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Section 1 : Introduction

This report details the progress made on the FPGA-based Nintendo 64 project during
the semester of Fall 2014. We outline the details of the system, document decisions that
were made, provide directions for understanding and using our system, and give
insights to future developments that may be made for furthering our project.



Section 2: Purpose, Goals, and Achievements

The purpose of this project is to recreate the modules of a Nintendo 64 (N64) necessary
for a cartridge to be runnable with complete input and output. We want to expand the
horizons and possibilities of project scopes for this course and hope that future teams
won’t be deterred to pursue difficult projects. To our knowledge, a N64 has never been
written in any HDL, and our goal is to contribute to the expansive but non-
comprehensive wealth of knowledge on the N64.

The initial goal for the end of this semester was to be able to have the cartridge for
Namco Museum 64 (a variety of arcade games on one cartridge including Pac-Man, Ms.
Pac-Man, Galaga, Galaxian, Dig Dug, and Pole Position) completely playable by our
system with full input (one or two N64 controllers) and output (video and audio). This
cartridge did not rely on a graphics processor (the RCP in the case of the N64), which
would be a whole other monstrous project in itself. However, this would still require the
full implementation of a NEC VR4300 processor, a memory controller and its numerous
special sections of memory (a lot of reverse engineering here), VGA driver, audio driver,
N64 controller driver, and SSD driver.

By the end of the Fall 2014 semester, each of these individual modules were complete
with minor bugs in the memory controller and a slight oversight in the processor that
prevented the cartridge from being able to fully run. We were able to get through the
entire boot loader, which consisted of several millions of instructions (being able to
compare to a working C simulator) and portions of the actual cartridge. However, we
came across exceptions in the cartridge for the handling of the drawing of the frame
buffer. As this was unexpected, and discovered too late in the semester, we were
unable to get Namco Museum 64 working. However, as a work-around around this
oversight, we wrote a game of our own (a custom game resembling Tron) that was fully
compatible with the system that we had and demonstrated most of the available
system’s functionalities while also giving us something to show for on Demo Day (|
highly recommend having at least something to show for on Demo Day that is
interactive).



Section 3: System Overview

Our system can be viewed as 6 major subsystems:

1.

The main processor that directly interfaces only with the memory controller.
This module was created completely from scratch other than small sub-
modules including multipliers, dividers, and a majority of the FPU (the FPU is
technically considered to be a coprocessor), which were available as hard IP
cores.

The memory controller that can read or write data to and from any of the
memory subsystems and connecting interfaces depending on values written
by the CPU to specific memory locations. This also includes the cellular RAM
interface, which allows reads and writes to the on-board block RAM. This was
written from scratch while referencing the cellular RAM data sheet and a
slightly broken open source core.

The SD card interface is responsible for handling reads from the SD card. The
SD card acts as the N64 cartridge in our system and Namco Museum 64. We
have a suspicion that some games write to the cartridge for saving in-game
data, but we are confident that writes are not necessary for the games to
work. However, since SD card initialization requires a couple writes, we do
have support to make writes fully integrated very easily. This module was
created by fixing a broken open core and adding modifications.

The video interface consists of a VGA driver and a frame buffer. The frame
buffer holds the data to be displayed onto the monitor where each individual
bit is represented in an array in a memory block. Our video interface was tied
to an array of memory and the VGA driver was slightly modified from an open
source module.

The serial interface is responsible for reading inputs from the input controller
and writing the controller status to a particular address in memory anytime
the CPU writes a command to a particular address as the interface is defined
later. The serial interface is very well defined in several documents found in
the reference section and was written from scratch.

The audio interface takes values generated by the FPU and sends them to the
PMOD controller, which generates the sounds, which is also controlled by
writing values to particular addresses in memory. The audio interface had to



use a PCM PMOD in order to work around our board’s lack of the AC’97

codec.

The figure below shows a diagram of these subsystems and their interconnect.
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Section 4: Tools and Components

4.1 Nexys 4 Artix-7 FPGA Board (xilinx Artix-7 XC7A100T FPGA)

We chose this board for both its VGA port and its ability to support SystemVerilog and
the Vivado Design Suite. This board gives access to:

* 15,850 logic slices, each with four 6-input LUTs and 8 flip-flops.

* 4,860 Kbits of fast block RAM (a bit small, but was enough)

* Six clock management tiles, each with phase-locked loop (PLL)

* 240 DSP slices (must haves for floating point unit)

* Internal clock speeds exceeding 450 MHz (recommend to create a module that
can change clock speeds at the switch of a button: very useful for debugging)

* 12-bit VGA output (A huge plus: VGA is very simple interface for video display)

* 16 MB CellularRAM (similar to SRAM with some caveats)

* 16 user LEDs (very useful for on-board debugging)

* Serial Flash (useful for having a portable system... We were late to demo day
because we were trying to figure this out last minute)

* Two 4-digit 7-segment displays (very useful for on-board debugging)

* Micro SD card connector (we used this in place of our cartridge. We have a
completely working SD card interface module. Our module only supports SD
cards smaller than 2 GB)

* Four Pmod ports (gave us the ability to interface with multiple N64 controllers)

This board was promising because it seemed to have all the benefits of a better Virtex 5,
while not being a Virtex 7. This included having access to SystemVerilog and the Vivado
Design Suite, as well as being smaller and having an approximately equal number of
LUTs and DSP slices. However, it still used a VGA port, which was important for us
because we did not want to tackle the Virtex 7’s HDMI system. The Nexys 4 also had
multiple PMOD interfaces, which we needed if we wanted to interface with multiple
controllers.

Although full of qualities, the board may not have been the best choice. It had little
BlockRAM and no DRAM, with CellularRAM being used as a substitute. Working with
CellularRAM proved difficult and was the source of many bugs, which in retrospect
slowed down a lot of our development. However, we now have an available module



that allows the usage of the CellularRAM in case future groups are interested in using
this board.

4.2 Vivado Design Suite

Vivado was touted as the new design environment, and it seemed to be fancier than ISE.
While this quality was true, it also at times proved to be more adversarial than friendly.
Vivado’s simulator did not play well with SystemVerilog constructs we were accustomed
to, such as enumerations and constants. As such, we had to forgo the Vivado simulator
for the VCS simulator most of the time, and later use Vivado only for synthesis and
implementation.

Vivado also was too smart for its own good. It would optimize out wires and signals that
were in use, and throw multiple warnings without much detailed explanation. We spent
a lot of time on the Xilinx support forum.

Synthesis and implementation times were also extremely lengthy. However this was not
a byproduct of Vivado, but rather of synthesizing any large hardware project.

4.3 Code and Document Repository

We primarily used a private Github repository as our method of source control. The only
thing we did not store were Vivado IP cores, as those took up too much space and were
easily instantiated. For lab documents and collection of N64 documents, we used
collaborative Google documents (a link can be found on the Github README. It is highly
recommended to learn how to use Git fairly well, if not just the basics. As much of a pain
it may seem to use source control in the beginning, it will pay off for that one time you
accidently delete something very important or make a change that breaks everything
and can’t change it back. Also be sure that everyone in the group is able to use version
control. Although it can be helpful to be able to use more advanced techniques, the
basics should be sufficient. | would also highly recommend that you comment on each
commit very effectively so that you can know very specifically which commit you could
revert back to.



4.4 CEN64

With the help of Tyler Stachecki, the creator of Cen64, we were able to acquire two
version of the Cen64. One of which was a fully integrated version with the capability of
playing full cartridges. The other was a standalone version of the CPU. Initially we were
only able to get the complete simulator and that was extremely helpful in itself. We
were able to learn how the entire system was integrated and what each module was
responsible for. We were able to learn a great deal about the N64 by reading through
the code countless times and running the code with print statements scattered through
the code.

