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What We Built

Introduction

Our project for this semester was the development of a Verilog implementation of an IBM
5150, commonly referred to as the IBM PC. The IBM 5150 isn’t commonly thought of as a video 
gaming machine. It was more commonly used as a business computer. However, there were a 
large number of games written for or ported to the IBM PC. The IBM PC has all the attributes we
commonly associate with video game machines, including video, sound, and user input. Sharing
these attributes with video game machines made the IBM PC a good project choice for 18-545. 



Motivation

Our motivation in choosing the IBM PC for this project, instead of another machine from 
the 1980’s, was its place in computer history. The IBM PC was not the first personal computer - 
there were other personal computers that predated it, including the Altair 8800, Commodore 
PET, and Apple II. However, the IBM PC was revolutionary because it set a standard, known as 
“IBM PC Compatible”, for personal computers that still exists today. By setting this standard, the
IBM PC popularized personal computing, kickstarting the computer revolution of the 1980’s. 

Historical Background

IBM’s entry into the personal computer market is considered a watershed event in 
computer history. This was the moment in which personal computing became a part of 
mainstream life. Yes, there were many successful personal computers before it, but IBM had 
something that no other manufacturer had - the IBM brand. IBM was the market leader in the 
computing industry at the time and was one of the most respected companies in the United 
States. IBM’s entry into the market sent a clear signal across the world - personal computing is 
the way of the future.

IBM’s computer would be massively successful and help IBM keep its place as the 
market leader. However, it wasn’t only the IBM name that made the IBM PC a standard for 
computing. The IBM PC became a standard because it was easy for other manufacturers to 
duplicate. Historically, IBM made computers all on its own - hardware and software. However, 
IBM wanted to move the IBM PC to market as soon as possible. 



IBM’s solution was to look outside the company for products they could buy off-the-shelf.
They bought most of their integrated circuits, including the 8088 CPU, from Intel. The disk drives
and monitor were imported from Japan. For an operating system, they turned to two companies 
- the market leader for software, Digital Research, and a small company out of Albuquerque, 
Microsoft. Digital Research was reluctant to do business with IBM, but Microsoft, eager for 
sales, agreed to bundle DOS with every IBM PC in exchange for royalties. The only thing on the
PC that was IBM-owned was the BIOS chip.

IBM’s reliance on outside vendors made it easy for other manufacturers to clone its PC. 
All an outside company needed to do was to buy components from the same vendors and 
produce their own BIOS chip. Companies such as Compaq became highly successful by selling 
computers that were “100% IBM PC Compatible”. This meant that software and hardware 
developed for the IBM PC would also work on their machines. This turned “IBM PC Compatible”
into an industry standard. With the establishment of an industry standard, the personal 
computer market grew exponentially. In addition, it popularized the processors made by Intel 
and the software written by Microsoft. The IBM PC left an indelible mark on the industry by 
popularizing the personal computer.

Game Description

In our original plan, we had endeavored to have a functioning floppy disk drive for demo.
This would have enabled us to load in programs from simulated floppy disks. However, the 
floppy subsystem was far too complex for the amount of time we had available to us. Instead, 
we developed a keyboard loader system that stored the keystrokes of a BASIC program that we
could show off for demo. 

The BASIC program we developed is comprised of four separate segments, weaved 
together using a custom developed start screen. Two of these are games and two of these are 
audio demos. The start screen allows the user to choose which demo he wants to view. The first
demo is Hi-Lo, which is a simple one player game. The second demo is Arpeggio, which is a 
simple demonstration of our audio capabilities. The third demo is Game of Life, which is a more 



complex two player game. The fourth demo is labeled as “???” and is a complex audio demo 
that plays “The Imperial March” by John Williams. 

One of the requirements of this course was that we did not develop the games that we 
play on our hardware. This requirement was obeyed - both Hi-Lo and the Game of Life come 
from a book of BASIC games that came out in 1978. A link to where we got these games from is
located in the Appendix under “Code Sources”. However, these games did not showcase the 
audio capabilities of the IBM PC. Therefore we added the Arpeggio and Imperial March sections
to the demo. 

