals/7800_Software.pdf

[2]​ Maria Technology:

http://www.atari7800.org/manuals/7800_Maria_Specs.pdf

[3]​ GCC1702B “MARIA” CHIP

http://www.atarimuseum.com/ahs_archives/archives/pdf/videogames/7800/gcc17
02b_maria_specs.pdf

 ​[4] ​6502 Model Github

https://github.com/Arlet/verilog-6502

[5]​ Test suite

https://github.com/Klaus2m5/6502_65C02_functional_tests

[6]​ TIA Sound information

http://problemkaputt.de/2k6specs.htm

[7]​ Atari 7800 Palettes

http://atariage.com/forums/topic/209210-complete-ntsc-pal-color-palettes/

[8]​ Atari 2600 Project

http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2006to
2007/dbb26/dbb28_meng_report.pdf

[9] ​Stella Programmer’s Guide

http://www.atarihq.com/danb/files/stella.pdf

[10] ​Tone Toy

http://www.randomterrain.com/atari-2600-memories-program-tone-toy-2008.html

http://www.atari7800.org/manuals/7800_Software.pdf
http://www.atari7800.org/manuals/7800_Maria_Specs.pdf
http://www.atarimuseum.com/ahs_archives/archives/pdf/videogames/7800/gcc1702b_maria_specs.pdf
http://www.atarimuseum.com/ahs_archives/archives/pdf/videogames/7800/gcc1702b_maria_specs.pdf
https://github.com/Arlet/verilog-6502
https://github.com/Klaus2m5/6502_65C02_functional_tests
http://problemkaputt.de/2k6specs.htm
http://atariage.com/forums/topic/209210-complete-ntsc-pal-color-palettes/
http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2006to2007/dbb26/dbb28_meng_report.pdf
http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2006to2007/dbb26/dbb28_meng_report.pdf
http://www.atarihq.com/danb/files/stella.pdf
http://www.randomterrain.com/atari-2600-memories-program-tone-toy-2008.html