When working on the CPU, we wanted a better method for testing. This required a
standalone NEC VR4300 processor, that didn’t run the entire system during simulation,
but since the CPU was already very integrated with the rest of the system in the original
Cen64, it would be a fairly substantial task to separate it from the rest of the system. |
decided to email Tyler Stachecki about seeing whether he had a standalone version of
the CPU, and he responded within the day with a standalone tarball of the NEC VR4300,
which was a lifesaver. Always reach out to people for help when you can; the worst
thing that will happen is they don’t respond. With this NEC VR4300 C simulator, we
were able to thoroughly test our processor with high confidence of ideal behavior. We
were able to make a live tester that would take in a test suite and generate the final
register values and compare with our results. With much thorough testing that involved
hundreds of test vectors including randomly generated test vectors, we were able to
thoroughly verify our Verilog processor before integrating with the rest of the system.
This resulted in a very smooth integration with very few bugs coming from the CPU
itself.

The Cen64 was the main reason we were able to get as far as we did. Due to the lack of
N64 documentation, whenever we had any questions that could not be resolved in
specifications, we would boot up the emulator and scrounge for the proper behavior.
Many thanks to Tyler Stachecki for his Cen64 Simulator.

10



Section 5: Sub-modules

5.1 CPU

Before reading any further about my implementation of the CPU, | would highly
recommend the reader to have looked through the ISA at least twice and have a fairly
strong understanding of it. After understanding the ISA, ready this section of the report
and then look through my code to understand the basic layout. Just as a warning, be
very careful about any changes you make since most of the code is there for very
particular reasons.

In the next few paragraphs, | will explain the organization of the repository related to
the CPU. From the top of the directory, the NECVR4300/ testbenches/ and standalone/
are the most important directories. In the top-level directory, N64_top_no_mem.sv is
the top module that instantiates the system. | placed the multipliers and dividers in the
top-level module because they are IP cores that were instantiated in Vivado. However
this was before | thought of using macros for to differentiate between simulation and
synthesis. | have two top-level modules: one was specifically used for simulation while
the other was for synthesis only. N64_top_no_mem.sv being the module for synthesis
while testbenches/ram_tb.sv is the module for simulation. Because ram_tb.sv has a
macro SIMULATION defined, | was able to scatter ifdefs throughout my code that would
cause the code to act differently based on whether | wanted to simulate or synthesize.

Inside of the NECVR4300 directory is all the Verilog code for the processor and the
filenames are fairly self-explanatory as to what exists inside. Further in the NECVR4300
directory is the ROM folder, which holds very useful python scripts as well as some N64
ROMs that can be loaded into the SD card.

* Hex_to_opcodes.py takes in a hex file and prints out the list of assembly
instructions that correspond to the hex values.

* Live-disassembler.py allows you to type in hex values into the command prompt
and it will return the assembly instruction corresponding to the value.

Inside of the testbenches/ directory exists the files related to testing the processor as
well as several more useful scripts.

* Compare_outputs.py is used to compare the outputs of my processor against the
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output of the cen64 output.

* Coefy.py is used to transform a regular hex file into a .coe file. A .coe file is a
simple format that is allowed to be loaded into Vivado block ram cores.

* Diff.py compares two files and prints out the first line that differs along with its
line number. This was used for tracking our progress in the boot sequence
(millions of lines long). We had a golden output generated by the cen64, and we
would diff our system’s output against the golden output and check to see how
many lines we got through successfully.

* Gen_random_test.py was used to heavily test the processor with 1000+ line
programs of random instructions. This was extremely helpful and caught the
strangest edge cases that would have been very hard to determine once the CPU
was integrated with the system (the more complex your system the harder it is to
debug).

* Mips-assemble.py was a homemade assembler for the NEC VR4300. The ones
that | found online were all terrible, so | decided to make my own. Mines not the
best, but for the purposes of this project, it was satisfactory and well worth the
time.

* The programs/ directory holds assembly files that were used for testing the
entire system put together. Anywhere from testing the controller input, frame
buffer, to testing the memory controller and running Tron.

* The cen_tests/ directory holds assembly files for most of the instructions and
tests edge cases for these instructions in the processor.

The standalone directory holds the cen64 standalone CPU, which was used to compare
outputs of my CPU and verify the processor. Also reading through this code was very
effective in learning how MarathonMan implemented certain parts of the processor.

The CPU for the Nintendo64 was a 93.75 MHz RISC 5-stage scalar in-order execution
32/64 bit processor with integrated floating-point unit and internal direct-mapped L1
instruction and data caches. This processor (NEC VR4300) is a variant of the MIPS
R3400i.

This project required me to read and reread the NEC VR4300 ISA (655 pages) several
times, and | learned how to parse technical documents effectively. | pretty much
followed the ISA with very little deviations so you could just as easily find all the
information about how | implemented the processor from the ISA documentation.
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However in order for this blurb to be useful for others attempting to build up from our
code or start from scratch, | will mention several things that will hopefully be useful to
those in the future. Firstly, | would say that it would not be as impossible as prior team
PSX claims to reach a point where the system can boot up from the N64 PIFROM to an
N64 ROM and play a simple 2D game such as Namco Museum 64. | would say that we
were very close and we only needed to implement one feature for the CPU that was
unforeseen (interrupts) and further debug the DMAs in the memory controller. | would
not discourage future teams to continue our work and possibly even integrate parts of
the RCP.

The CPU consists of the five usual stages: Instruction fetch stage, register fetch stage,
execute stage, data cache fetch stage, and write back stage. The instruction fetch stage
interfaces directly with the instruction cache and the data cache fetch stage interfaces
directly with the data cache. The difference between the two caches is that the data
cache can be written to while the instruction cache cannot be written to. There are also
two memory segments that represent whether the data is cached or uncached, so
depending on the address of instruction or data, we must go through the respective
instruction or data caches to get the data. Currently | don’t support virtual memory, but
only segments, as this is the only requirement for the PD ROMs that we intended to run.
The cacheable virtual memory address fall between 0x8000 0000 0x9fff ffff and the
uncacheable addresses fall between OxA000 0000 OxAO03f ffff. Using this information we
can determine whether to access the cache or directly request from the memory
controller. Between any accesses to the memory controller, however, | have my own
memory interface module that receives requests from either the instruction cache fetch
stage directly, the data cache fetch stage directly, the instruction cache, the data cache,
or the write-back buffer. The write-back buffer is a module that holds up to 32 bytes of
data. This is used so that memory writes can be consolidated so that we don’t overload
the data bus. Any time each of these middle modules want to access memory they set a
ready bit to high that gets read by the memory interface module and the interface
module must prioritize in a way that allows the maximum throughput of the pipeline.

Because the databus is only 64 bits wide, and the cachelines for the instruction and data
caches are 32 bytes and 16 bytes respectively, we need to have buffers that coalesce
the data before writing it into the cachelines. The interface between the memory and
the CPU is not simple and has many cases, so it must be studied very carefully before
changing if need be.

1R



What even further made memory interaction difficult was the availability of byte,
halfword, word, word left, word right, doubleword left, and doubleword right stores and
loads. | had to implement every type of store and load which would have different
results based on the address as specified in the ISA.