Hi-Lo

The game of Hi-Lo is relatively simple. The user’s goal is to guess X, where X is an 
integer between 1 and 100, inclusive. The user has six guesses. The computer will tell him if his 
guess is too high or too low. If the user guesses correctly, he wins $X. If he guesses incorrectly 
six times, he loses all his winnings. He can then play again to win more money or quit. 

Most of the code for this game was taken from the book of BASIC games where we 
found the Game of Life. However, we did make a few small modifications to it. We have the 
capability for colored text, so we chose to change the text attributes for the text that is displayed 
at the conclusion of a game. The text changes to blinking green if the user wins. The text 
changes to solid red if the user loses. 

Arpeggio

Both Hi-Lo and the Game of Life are neat games, but they lack sound or color capability.
We modified Hi-Lo to have color and added a few beeps at the end of Game of Life, but we felt 
that we needed a way to show off the sound capabilities of the IBM PC. The IBM PC does not 
have especially advanced sound capabilities, but we felt a demonstration of sound was 
necessary for two reasons. First, one of the requirements of the course was to have a system 
with sound. Second, the speaker is modulated by the Intel 8253 Programmable Interval Timer. 



The 8253 turned out to be one of the most difficult parts of this project to get working correctly. 
Therefore, we wanted to show off how well it runs.

The Arpeggio is a simple demonstration of our sound capabilities. It plays tones ranging 
from 440 Hz to 1000 Hz in 5 Hz steps. It plays each tone for 27.5 ms. It then plays tones 
ranging from 1000 Hz to 440 Hz in -5 Hz steps. It plays these tones for 27.5 ms as well. The 
entire sequence takes approximately 8 seconds to play. This demo shows off our sound 
capabilities and provided us with a way to ensure that the 8253 works as expected.

Game of Life

The Game of Life is a two player game based on mathematician John Horton Conway’s 
famous mathematical simulation. The goal of the game is to make your species survive. There 
are two players who must ensure the survival of their respective species. Player 1 gets "*" 
pieces and Player 2 gets "#" pieces. The game is played on a 5x5 grid. The game starts by 
Player 1 and Player 2 placing their 3 initial pieces on the grid.

The game abides by the same basic mechanics as the original Game of Life simulation. 
Live cells with fewer than two neighbors dies. Live cells with two or three neighbors continue to 
the next turn. Live cells with more than three neighbors dies. Dead cells with three live 
neighbors come to life in the next turn due to reproduction. 

However, each player gets the chance to place a new piece at the beginning of every 
turn. If they place in the same location, nothing happens to that cell. No player can place a piece
at an occupied location. If a player runs out of pieces, the other player wins the game.

The motivation for adding a game in addition to Hi-Lo was the course requirement to 
have multiplayer capability. Even though previous groups had gotten by with single player 
games, we chose to play it safe and add in a multiplayer game for demo. 

The Imperial March



Even though the Arpeggio demonstrates that we have sound capability, it seemed like a 
bland way of doing so. Meghan suggested adding “The Imperial March” by John Williams to our 
demo. This piece of music features prominently in the Star Wars films as the theme of Darth 
Vader. 

This song fits with IBM’s place in the computer market in the 1980’s. In the decades 
prior, IBM was the Galactic Empire of computer companies. However, 1977 would mark the 
release of “A New Hope” and the release of the Apple II. The introduction of the Apple II 
prompted IBM to start development of a personal computer of its own. 1980 would mark the 
release of “The Empire Strikes Back”. IBM would strike back in 1981 with the release of the IBM
PC. Thus, we decided to make our IBM PC play “The Imperial March”.

To make our dream of playing this song a reality, we tracked down different pieces of 
sheet music for the song. We used the frequency table in the IBM BASIC guide to translate the 
notes into frequencies and determine the correct durations for each note. We then converted 
the frequencies and durations into “SOUND f,d” commands. We added these to our demo 
program and used our keyboard loader to put them into the IBM PC. 

After some tweaking, we managed to get the song running on the IBM PC. The time we 
put into perfecting the 8253 Timer is evident, as the IBM PC is able to play the song with correct
timing and pitch. This shows the advanced capabilities of our sound system. Though it would be
nice to have a more complex game to show off sound, this demo program does a good job of 
demonstrating sound. 