There are also four separate register files that must be heeded. The first is the general-
purpose register file for the CPU. The only subtleties are that register 0 is constantly
held at zero regardless of whether a write occurs to register 0. Typically NOPS are
encoded as instructions that write to the register 0. This was slightly tricky when | was
implementing data forwarding, because | never considered the case of one instruction
down in the pipeline writing to register O while a newer instruction read from register 0.
This would cause the newer instruction to believe that there was data in register 0 when
there wasn’t. The rest of the registers are typically used for special purposes, as
mentioned in the ISA, but they can be used for anything. The next register file is the
coprocessor0 register file, which holds that status of the processor. The different
registers represent different statuses of the processor and can be accessed with MTCO
and MFCO instructions. There are also some instructions that modify specific bits in
certain registers of the COPO register file, but | have only implemented the seemingly
important ones. Be careful of data forwarding in here as well, as since there are
instructions that can modify the registers directly, and instructions that cause the
modification of certain bits in the register file at different pipeline stages, you must be
very careful of whether to write values in order simply forward them and write other
values in. However, | have set up a nice infrastructure for simple addition of further
modifications of the COPO register file. The third register file is the floating-point
register file, which can be accessed with MTC1 and MFC1. The FPU simply puts the data
through the same pipeline as the regular instructions so one must be wary when
integrating the FPU. | have set up the entire infrastructure here as well with decent
commenting on where certain things should go. | decided not to integrate the FPU
simply because we were not at the point of needing it in the project. An FPU can easily
be generated using the IP Cores available. However, | have thought about the future
integration of FPUs, and because the FPU is pipelined in order to maximize the clock
speed, the execution stage should drive the clock enable of the FPU low after the FPU
instruction completes so as to not start off another FPU instruction. If it does start
another FPU instruction after it completes, it is possible that the pipeline will stall
further and wait for the instruction to re-execute, or it is possible that the next FPU
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instruction will take on the previous calculation of data depending on implementation.
The fourth register file is the coprocessor 1 control status register file. These registers
hold information about the most recent FPU instruction execution, but have not been
implemented either.

For branching, since there was a branch delay slot, it wasn’t terribly difficult, but there
was a slight modification to branching instructions that involved the likely flag. If likely
followed any branching instruction, then if the branch conditions are not satisfied the
instruction in the branch delay slot must be discarded.

One of the more complicated instructions was the cache instruction. Depending on the
opcode within the cache instruction, it would modify the instruction cache or the data
cache. This required heavy propagation of wires to the instruction and data caches. |
initially tried to optimize for the number of wires that had to be sent, but | decided
against that later and changed my implementation to something more understandable.
Pre-optimization is bad and just made my code confusing to read even to myself. Some
of these opcodes even did some strange things such as changing the tag bits for the
cachelines or having a hit write back option for the instruction cache. Considering
instruction caches can’t be written to, | don’t see why anyone would want to write back
the cacheline to memory.

One strange thing that | did was with the multiply and divide instructions. | instantiated
cores for each of the 6 different mult/div instructions (MULT, MULTU, DMULTU, DIV,
DIVU, DDIVU) and because these were each pipelined, | would cause a stall in the
execution cycle during one of these instructions. The strange part came in when the
pipeline was stalled and the execution stage couldn’t be propagated but the mult/div
instruction had completed. Because these instructions manipulated the reghi and reglos
only, | wrote directly to them after the instruction completed, afterwards | would
invalidate the execution stage so that another mult/div would not be kicked off. This
really helped to improve the throughput of the processor, but this made it a little
confusing when debugging, as no multiply/divide instructions were ever being retired
and when comparing against the golden simulator, we had to keep this in mind. One
thing that | found was the usage of macros for simulation and synthesis. Since there are
different top modules depending on whether you are synthesizing or simulating, you
can define a macro at the top of the simulation module and within the submodules,
wrap certain things in ‘IFDEF SIMULATION tags depending on whether the module is

18



used only for simulation or not. This was a very elegant solution to a problem we faced
of having to have separate branches for simulation and synthesis and we were able to
control our repository with less pain.

| built several tools including an assembler, disassembler, system state comparator, as
well as several other tools that helped to debug the program much more efficiently. |
am very glad | spent the time up front to creating these tools as they were constantly
put to use later in the project.

5.2 FPU

The FPU in the NEC VR4300- though it is mentioned as Coprocessor 1 (CP1) in the
processor specifications, this is in name only; the FPU is implemented in the same
datapath as the main processor, Coprocessor 0. However, as it is easy to logically
separate the FPU from the main CPU, we decided to develop them separately and
integrate them later. The main reason for the combined datapath in the original N64
was to reduce hardware cost, and this was not a concern for us.

The FPU is 64-bit unit, and upholds the IEEE-745-1985 standard. This includes format
conversion, multiple rounding modes and standard operations. To facilitate floating-
point operations, there are registers specially allocated for usage by the FPU. These are
the floating-point general registers and floating point control registers. All arithmetic
floating-point operations are done with values in the floating-point general registers,
and all status and control for the floating-point unit is done through the floating-point
control registers.

Our implementation of the FPU contained only a subset of all the FPU instructions, as
we had decided early on that we should only implement the necessary instructions for
our target game, Namco Museum 64. As mentioned above, the FPU was designed as its
own module, where it would receive instructions from the CPU and later output a done
signal for the CPU to latch the results after a number of cycles. It had a clock enable
signal to allow for stalling, and was fully pipelined.

We originally started writing the FPU module based on the FPU that was used in 18-340,
though we quickly found that it was less than optimal. The 340 FPU was single-cycle and
implemented only add, subtract, and multiply, which was far from complete. Although
effort was made to flesh out this FPU, it was later made apparent that an easier way to
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handle all of the FPU instructions was to instantiate Vivados numerous FPU IP cores for
each operation and to write a wrapper to connect all of them. This simplified our logic
immensely and helped our verification, as these IP cores came with their own
testbenches that verified correctness. The only verification we needed was to verify that
the output matched our expected behavior, particularly in regards to rounding modes
and cycle time.

17



5.3 Memory

5.3.1 Overview

The N64 featured a unified memory, with incredibly high throughput but long latencies.
We chose to use the Nexys 4 because of the development tools and the VGA port, not
the memory. As a result, the tools were on the board were less than a perfect fit to
match what the Nintendo 64 had. Our board holds a 16Mbyte Cellular RAM (Micron part
number M45W8MW16) has a 16-bit bus that supports 8 or 16 bit data access. It can
operate as a typical asynchronous SRAM with read and write cycle times of 70ns, or as a
synchronous memory with a 104MHz bus.

5.3.2 Memory Segments

5.3.2.1 RAM

The following is an overview of all of the most important memory regions that we
implemented in our design. This is taken from the Nintendo 64 Toolkit Part H, which can
be found in various places around the Internet, by Anarko.
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0x0000 0000 to OxO3EF FFFF  RDRAM Memory
Ox03F0 0000 to 0x03FF FFFF  RDRAM Registers

Ox0400 0000 to Ox040F FFFF SP Registers
Ox0410 0000 to Ox041F FFFF DP Command Registers

0x0420 0000 to 0x042F FFFF DP Span Registers
0x0430 0000 to 0x043F FFFF  MIPS Interface (MI) Registers

Ox0440 0000 to 0x044F FFFF Video Interface (VI) Registers
Ox0450 0000 to 0x045F FFFF Audio Interface (Al) Registers
0x0460 0000 to Ox046F FFFF Peripheral Interface (P I) Registers
O0x0470 0000 to 0x047F FFFF RDRAM Interface (RI) Registers

0x0480 0000 to 0x048F FFFF  Serial Interface (SI) Registers

0x0500 0000 to 0x05FF FFFF  Cartridge Domain 2 Address 1
Ox1000 0000 to 0x1FBF FFFF  Cartridge Domain 1 Address 2