Detailed Hardware Description

Introduction

Our IBM PC implementation attempts to follow the original IBM PC’s design as closely 
as possible. As a result, we have based our design on the original circuitry of the IBM PC. 
However, we have made some modifications that are detailed in this report. 

System Block Diagram



Hardware Overview

The following sections provide overviews of the major components of the IBM PC. These
overviews provide an idea of what each component does, our design for the component, our 
testing strategy for the component, problems we ran into, and the result of our efforts. 

CPU (Intel 8088)

The Intel 8088 was a variant of the Intel 8086, introduced on July 1, 1979. For this 
microprocessor, Intel decided to swap the 16-bit external of the 8086 for an 8-bit external bus. 
Therefore, the 8088 required two bus cycles to read or write data as opposed to the 8086’s one.
The features of the 8088 processor are:

● 8 bit data bus interface
● 16 bit internal architecture
● Direct addressing capability to 1 megabyte of memory
● Direct software compatibility with 8086 CPU
● 14 word or 16 bit register set with symmetrical operations
● 24 operand addressing modes
● Byte, word and block operations
● 8 bit and 16 bit signed and unsigned arithmetic in binary or decimal including multiply 

and divide



Although Intel moved away from the 16 external bus, they decided to keep their 16 bit 
internal architecture and 20 bit address bus from the 8086 unchanged.

The Intel 8088 was targeted at economical systems by allowing the use of an 8-bit data 
path and 8-bit support and peripheral chips. The original IBM PC was the most influential 
microcomputer to use the 8088. It used a clock frequency of 4.77 MHz. In order to design our 
8088 processor, we decided it would be very useful to reuse a processor we found online, the 
Zet processor. The Zet processor was fully functional but was based on Intel’s 8086 processor 
and not the 8088 processor which we were interested in. However, we saw this as an easy 
modification being that the main difference was the size of the external bus. Unfortunately, this 
proved to be much more difficult than we anticipated due to the implementation of the 
processor. The code written was very poorly documented making it difficult for us to determine 
what would be affected if we went in and changed the width of their data bus. This issue forced 
us to make the decision to avoid touching the functionality of their code and instead write our 
wrapper system for the Zet processor. We were able to do this because the Zet processor 
included a halt signal that allowed us to stop and start the processor as we pleased. Therefore, 
in cases such as read and write in which our processor would take more cycles, we would halt 
their processor to account for those extra cycles. Those allowed us to avoid any incorrectness. 
Unfortunately, this did cause us to lose some performance but it was a necessary trade-off to 
ensure functional correctness of the processor.

Basic functionality of the wrapper basically acted as a middle-man between the 
processor and memory or the I/O device. It waited for the processor to signal that it would like to
access memory, halt the processor while it processes that request and then un-halts the 
processor to continue executing with that new data.

Floppy Drive

The IBM PC used a floppy drive or a cassette drive in order to boot DOS, in addition to 
any applications. The floppy drive used a floppy disk controller in order to communicate to the 
CPU. The FDC has two main I/O ports; the main register and the data register. The main 
register held the status of the FDC at any given point and could be accessed at any point in 
time. It is read only. The data register was actually the first in a stack of registers that held the 
data being read or written, it was the only one accessible. The FDC used Direct Memory Access
to record data transfers.

The initial approach to the floppy drive was to create the floppy drive controller and use a
compactflash disk and an image of DOS from the internet. At first glance, it seemed deceptively 
easy, but upon re-reading the IBM PC’s diskette drive adapter reference, it was realized that an 
understanding of floppy disks would be needed, as some of the terminology being used was 
unfamiliar, as well as figuring out which version of the 5 ¼“ floppy disk would have been used 
with the IBM PC. It appeared as if Team Dragonforce had done something similar, but their 
ultimate goal was different and their code was not helpful. With the additional research needing 
to be done, we had to extend the deadline to October 20th.



Not that that helped much. We ended up borrowing code from AO486 project, which is 
included in the citations, to get the floppy drive controller to work. The code we borrowed 
simulated a floppy drive, and we thought that all we needed to do was add a wrapper and make 
sure that it worked, that every command we expected the BIOS to give was verified.