Ox1FCO 0000 to 0x1FCO 07BF  PIF Boot ROM
0x1FCO 07C0 to 0x1FCO 0TFF  PIF RAM

The first feature of the Nintendo 64 was a 4MB RDRAM module from RAMBUS. The
company is now defunct and the spec sheets are no longer available, as they were
pulled when the company underwent some patent litigation. Fortunately, the exact
specs are not really necessary. We chose to map the 16MB of Cellular RAM, what
Micron, the manufacturer, refers to as a pseudo-SRAM. It was the only memory on our
board that was large enough to support the whole memory of the N64, as block RAM
was far too limited. Cellular RAM has access latencies of about 70ns, which is far faster
than the Nintendo 64s 640ns latencies. Though, the maximum burst performance of the
Cellular RAM is two bytes per cycle, or 200MB/s, while the RAMBUS module was
capable of up to 500MB/s. Again, we are fortunate that we never experienced
throughput issues because our final demo did not use Cellular RAM at all. Though,
implementing the CellularRAM controller was not very fun. By default, the Cellular RAM
operates in asynchronous mode, which is slower than in synchronous burst mode.
Determining how to write the configuration register was simple enough, save for the
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fact that all of the asynchronous timings had to be translated into clocked timings. The
other real issue though was one that | would never have discovered if not for the
behavioral model the Micron has on their website- the memory will attempt and fail to
act synchronously if there is an active clock but the RAM is configured for asynchronous
mode. This meant disabling the clock until the RAM was properly configured, then
enabling the clock. Another issue occurred later when our simulation times seemed to
be increasing at an absurd rate. It turned out that the source of the slowdown was a
non-constant access time in the behavioral model Micron provided. We rewrote this
part of the logic and reduced our simulation runtimes from three hours to five to ten
minutes.

5.3.2.2 Frame Buffer

The second feature of the Nintendo 64 that we had to account for was the frame buffer.
In a typical Nintendo 64 system, the frame buffer is not a separate entity. A single
hardware register called the VI ORIGIN REG (Visual Interface Origin Register) contains a
pointer to the base address of the frame buffer. During the boot sequence, a value is
written to this register and that is the address that will be mapped to the frame buffer.
However, many games use the idea of double or triple buffering, where the next frame
of the game is being rendered at the same time the current frame is being drawn to the
screen. Games will write values to particular areas in memory and then change the
frame buffer address to that segment with the idea that this will provide smoother
transitions between frames. Due to our concerns with the throughput of the Cellular
RAM, and the fact that ideally, a 320x240 resolution game will take 4.6MB/s of
throughput to push the pixel data to the screen (and would likely be far worse due to its
access patterns), we were concerned about this. Additionally, the visual interface may
need to read the frame buffer at the same time that the CPU is writing to it. Therefore,
we elected to remap this portion of memory into block RAM. Using code we found
online, we inferred a true dual-ported block RAM. There would be some overhead for
ensuring that data would end up in the correct places when these segments were
separated, but we were certain that our games should only require minimal changes.
Also because the framebuffer required 2 bytes to represent each pixel, it required a
total block of memory of 153 KB. For other games, we would need to go to reasonable
lengths with multiple frame buffer modules in order to enable double- and triple-
buffering. For Namco Museum 64, the frame buffer only switches one time, so we came
up with a hack around this “double buffering” and made it so that it would ignore the
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first frame buffer and simply use the second frame buffer address values that it changes
to. Because our frame buffer is not inside of RAM as it is defined in the N64
specification, we were unsure of the side effects that this would have, but after looking
at values being written in the original frame buffer, we decided that it wouldn’t have
any effect on the program. Also, switching to real double or even triple buffering would
be slightly complicated. As we are not sure how exactly the frame buffer is used, and
whether data values from the frame buffer not being used was unknown to us, we
would recommend looking into how the simulators handle the double buffering. Since
our buffers are outside of memory, we thought of two ways to prevent coherence
issues. Either, every time the frame buffer is switched, we issue a DMA from the frame
buffer into RAM, or we find a board with a faster memory module and place the frame
buffers back into RAM.

5.3.2.3 PIFROM

The bootloader, also called the PIFROM (Peripheral Interface Read-Only Memory) also
has its own segment in memory. Because this region does not need to be large, but
should be relatively fast and also must be initialized with the bootloader, we elected to
use Vivado to generate a block RAM IP Core. Once we put the bootloader into the XDC
file, the PIFROM would populate itself automatically. We did have some issues getting
the data to go to the correct place in the block RAM. It may have been a bug on our
part, but at first it seemed to be getting loaded into the middle of the RAM rather than
the beginning. After playing around with a lot of things, the issue disappeared and we
never completely figured out the core cause of this error.

5.3.2.4 PIFRAM

To complement the PIFROM was the PIFRAM. The PIFRAM was a 64-byte section of
RAM used by the serial interface and the peripheral interface when interacting the
cartridge and performing CIC checks, as well as while sending commands and receiving
data from the controller. We elected to use block RAM for this as well, as its dual-ported
nature allowed us to easily abstract away the communication between the CPU (which
sends commands) and the Serial Interface (which receives the commands and writes
back the data).

21



5.3.2.5 Memory Mapped Registers

The final internal section of memory that we implemented was the memory-mapped
registers. These were by far the most “hacked together” portions of the memory. The
each memory mapped register in the Nintendo 64 implements a separate function, from
things like the DMA functions to containing the bitrate of the audio samples to the
memory bus interrupt status. The majority of these registers were simply implemented
as a place that could hold data, while the value stored there performed no actual
functionality. There were a few exceptions to this- most notably the DMA registers
(containing lengths and addresses), the VI ORIGIN REG and the some of the status
registers. These registers were duplicated in the logic, where they performed the actual
functionality. The register region also contained the SP IMEM and SP DMEM regions,
which are each 1KB regions that are utilized by during the boot sequence and by the
RSP. There are many system-specific features implemented in these registers, and it was
extremely difficult to determine what should be done with them.

5.3.2.6 Cartridge

Early on, we decided not to implement the cartridge using actual N64 roms given the
complexity of the project and that it would be much more effective to load roms onto
an SD card. This provided the added benefit of being able to load multiple ROMs onto
the card and being able to switch in between games as well as being able to take
advantage of the abundance of N64 ROMs available online. This could be done easily by
cat-ing the ROMs together and separated with Os generated using xxd.

Like team PSX, our first attempt at loading a ROM onto flash memory was via SD card.
We were at first concerned regarding the same two problems that team PSX mentioned.
The first problem was that there were allegedly no SD card controllers that did not
require a soft-processor. Given the limited size of our board and our project being a
hard core oriented project, a soft core processor was not an option. The first SD card
controller we found on opencores operated in the standard four bit SD mode but was
designed to be used with a soft processor and initializing and performing reads were
very complicated to perform in hardware. We then found another SD card controller on
opencores that operated in SPI mode which provided a series of instructions for reading,
writing, and initializing and provided a much more simple interface. Prior to being able
to get the SD card working, we ran into three problems of note before getting the SD
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card to work.

The first problem we encountered with this core was that running the provided test
bench resulted in an initialization error. This was resolved by combing through the core
and SD card documentation and fixing a bit that was meant to be asserted to initialize
properly. The second very major problem and most embarrassing problem we solved
was that we swapped the dataln and dataOut lines of the SD card. The reason we did
this was because when we read the SD card documentation, the documentation was
clearly written with respect to the SD card and not to the core. However, we didn’t
realize this and assumed the dataln and dataOut lines corresponded to the same data
lines as the core. To prevent future incidences of such errors, we adopted a naming
convention copied from SPI that labeled ports MISO (Master in Slave Out) or MOSI
(Master out Slave In). This meant that the programmer no longer had to consider from
whose perspective they were dealing with and derive from the port name the exact
purpose of the port. We lost almost two whole days worth of debugging on this problem
and using this naming convention made our lives much easier. The last problem of note
we resolved prior to being able to read and initialize properly was that the addresses
passed to the wishbone interface had to be multiples of 512 bytes. This wasn’t
addressed in the documentation or the comments and was discovered via trial and error
after realizing we were receiving a read error whenever we had a cache miss on reads
that were not multiples of 512 bytes.

microSD

SD [SPI
DAT1
DATO| DO
Vss
CLK |[SCLK
vdd
CMD | DI
DAT3| CS
DAT2

RN (W | ooy |o|F

Figure 5.1 SD Card SPI standard

The second problem team PSX mentioned was being unable to load raw data onto an SD
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card. This was solved with the discovery of Win32 disk imager which is capable of
writing raw images onto a variety of removable devices. This meant that we were able
to bypass file systems and additionally rewrite out sd card with whatever ROM we
wanted to. Another advantage this offered was that it allowed us to buffer the ends of
the files with some null value (in our scenario 100 MB of Os generated using the xxd
command) in case the system attempted to perform accesses beyond the end of the
ROM.

Following this, we were able to perform reads from any sd card less than 2 GB at 24
MHz. While the module seems to suggest that there were only two acceptable
frequencies for SPI system clock, we found out that these requirements werent very
strict as were were able to vary the frequency from 25 MHz up to 50 MHz and still
perform reads properly.

This means that groups in the future that wish to store memory off board will be able to
do so using the SD interface that we wrote. We verified this by taking the hexdump of
our target ROM and were able to read the exact same data values from the FPGA.
Conveniently for us, Win32 disk imager writes the image from address 0.
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Section 6: Interfaces

6.1 DMAs

The Nintendo 64 supported DMA capability for copying data between RAM and other
sections of memory, like the cartridge and the Serial Interface. A full diagram of the
pathways can be seen below. Because most of our documentation was from emulators
that implemented DMAs being performed instantly, we stalled all transactions with the
CPU while a DMA was occurring in order to replicate this. Here, we sacrificed some
speed for simplicity and accuracy. However, while running the bootloader on the FPGA,
the stall caused by the DMA was not even detectable.

DMAs were made simple to implement once we had really refined the interface that
each memory segment used. Then, it became almost trivial to simply connect the two
modules to each other, command one to read while the other wrote data, and then
they managed themselves. The DMA engine simply broke the transactions into 32-byte
chunks and triggered reads and writes while incrementing the addresses.
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6.2 Boot Sequence

Booting the N64 was not a simple process, but one that we at least completed in
simulation. It exercised many of the regions of memory as well as many of the memory-
mapped registers. It was tough to determine what the memory-mapped registers
should do, and because there are so many, it didn’t make sense to attempt to
implement all of them. So, we tried to work out which ones should be implemented by
running the bootloader and comparing the results to CEN64. The worst hack of these
was performed by CEN and MESS whereby a register changes value when the value of
another register is read. The particular registers that these apply to are fairly easy to
find in the cen simulator with a simple grep on memory-mapped registers. These
register value changes were done in order to make the bootloader believe that the
bootloader had passed some CIC security checks. The CIC is a proprietary chip on every
cartridge that returns values to certain inputs, and the bootloader verifies these inputs,
and there are about five different CICs with different model numbers. Currently, our
console would only have supported the CIC-NUS-6102, the most common CIC. If other
games were to be implemented, the correct seed value would need to be placed into
the PIFRAM before the bootloader began. This would require either using some
switches to switch the seed value, correctly implementing the CIC checks (good luck!) or
checking the cartridge against a static list to determine which CIC it uses. Many status
registers were also twiddled with, and sometimes value simply had to be written to
them without any real understanding of what the value was meant to do. If you want a
very basic idea of what the boot loader is doing, open up the file ‘boot_patterns’ in the
top-level directory of the repository and you will have a semi understanding of how
complicated it is. On top of this, the boot loader generates a list of instructions, writes it
to some portion of memory, and then jumps to it to execute it for some reason. For a
full understanding, please run the cen64 simulator printing every time an instruction
retires along with the register it modifies and the address and instruction.
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6.3 Serial Interface (Controller)

The serial interface is responsible for sending and receiving requests to and from the
controller. The serial interface does so by reading from requests written to a 64 byte
block of RAM sent via the CPU, sending these instructions to the controller, and writing
the controller response back to the block of ram. The 64 byte block of RAM is
partitioned into 4 byte chunks and is portrayed in this table:

Memory Location | Purpose
0-3 Command to controller 1
3-7 Response from controller 1

8-31 Repeat of the above for controllers 2-4

32-35 Unknown
36-39 CIC Seed
10-59 Unknown

60-64 PIF Status, including the lowest bit indicating controller command status

The N64 wiring is very simple as there is only a single serial data line in addition to
power and ground. The system poller operates at 4 MHz while the controller operates at
250 KHz and takes 4pus to send a bit other than the stop bit, which takes 3us (all
commands responses have a stop bit appended). The bit encodings are detailed in this
table:

Bit Type | lps | 2ps | 3us | 4ps

() bit () 0 () 1

1 bit 0 1 1 1

Stop bit | 0 1 1 N/A

This bit configuration was handy as the data line was asserted high meaning a message
was coming in upon seeing the first 0. In order to determine whether a bit was a one or
a zero, | sampled after 7 4MHz cycles to check the middle bit. This worked fairly well
other than the fact that | had to tweak the clock by a marginal amount, as the controller
wasn’t sending data at exactly 250 KHz.
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The controller we configured accepts three different commands, which consists of all
commands that don’t require a gamepak. The commands are encoded in this table:

Command | Encoding Description
Identify 0x0000_0000 Determines whether the controller has a gamepak.
Poll 0x0000-0001 Reads the controller button status returns the value in a 32 bit message.

The 16 least significant bits determine the button statuses. The 16 most
significant bits read the analog joystick. These 16 msh are divided with
the 8 Isb determining left right positioning and the remaining 8 msb
determining up down positioning both using 2s complement.

Reset O0xFFFF_FFFF | Takes the current status of the controller and sets that as the status of

the controller.

The moment a command gets sent, the controller responds almost immediately (within
2ps).

The last step involved here was converting the data received from 4 MHz to the 50 MHz
of our system. This involved two crossing clock domain transactions: 1) passing the 50
MHz system command to the 4 MHz controller module and 2) passing the 4 MHz
response from the controller back to the 50 MHz system. This was done by passing a
flag across clock domains and latching the values meant to be sent. Lastly, the controller
can’t be polled too quickly otherwise it fails to respond. We found a 0.375 millisecond
delay was enough.

Here is a table containing the mapping the 32 bit poll response to the buttons:
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Bit Function

0 A

1 B

2 Z

3 Start

4 Directional Up

) Directional Down

6 Directional Left

7 Directional Right

8 unknown (always 0)
9 unknown (always 0)
10 L

11 R

12 C Up

13 C Down

14 ' Left

15 ' Right

16-23 | Signed joystick X position. This means negative values are left and
positive values right. The magnitude of this direction is dependent on
the magnitude of this value.

24-31 | Signed Y position. This means negative values are down and positive

values up. The magnitude of this direction is dependent on the magni-

tude of this value.