Unfortunately, it wasn’t that easy. While verifying that the commands that did not involve 
the evaluation step of the FDC was done relatively easily, the most important command the 
FDC would receive was the read command. The read command needed the evaluation step to 
work.

After discovering all the signals that prevented the FDC from going into the evaluation 
step, and making sure that they were changed, we discovered that the floppy drive code 
possibly expected the commands in a different order than the documentation we had provided. 
At this point it was too late in the semester to actually try and fix this problem in the wrapper, or 
to try and write our own code.

Direct Memory Access Controller (Intel 8237)

The IBM PC’s DMA controller uses the Intel 8237 chip to allow data transfer from I/O to 
memory without using the main processor. It also allows for transfer between memory and 
memory. The DMA controller allows for different types of transfer include single, block, demand 
and cascade. There are also several different modes of transfer such as read, write and a verify 
transfer. The 8237 chip is capable of transferring data at a rate of up to 1.6 MByte per second. 
There are 4 channels for the DMA controller. The first channel, channel 0, is special and is used 
only for periodic DRAM refreshes. Because we had implemented the RAM ourselves we did not 
have to utilize the RAM refresh because it would be taken care of already. There are three 
additional channels that are used by I/O devices and there is a priority queue.

The documentation for the 8237 chip is limited because Intel choose not to describe the 
inner workings of the chip. Instead a very high level overview of the chip's function is described. 
As a result, it was hard to come up with an implementation from scratch. We found a basic 
implementation completed by a student at the Bourns College of Engineering that had some 
basic functionalities of the chip completed. However, this chip implementation was done in 
VHDL so it needed to be converted to Verilog so it could be used in the IBM PC implementation.
This led to some issues because of the way VHDL and Verilog handled inout signals. Most of 
the debugging of the DMA was spent fixing this. 

The other problem with the original implementation is that it only supported one channel 
which would not be sufficient for our needs. As a result, we added more registers in order to 
accommodate for all four channels needed. This design differs slightly from the original Intel 
design because the Intel uses only one set of registers for all four channels. The reason for this 
design change is because the implementation did not contain any type of priority selection for 
channels. Thus, we did not have to worry about clobbering the contents of the registers.



In line with our development goal to replicate the original IBM PC as closely as possible, 
the initial plan for the DMA was to write up a Verilog description based on the Intel 8237A 
datasheet. However, the details for this chip are sparse and it was difficult to determine the 
exact functionality and behavior of the DMA controller. As a result, writing a Verilog description 
would be tough and would be a result of many assumptions of the inner workings of the chip. 
We have found a couple of previous implementation of the chip, however both have issues. One
of them is specifically hardcoded to work with an application and thus the timings and 
functionality would not be suitable for our project. We currently are using a basic implementation
which implements single and block, read and write transfers. The added modifications and 
verification needed led to a delay in the implementation of the DMA. However, we managed to 
complete an implementation of the DMA controller. 

Random Access Memory

The IBM PC’s RAM consists of 64-256 kilobytes of memory. Given the large amount of 
block RAM available to us, we have chosen to instantiate 256 kilobytes to serve as our RAM 
bank. The RAM modules on the IBM PC consist of four RAM banks with 64 kilobytes each. 
Each bank consists of nine slices. Each slice holds 64 kilobits of data. Eight of those slices are 
the data itself, the ninth slice is for parity check. Our PC instantiates a CoreGen block to 
simulate the RAM. 

The IBM PC’s RAM utilizes two special signals for read and write, column access strobe 
and row access strobe. In order to read to or read from RAM, the system first sends a row 
access strobe and the row address to the RAM. The RAM latches the address when the strobe 
is received and selects the requested row. The system then sends a column access strobe and 
the column address to the RAM. The RAM latches the address when the strobe is received and 
selects the data in the row at that column. Data is then written to or read from that address. 

The use of a Row Access Strobe and Column Access Strobe are unnecessary with 
current technology. Our original plan was to build a system that made use of the strobe signals. 
However, this proved far too difficult to debug. Instead, we used CoreGen to instantiate block 
memory, forgoing the use of strobe signals. 

Read Only Memory

The IBM PC’s ROM consists of 64 kilobytes of memory. This memory holds our image of
the BIOS and the BASIC interpreter. BIOS stands for Basic Input/Output System. It may be 
accessed at any time, but it may not be written to by the processor. The ROM will be the first 
place the processor will look for instructions to execute. Our PC instantiates a CoreGen block to
simulate the ROM from an image we found on the internet. The ROM covers addresses 
0xF0000 to 0xFFFFF. 

Keyboard



The IBM PC’s keyboard was one of the more memorable aspects of the original IBM PC.
It had 83 keys and unlike more modern keyboards, it was mechanical. On the inside, an Intel 
8042 translated the keystrokes into scan codes that were sent to the IBM PC via a serial 
connection. The set of scan codes it utilized are now referred to as scan code set 1. Within the 
IBM PC, these scan codes are received by a shift register. Once a scan code is received, an 
IRQ1 interrupt is generated and sent to the 8259 Programmable Interrupt Controller. Once the 
processor has received the key press, it clears the interrupt by sending data to the 8255 
Programmable Peripheral Interface at Port C. The original IBM PC keyboard, while a very nice 
piece of machinery, did not set an industry-wide standard for keyboards. Instead, IBM’s PS/2 
line of computers, which arrived in the later 1980’s, made the PS/2 connector the standard way 
of connecting keyboards and mice for decades to come. The keyboards shipped with the PS/2 
line included more keys, transmitted in scan set 2, and used a slightly different serial protocol. 

The keyboards in the lab follow the newer PS/2 standard, which presented problems for 
our group. We needed our keyboard to work just like the original IBM PC keyboard. Our first 
thought was to develop a go-between module that would receive serial data from the keyboard, 
translate the scan codes, then send data to the motherboard that followed the IBM PC’s serial 
protocol. We developed a Verilog module to accomplish that goal. However, it did not work as 
expected. We had only a vague idea of how the keyboard was actually transmitting data. Our 
keyboard module was built upon assumptions that were baseless. Worse than that, we realized 
that our original concept was monstrously inefficient. It was pointless to receive data, translate 
it, retransmit it, then receive it again. 

The solution was to craft our own data receive module. Our keyboard data receive 
module takes in serial data under the PS/2 protocol, translates the data from scan code set 2 to 
scan code set 1, and generates an interrupt to the processor. The processor acknowledges the 
interrupt by sending a signal to our module that allows it to receive another scan code. This 
meant disregarding several chips and circuits on the motherboard that were intended to receive 
keyboard data from a real IBM PC keyboard. 

This is an important lesson for any future 545 groups - your assumptions about how a 
system operates may be wrong, so have extra time in reserve to make adjustments. We thought
that we understood how the keyboard sends data. We developed a Verilog module based on 
these assumptions that worked in simulation. However, it did not work in the real world, primarily
because we did not have a sufficient understanding of how the keyboard transmits data. We 
wasted time developing something that ended up being worthless. However, we did have 
enough time to rework it for demo day. Leave time in reserve in case unexpected situations 
arise. Also, be sure that your assumptions about system operation are based on fact, not your 
own theories about system operation.

The keyboard module provided the perfect subsystem to show off on demo day, October
15th. We developed a special test bench for the occasion. Our test bench allows the user to fill 
up a buffer with key presses, read the key presses back from the buffer, and reset the buffer to 
read more scan codes. This provided not only a means of testing our keyboard module, but also



a way to demonstrate the progress we had made to that date. Work on the keyboard was 
conducted during early October. Patrick Brown took the lead on this part, as we had stipulated 
at the beginning of our project. 

Keyboard Loader

In mid-November, we realized that we were going to face a big problem on demo day. 
Unless we completed the floppy drive, we had no way of storing programs to show off for demo.
Without some way of storing programs, we would have to type in our demo program by hand. 
Typing a BASIC program in by hand is time consuming and can often result in syntax errors that
could lead to disaster during a demo. We needed a solution to this problem and Eliot suggested 
a module to load in keystrokes automatically to the BASIC interpreter. 

Having worked on the main keyboard modules, Patrick Brown took the lead on this part. 
The principle behind the keyboard loader is simple. An FSM waits for a button to be pressed on 
the front of the console. It waits for the keyboard to be idle, then sends a keystroke as if it was 
the normal keyboard receive module. Once the acknowledge signal is sent from the CPU to the 
keyboard, it increments an internal counter and sends the next keystroke. It keeps sending 
keystrokes until it reaches its limit.