*The analog joystick is somewhat sensitive as it is occasionally defaulted to -1, 1 in
either the X or Y direction. If left as is, this could potentially influence gameplay. Hence,
most games have a deadzone of +/-2 to protect against this.
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6.4 Peripheral Interface

The peripheral interface is responsible for sending requests for data from the cartridge
and sending requests to retrieve that data. There are two parameters of note: 1) a size
request ranging from 1 to 63 bytes and 2) the 64 bit data line to send data back to the
RAM controller. While the peripheral interface is normally responsible for performing
writes back to the cartridge, the games that we targeted for demonstrating did not
require writing hence this was not necessary (however, with the infrastructure in place
this could easily be implemented).

We also implemented a single 512-byte cache because we were using an SD card in SPI
mode that used 512 byte transfers per transaction (more on why we used SD card in
next section). Given the variable size requests, it was possible that the CPU could
request data that there would partially fill up the returned 64 data bit bus line and
require another cache read. Our peripheral interface handles this and populates the 64
data bit bus in a single cycle barring a cache miss.

Additionally, in order to properly use the SD card, the SD card needed to be properly
initialized. This included waiting 1ms for the SD card to power up the internal MCU in
the SD card before inputting a sequence of commands to the wishbone interface that
would trigger the core to perform the initialization. Our peripheral interface performs
this initialization immediately meaning the rest of the system needs only check whether
the peripheral interface is exerting a waiting signal and from there can request
whatever reads it wishes to.

Lastly, we also wrote the hardware for performing a read sequence. This sequence
essentially consisted of writing to the wishbone address registers and writing to the
wishbone command status registers and before waiting to populate a FIFO with the
values retrieved from the SD card. This FIFO would go on to serve as our 512-byte cache,
which we cleared whenever we hit a cache miss.

20



6.5 Audio Interface

Unlike the Virtex5 boards that these labs were designed for, our Nexys 4 boards do not
have a soundcard or hardware for the AC’'97 codec. The Nexys 4 only had mono pulse-
width modulated (PWM) audio output, which we could not use for this lab nor our
project. Thus, we ordered a pulse controlled modulation (PCM) pmod to remedy this
problem. This pmod is capable of playing 16-bit stereo PCM audio.

The PCM Pmod required us to follow the I12S specification, a common serial protocol for
communication. As this was a serial protocol, we had to translate our 16-bit PCM data
into serial data. This involved storing the PCM in a FIFO that was then connected to a
parallel to serial converter. We found a module for this converter online, though it took
a while to figure out as half of it was written in VHDL.

We didn’t end up integrating the Audio interface with the rest of the system as the FPU
wasn’t completely ready to be used and we determined that there were more
important parts of the system that needed work. However, we do now have a way for
those interested in using our board or any board with only a PWM audio output to have
audio easily integrated into their system.

21



6.6 Visual Interface

We decided on using VGA as our video output of choice. The VGA specification on our
board was very simple, requiring only RGB values, and an Hsync and Vsync. From VGA
timing specifications found online, we were able to write a working VGA module that
output the data we expected. However, we used a lot of magic number parameters in
this module to match our intended screen resolution of 320x240. The files relevant to
this module are in the visual/ folder, however it also relies on parts of the memory
controller as the frame buffers (which are attached to the memory controller) send the
visual interface data to be written to the screen.

Our visual interface module provided the communication between memory and the
VGA. The main method for displaying visuals for the N64 is through the use of frame
buffers. The visual interface would request information from the framebuffer about
what to draw every cycle. We allocated a 320x240 segment of dual-ported block RAM to
act as our screen, where each segment was represented by two bytes. The two bytes
allowed for 5 bits allocated per color (RGB) and one extra bit. Any changes made to this
frame buffer would be reflected visually on the monitor. More information on the frame
buffer in section 5.3.2.2.
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Section 7: Condensed Status

7.1 What Is Done

The CPU, memory, serial interface, and visual interface have all been integrated
together, and can communicate with each other. The CPU has been thoroughly tested
but requires the implementation of interrupts. The memory controller has all of its
memory segments implemented and has minimal bugs in regards to the frame buffer
and its endianess of access. The serial interface is completely working and is very
extensible for extra controllers to be added. There is a very short specification sheet for
the serial interface that can be read for an easy way to add more controllers. As of now,
we have support for two controllers. The visual interface is working and takes a frame
buffer and displays its contents onto the center of a monitor in a 320x240 screen. Our
current visual interface however also causes the Tron game title to appear outside of
this 320x240 box; so future teams will have to go through the visual interface to remove
this title (if they want). The audio interface works, but is not attached to the remainder
of the system along with the FPU. The FPU is also completed but still needs to be
integrated with the CPU. This should be fairly straightforward, as FPU instructions use
the same pipeline, only writing results to a different register file.

7.2 What Needs to Be Done

The next step is to implement interrupts for the CPU. For those looking to continue this
project, implement the interrupts for the CPU and then synthesize and implement all of
our code onto a board. Currently our CPU deviates from the correct execution path at
the first interrupt. We have included a test game, Pong, that should be able to run with
the parts of the system that we have implemented. Aiming to run Pong correctly would
be a good direction to take to see what the next step in debugging is.

After that, move on to more complex games. Namco Museum 64 should be your next
goal, as it requires the CPU but also requires the FPU. This is when you integrate the FPU
into the CPU. Also, Namco Museum 64 uses audio without using the RCP, so integrating
audio at this point would also be good.

There also seems to be a small bug in the interface between CPU and memory (at least
in the frame buffer), where bytes seem to be getting written in backwards (we believe it
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is related to endianess). You could either completely rewrite the interface (which may
make our code easier to read and make for easier bug fixes in the future) or look for the
cause of the frame buffer bug (the complexity of which is unknown).

In order to take this project to the next level, having fixed up the bugs mentioned above,
you would have to implement the RCP (reality co-processor). We currently don’t have
too much information on the RCP and are not very sure of the level of documentation
that exists for this module online, but with a talented team, the RCP could be a
worthwhile endeavor. With the RCP, most N64 cartridges would be able to be played
including Super Mario 64. The RCP is composed of the RSP (Reality Signal Processor) and
RDP (Reality Display Processor). The RSP is a vector processor designed for high
performance 3D calculations and handles some of the audio and most video pre-
processing of the N64. It handles real-time edge anti-aliasing, automatic load-
management, texture mapping, and real-time depth buffering. The RDP on the other
hand is responsible for rendering shaded, textured, and depth buffered geometry to an
arbitrary frame buffer in main memory. With this in mind, simulators have been made
before, so even with a lack of documentation, reading through the simulator will give a
deep understanding of what needs to be done. Tyler Stachecki told us about his current
work on the RCP, so by the time you are looking at this, there may be more public
information on the RCP. If that is the case, | would highly recommend taking on this
project, as getting Super Mario 64 working would be very fulfilling.
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Section 8 : Words of Wisdom

* Have at least one person on the team with a complete understanding of how the
system modules will come together. Even better, have everyone understand it.

* Understand all the modules that will need to be created for the system to work
and then create a schedule based on that. Make sure that the schedule is
compact and try to finish the bare minimum modules required for hard progress
to be seen as fast as possible. It can be very discouraging to have worked half the
semester with nothing to show for it, so finish the bare minimum and then work
up from that basis.

* The faster you have something to demo, the better your team will feel about
your team’s progress. The first time we had something drawing on a monitor was
a huge boost in our team’s hope for completion and the team worked harder in
anticipation for more major checkpoints to be met.

* Make the schedule fast-paced, but also reasonable so that the group does not get
discouraged when nobody makes the schedule. Expect your partners to fall
behind schedule, but don’t let them fall too far behind. Stay on schedule as best
as you can as that is your best chance of getting a complete project.