However, there is an operating system-imposed limit to the number of keystrokes that 
can be sent at once. The operating system has an internal keyboard buffer that is only so long. 
If the keyboard tries inputting characters too fast, it sounds the system buzzer. When we tried to
run the keyboard loader the first time, we printed only a few characters before the buzzer 
sounded and the system went haywire. 

The solution was to add an extra counter to the keyboard loader that forced lag time 
between keystrokes. After receiving the keyboard acknowledge signal from the CPU, the 
keyboard loader starts a counter and waits until the counter reaches its maximum level before 
trying to send another character. This avoided overflowing the keyboard buffer. In addition, we 



were able to calibrate the counter’s maximum level to make the keyboard loader run as fast as 
possible without overflowing the buffer.

In order to have keystrokes to send to the keyboard loader, Eliot developed an online 
tool to translate BASIC programs into keystrokes. More information about it is located in the 
section “Keyboard Translator”. 

The keyboard loader also helped reveal the most pernicious bug in our entire system. 
Sometimes the keyboard loader would load characters up until a point and then stop. 
ChipScope investigation revealed that the system kept ending up in an invalid instruction 
handler and kept trying to return to an invalid part of the BIOS. Further investigation revealed 
that this pattern was happening after a repeat command that the processor was executing. The 
Zet processor handles repeat commands by having an extra-long execute state. If an interrupt 
occurred during this execute state, such as one from the keyboard module, the Zet processor 
immediately tried to service it. However, this resulted in the processor clobbering its own stack 
and registers. As a result, it popped the wrong return address off of the stack and ended up in 
an area of invalid memory. The problem was fixed by sending interrupts to the CPU only during 
the fetch state. The problem was solved and the system works much better now. 

Work on the keyboard loader was conducted during late November. Patrick Brown took 
the lead on this part because of his experience with the keyboard system.

 

Input/Output Interface (Intel 8255)

The IBM PC’s I/O interface is handled by the Intel 8255 Programmable Peripheral 
Interface chip. The Intel 8255 has 24 different I/O pins that can be programmed in three 
operating modes. Mode 0 is for basic input and output. Mode 1 is for strobed input and output. 
Mode 2 is for a bi-directional bus. The 24 pins are grouped into four sets: Port A, Port C Upper, 
Port B, and Port C Lower. Writing a control word to the 8255 changes the mode of operation of 
the chip. The 8255 can be programmed to accept many different combinations of operations. 

However, the IBM PC BIOS sets the 8255’s mode of operations at startup. It writes the 
control word 0b10011001 to the mode register. This control word configures the chip in mode 0, 
basic input and output. Port A is set as input. Port C Upper is set as input. Port B is set as 
output. Port C Lower is set as input. This configuration is kept for the operation of the computer 
and assists with communication with the keyboard, configuration DIP switches, cassette drive, 
and speaker. Since the BIOS configures it manually for only three jobs, we simplified the design 
to work exactly as the BIOS desires.

Each set of ports on the 8255 handles a different I/O device. Port B, which is the only 
output port, has multiple jobs. It sends data to the speaker, turns the cassette motor off and on, 
enables RAM and I/O clocks, and controls what data is sent to the other input ports. Signal PB2 
from Port B controls which set of DIP switch settings from Block SW2 is sent to Port C Lower. If 
asserted, switches 1-4 are sent. If not asserted, switch 5 is sent. Signal PB7 acknowledges the 



receipt of keyboard data and reads switch settings from Block SW1 if asserted. Port C Lower is 
an input port that receives switch settings from Block SW2. Block SW2 lists the amount of 
conventional RAM (times 32 kilobytes) aboard the device. Port C Upper is an input port that 
receives data from the cassette drive. Port A can receive either keyboard scan codes or switch 
settings from Block SW1. Block SW1 configures the display, floppy drive, and RAM. The SW1 
settings are detailed in the table below.

Switch Number Function

Switch 1 ON: No floppy drives connected
OFF: Floppy drives connected

Switch 2 ON: 8087 not connected
OFF: 8087 connected

Switches 3 and 4 ON, ON: RAM Bank 0 populated
OFF, ON: RAM Bank 0 and 1 populated
ON, OFF: RAM Bank 0, 1, and 2 populated
OFF, OFF: RAM Bank 0, 1, 2, and 3 
populated

Switches 5 and 6 OFF, OFF: MDA Monochrome
OFF, ON: CGA 40 x 25
ON, OFF: CGA 80 x 25
OFF, OFF: Special expansion card

Switches 7 and 8: ON, ON: One floppy drive
OFF, ON: Two floppy drives
ON, OFF: Three floppy drives
OFF, OFF: Four floppy drives

Work on the 8255 was conducted during early October. Patrick Brown took the lead on 
this part, as we had stipulated at the beginning of our project. 

Programmable Interval Timer (Intel 8253)

The IBM PC’s Programmable Interval Timer consists of an Intel 8253 chip that generates
three different signals. The Intel 8253 can generate six different types of signals: an interrupt on 
terminal count, a hardware triggerable one-shot, a rate generator, a square wave, a software 
triggered strobe, and a hardware triggered strobe. It can countdown in either binary or binary 
coded decimal. The Intel 8253 is a very complex piece of hardware that would have taken an 
inordinate amount of time if we had not devised ways of simplifying it.

Fortunately, the IBM PC does not use all the native abilities of the chip. It makes use of 
only three out of the six operating modes and does not use binary coded decimal countdown. It 
makes use of all three of the channels, but the BIOS configures all three of them at startup. 
Channel 0 is a square wave at 18.2 Hz that handles the machine’s time of day functionality. 



Channel 1 is a rate-generated pulse at 66 kHz that controls the memory refresh. Channel 2 is a 
square wave at 896 Hz that is used to produce a beep from the speaker. This knowledge 
allowed us to simplify the design of the 8253 and streamline the verification we needed to 
perform.  

However, prior to studying the BIOS in depth, we had attempted to implement all of the 
operations ourselves. This attempt was short-lived and we endeavored to find an existing 
implementation in Verilog. An internet search revealed that Synopsys had included a Verilog 
implementation of the 8253 in the demo folder of VCS. With Professor Nace’s blessing, we 
copied the code for the 8253 from the VCS installation on the ECE network. At first, the 8253 
code seemed to be a blessing. It turned out to be a curse. 

The 8253 code from VCS did not operate according to the timing specs found in Intel’s 
datasheet for the 8253. We had developed a test bench based upon the datasheet timing specs
and the VCS code failed every test. As a result, we had to rewrite large portions of VCS’s code 
to bring it up to specifications. We ended up with code that featured workarounds and kludge 
operations.

Kludge code is barely maintainable, so we ended up scrapping all of the original code 
and rewriting it. This give us counters that were far easier to debug and operated much more 
reliably. 

This is an important lesson for any future 545 groups - demo code is not guaranteed to 
run as expected. Demo code is what it sounds like - code for demonstration. Even a company 
as well-known as Synopsys isn’t going to take the time and test the code they include as part of 
program demos as thoroughly as they do for code they plan to sell. It isn’t guaranteed to work 
exactly like the hardware it is meant to emulate. Instead, use it as a point of reference for 
designing your own code. Don’t even try to modify what they have already. We spent hours 
trying to modify their code until we realized that it would be impossible to make it meet our 
desired level of operation. In retrospect, it was far less time consuming to scrap everything that 
Synopsys wrote for the 8253, write our own 8253, and test it.

Work on the 8253 was conducted during late September. Patrick Brown took the lead on
this part, as we had stipulated at the beginning of our project. He is the one who found out about
the Synopsys code in the VCS installation files. He is also the one who rewrote the 8253 code in
mid-November after all of the problems we had with the 8253. 

Video Display Unit (VGA)



The original IBM PC was shipped with two types of graphics cards, the Color/Graphics 
Adapter (CGA) and the Monochrome Display and Printer Adapter. The Color/Graphics Adapter 
could operate in either color text mode or color graphics mode. The Monochrome Display and 
Printer Adapter could only operate in monochrome text mode. 