* Not only should you read the assigned reading for this class, but use what you
learn from it and apply it to your team. This project is a huge endeavor and
should not be taken lightly. If you want to have a good chance at project
completion, you should expect a high workload.

* Get all the help you can from people around you and online. If there is a module
that you might think exists but you cannot find it, ask around on forums and
people. The time that you could save by finding a pre-made module could save
your project.

* Start early and decide on your project as fast as you can. A large part of our
incompletion can be attributed to us having changed our project four or so times
in the first two weeks as we were trying to find a project of the proper scope and
much research had to be done in order to finally find a project that would be
reasonable. Even better yet, do your research before the semester even starts.
Once you finalize your project decision, begin as soon as possible and work as
fast as possible.

* Fix all the warnings that Vivado gives you, or else you will have unexpected
behavior. (You might still have unexpected behavior afterwards too).
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Section 9 : Personal Statements

9.1 A Note from Jeremie

While the ISA specified certain ways of implementation, | scaled them down to reduce
their complexity in order to be able to finish the processor in time. The largest change
that deviated from the specifications was that of cache access protocol. The way it was
specified in the ISA required the address to be checked in cache in the cycle before the
actual cache access and then to actually check whether the cache line matched the
address in the following cycle. If the cache line does not match, an exception occurs that
resets the program counter while filling in the cache with the appropriate data for the
request. The cache is then probed again after the exception completes. | considered
nearly every option for maximizing processor speed, throughput, and completion. After
weighing all possibilities, | came to the conclusion that it would be best to simply stall in
the cache stages whenever the cache line requested changed from the last request.
While the processor seemed initially a daunting task, | was able to cut some corners by
basing off of the golden simulator provided by Tyler Stachecki (MarathonMan). | put
golden in quotations because although it was able to run a given number of games, it
did not match the ISA in several aspects. The NECVR4300 supported switching between
32-bit and 64-bit mode. However, for the games we intended to run, | only had to
implement the processor as if it were only running in 64-bit mode. There were also
numerous processor modes that gave the program access to different mappings to
memory. Using the simulator, | determined the segments that were accessed for our
games and only implemented those particular segments. | also managed to reduce the
number of instructions implemented by referencing the C simulator. | determined about
100 instructions that were required to run the games.

During this semester | learned several things. | implemented an instruction cache and
data cache for the processor and was able to see first-hand how they are being used and
how they improve throughput of the instructions by crazy amount. At times, debugging
was very enjoyable. After you understand a system large enough such as the one we
created, it is cool to see the interaction of parts and be able to determine exactly where
in the source code causes the error just by thinking about the effects. Seeing processor
work was interesting and it taught me to really appreciate the work that went into
larger cores. After putting in lots of hard work, it is really nice to see all the things your
hard work can achieve. Implementing such a large design taught me a lot. | had to
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expand my capability of retaining information of massive amounts of information in my
head in order to become an effective debugger of the processor. Towards the end of the
semester, | had to be very careful in every change that | made because of all the subtle
impacts that it could potentially have on my core. | really learned to appreciate the
golden simulator here as well as the tools that | created and that | found. It is essential
to go into this project with a very extensive set of tools or at least be willing and able to
create them all in reasonable spans of time. If you decide to build a large core for this
project rather than use a premade one, it is essential that you have a golden simulator
that you can compare your processor against. Having this was incredibly helpful and |
probably would have never finished the core without it. | created an extensive list of
tests with every instruction and created a mechanism that would run both the RTL as
well as the golden simulator and compare the outputs. This tool was amazing and
helped me debug the core to near perfection in a very short period of time. Another
very useful thing was usage of random testing, where you generate a suite of a random
string of instructions and use them as test cases. This really helps to comb out the edge
cases in the processor that may come up later in integration (where debugging is 100x
harder). During integration, | only found about 4 minor bugs in the processor, which
really helped speed up the integration process. Finding bugs during integration is so
much harder just because it becomes unknown whether the error stemmed from the
processor or from other parts of the machine. It also takes a ridiculously long time to
synthesize the system, so in that aspect as well it is very time consuming and time is not
on your side in this class. | would also recommend to keep a handy-dandy notebook and
write down everything that you do in order to keep track of the things that you have
thought of, are in the middle of implementing, are designing, tricks to overcome certain
Vivado bugs that have been solved previously etc. It really comes useful and you will not
waste time fixing the same bug over and over again. Another recommendation would be
to propagate all wires through the pipeline that are generated even if they are not used
later in the pipeline in case they may be used in the future. This will solve a lot of
headache later down the road, as it is very likely that you are going to require a wire
later. Wire propagation sucks when you have to transfer one several sub-modules deep
to another module. This early propagation will be very useful and help in debugging. The
synthesizer will optimize these out if you end up not using them anyways so don’t worry
about that. Also, do not use the (.*) for declaring modules but rather indicate every
single wire independently. Even if it may look ugly, it will save a lot of time later when
debugging.
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This processor is not complete. If you want to take it further, a lot will have to be done.
However it is a great starting point if you choose to take on the RCP of the N64. Most of
the infrastructure is in place for completing the ISA. However one large task that you
will have to take on is the implementation of interrupts. This was one thing that | missed
while designing the CPU and its need was found two days before the demo day. For this
reason | chose to go ahead with what was available to go ahead and create my own
demo. | wrote an assembly program compatible with my CPU, which was modeled after
the classic arcade game Tron. In this game, there were two players that controlled their
respective lightcycles that could move around in a square map. As the players moved, a
contiguous trail would be drawn mapping their paths. However, if any player is to hit
either players paths or the four square walls around the map, the other player would
win the round. The problem in writing this arose when we found a problem with the
frame buffer accesses. | suspect that it has something to do with flipping the endianness
of the data in the frame buffer when reading from it, but am not completely sure as to
what the problem was.

This was probably the biggest project | have undertaken at CMU. I’'ve never pulled more
all-nighters in one semester nor written so many lines of code. | really enjoyed the
entire process of creating a CPU from only an ISA. | enjoyed the perseverance required
to perfect this one component as well as the creation of numerous tools required to
bring it to full fruition. As disappointing as it was to not be able to get a real N64 ROM to
boot up, it was enjoyable to be able to put together an entire system from scratch and
watch how the parts interacted. | really learned about the bottlenecks of the memory
hierarchy and this project helped me to appreciate the hard work that has been put into
building modern systems.
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9.2 A Note from Alvin

This project, while extremely taxing, was an extremely rewarding experience for me.
When | first signed up for the project, | was worried about my readiness and how much |
would be able to contribute. | hadn’t touched Verilog in a year and using a Nintendo 64
as a Verilog 101 crash course didn’t sound like the greatest idea. However, by the end of
the project | was able to produce both the peripheral interface and the serial interface.
In particular, I'm proud of having gotten the ROM to work on an SD card as no other
group in the past had interfaced with an SD card using a hard core and other future
groups could use this core for their own projects.

At the start of the semester, | wasn’t sure where to begin so went about working on
three tasks that would help me ramp up as well as get a good grasp of what was going
on with the overall system. The first task | worked on was creating a wiki in our Github
that would consolidate and organize all documentation we found. We previously piled
all of our findings into a very large Google doc and from moving all the documentation
to the Github wiki, | was able to get a better overview of the overall picture of the N64
and this also served as a reference for others in the group. The second task | worked on
was creating a utils file that would consist of all commonly used Verilog modules such
that others could simply reuse such modules instead of writing their own every time.
This helped me regain my Verilog familiarity but wasn’t as useful for others as | hoped
given towards the end of the semester most of us just created modules on the go. The
third task | worked on was really looking into Chipscope and figuring out how to debug
on board. This step definitely paid off as we ran into numerous on board problems that
weren’t present in simulation.

From there, | then started working on the controller which | chose because it was the
most straightforward component and would allow me to run through the entire design
process from searching through documentation to verifying on the FPGA. This proved to
have its pros and cons. The pros being that | was able to get acquainted with Vivado,
learn which warnings to ignore, use chipscope, and help others in my group. The con
was that the serial interface wasn’t needed until much later in the semester while my
group needed the peripheral interface much sooner.

Lastly, | worked on getting the SD card to work on board. This step was quite interesting
as it was my first time working with open source cores. Additionally, the core was
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written back in 2008 and there were several bug reports filed about there being
problems initializing and writing the card that were unresolved. | went against
conventional wisdom here and ignored the warnings and pushed ahead after seeing
how straightforward it was to initialize and read from the card.

In conclusion, | learned lots and really enjoyed the challenge of taking on something
completely foreign. Max was an amazing partner and his passion for the project was
contagious and was a great source of information on anything N64 related. Jeremie
worked relentlessly and pushed me to harder every week and motivated me to pull
more all-nighters than | have in my life. Both Max and Jeremie pushed me to continue
working the SD card when | wanted to load the ROM onto a Raspberry Pi telling me that
| was very close. Looking back, I'm very grateful that they did.
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9.3 A Note from Prin

| was unprepared for the amount of work this class would entail. | had heard stories,
read other peoples personal statements, but it was not until we were finishing up our
research that | understood the scope of the journey we were about to undertake.

The N64 was simply a massive project. | will admit that at the beginning | had some
pretty unrealistic expectations. With four people, | thought we would be able to churn
out code and squash bugs left, right and center. While the code churning was true,
having more people churn out more code simply meant we would have more bugs to
deal with, as none of us were perfect. Along side this, debugging was made a lot harder
because our code was more stratified. During integration, when one of us found
unexpected behavior, it was almost impossible to simply fix it. Rather, we would have to
ask the person that wrote the module why certain behavior was exhibited, because we
had partitioned our works such that no one knew exactly the inner workings of the
others.

| started the project working on the floating point unit, as | was the only one who had
had experience with in in a previous class. | could not find a suitable unit from
OpenCores, so | spent a lot of time researching this unit, and trying to implement all of
the features. It quickly grew to be a daunting task. Much of this time turned out to be
unproductive, however, as we soon discovered the wonders of Vivados IP catalog, which
had already implemented the majority of these floating point instructions. Three weeks
of work was quickly overwritten by learning the existence of a tool that | should’ve
known about through more extensive research. Lesson learnt: don’t try to implement
everything by yourself, especially when there are implementations that are already
better.

| then moved on to working on the audio subsystem. While working on this, | seemed to
be fighting Vivado more often than | would be writing code. | was road blocked for a
week and a half due to faulty documentation on how to initialize block ram, leading to
most of the sounds | was testing sounding like static. This was probably the most
aggravating period of the semester, as there is an acute sense of despair when the code
you write, test, and simulate disagrees with the reality of the implementation. However,
ChipScope proved to be my saving grace and allowed me to solve this issue handily.

We did not end up using the audio system | had worked out, though. It was around this
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time, nearing the third quarter of the semester, that it seemed that we had fallen off
schedule. Bugs were popping up everywhere, causing delays upon delays. | was put on
help everyone else duty, because the parts | was working on prior would be of no use if
the system would not even boot up. To this end, | became the group rubber duck,
though | primarily sat through and helped Max. It was only at this point that | started to
feel like | was really part of the team, because until then | had been working solely on
my own code. Here, | would like to give a shoutout to all of my teammates. Jeremie was
an absolute monster, implementing the better half of a CPU from scratch. It was not
until we were integrating that | realized just exactly how much effort he had placed into
this class. Alvin was relentless in the number of hours he would spend in lab working,
which motivated me to stay in lab more. Max was excellent at working the leader role,
inspiring all of us with his enthusiasm. | was very fortunate to have worked with these

guys.

Even though we were unable to finish our original project goals, working on the project
provided valuable life lessons and learning experiences. | can say | have never worked
this hard in my life before, starting from 12 hours a week at the beginning of the
semester and converging on 18 hours a day during the final week before the demo.
Would | repeat the same experience if given the choice? No, | would choose a more
reasonable project with more reasonable documentation and used a more reasonable
design suite. However, without this experience, | would never have learned the
camaraderie of working on a big project with a team of dedicated individuals. My advice
to future groups is, unless you want to dedicate your semester to this class, to pick
something reasonable and fun. Most importantly though, pick people you would like to
work with, because you’ll be spending an ungodly amount of time with them over the
semester.

47



9.4 A Note from Max

This project was by a huge margin the most time consuming of any class | have taken at
CMU. I'm glad that | had planned for this during this semester, because otherwise |
would have really struggled to keep up with my other classes. That being said, we knew
from the beginning that this was an ambition project that would not be easy. | took 18-
447 in a previous semester, and found that | felt like there was a lot more work that was
put in with fewer results. Understanding the complexities of the system were very
difficult, and no one is there to spoon-feed you what it is that you have to do. As a
result, the first month or so were spent doing as much research as we could manage
and determining if the project was viable at all. We were fortunate to find Tyler
Stachecki as a resource, who already understood how difficult it would be, and further
guided us in finding many of the materials we would need, such as public domain ROMs
that did not utilize the RCP and RSP.

When it comes to working effectively, | cannot emphasize enough the benefits of
working in simulation. Eventually your design may take a half hour to synthesize, and
good luck debugging. If you can keep your model in simulation, do it! Find behavioral
models or write your own for things that don’t have any. This will help to quickly
validate all parts of your design. Also, our decision to use the emulator as a golden
reference made identifying bugs much easier and made the whole process faster. When
you can identify a fault to a certain instruction with certain operands, or a write to a
specific address, working becomes so much more efficient. Though, verify early and
often that what you are doing in simulation matches synthesis. Vivado is heartless and
will claim that you aren’t using parts of you design, then optimize them out. Go through
all of the synthesis warnings before you do any else, they usually fix the problem.

Overall, | found this to be an entirely worthwhile project. | would not advise others to
stay away from such ambitious projects, | would just advise that if you want to do
something as new and poorly documented as the Nintendo 64, be aware that it must
consume you and the rest of your team for the whole semester. | know | spent about 30
hours per week on this at the beginning of the semester, and in the last week or so
spent about 50-60 hours in lab. Start as early as you can. If you are thinking about doing
some- thing like this and the class hasn’t started, consider beginning your research, it
will save you sleep in the future!
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| recently saw that Digilent has announced a Nexys 4 with DDR2 RAM instead of Cellular
RAM. If you decide to pick up this project where we left off, save yourself the hassle and
get that board! This unreal amount of bandwidth means you would not have to fix the
hacks we put in for the framebuffer.
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Section 10 : Class Impressions

This class is a unique opportunity to learn project management skills on top of applying
everything you’ve learned during your time at Carnegie Mellon to a single endeavor.
This will probably be the largest project you will have worked on and it is best not to
underestimate the time required to make this project successful. This class could be
very fun if your entire group is really excited about the project. If you can’t find a
dedicated team you should definitely scale down the project fit for the team members,
otherwise you will not have a good time and this class could be very painful for you. This
is a self-directed project and requires a lot of individual research to figure out exactly
what you need to do to make it work. The lectures are mostly about group management
and progress reports; so don’t expect to be told when to start working. Just start
working as soon as possible. Good luck!
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