The Zet processor has two separate graphics units, one which can handle the graphics 
and text operations of the CGA and another that can only handle the text operations of the CGA.
The Zet processor’s status page stated that only the latter worked, so we decided to modify the 
latter unit. Admittedly, this limits our operations to text programs. However, text mode is all that 
is necessary for our goals, which are to boot into IBM BASIC and PC-DOS. Our logic was that it 
was a better idea to use code that we knew we could rely upon rather than code that might not 
work. 

Both the Zet graphics unit and the CGA follow roughly the same architecture. Each has 
onboard RAM that stores the character data. Each has onboard ROM that stores the bitmaps 
for each of the characters. A finite state machine takes character data from the RAM, grabs the 
relevant bitmap from the ROM, and prints it on the screen. The finite state machine also controls
the output of red, green, blue, vertical sync, and horizontal sync signals to a VGA monitor. In 
addition, there is an onboard register file that stores such information as cursor location and 
light pen location. 

The onboard RAM stores two pieces of data - character and attribute. Each piece of data
is eight bits. Character data is stored at even addresses beginning at 0xB8000. Attribute data is 
stored at odd addresses and is paired with character data. Character data consists of the 
character that needs to be printed. The image for the character is found in the onboard ROM 
and follows IBM Code Page 437. The attribute data is also eight bits. Bit 7 is the brightness of 
the background, bit 6 is the red value for the background, bit 5 is the green value for the 
background, bit 4 is the blue value for the background, bit 3 is the intensity of the foreground, bit
2 is the red value for the foreground, bit 1 is the green value for the foreground, bit 0 is the blue 



value for the foreground. Text is displayed with 80 characters per line and 25 lines in total. There
are 1000 characters in all. Character data is stored in 2 kilobytes of RAM and attribute data is 
stored in another 2 kilobytes of RAM. 

Modification of Zet’s graphics unit proved to be more complex than we had expected. 
Zet utilized a wishbone interface to link their processor with their graphics unit. Access to the 
onboard RAM was restricted by the finite state machine. Finally, the Zet graphics unit was 
meant to be synthesized on a board that provided native VGA support. All three of these 
problems needed to be solved in a way that ensured operation as close to the original IBM PC 
as possible without damaging the existing code extensively.

The wishbone interface utilized a different set of signals than the IBM PC’s 62-pin I/O 
interface. This required scrapping most of the code that followed these signals in favor of code 
that worked with the I/O interface. Rewriting this code required care, but there were enough 
similarities to make the process of rewriting relatively straightforward. 

The finite state machine on the Zet graphics unit restricted accesses to the onboard 
RAM to prevent the processor from changing character values while the screen was refreshing. 
This prevented our processor from writing to memory whenever it desired, requiring more 
complex control. To simplify things, we decided to use CoreGen’s true dual port memory. The 
processor could read and write from the A Side of the RAM while the graphics unit could read 
from the B Side of the RAM. By making this change, our graphics unit is a lot easier to use and 
program. 

When we chose our FPGA board, we chose the Virtex-5 because it claimed that it would 
support VGA with an adapter for the DVI port. However, the documentation failed to mention 
that VGA and DVI were both controlled by an onboard computer chip. There was no way to 
natively pipe VGA signals directly through the DVI port. The only option was to use some of the 
GPIO ports on the board. This meant that we had to construct a crude DAC using resistors and 
solder together a VGA connector. We learned a lot about how to do this from the team that had 
constructed the 1942 game a few years ago. They had the same issue and built a DAC very 
similar to ours. Even though the picture wasn’t perfect, we were able to transmit an image to our
monitor that was readable. A diagram of our DAC is provided below. 



Work on the graphics unit was conducted during mid-semester break in mid-October. 
Patrick Brown took the lead on this part, primarily because we were facing a time crunch and he
had just completed the Intel 8259 Programmable Interrupt Timer. 

Piezoelectric Speaker

The audio for the IBM was provided by a relatively simple, 2.25” piezoelectric speaker. 
The speaker is driven from two sources. The first source is the 8255 Programmable Peripheral 
Interface. By sending data to bits 0 and 1 of Register B on the 8255, the user can modulate the 
signal and send it a pulse train of data. The second source is Channel 2 of the 8253 
Programmable Interval Timer. By adjusting the timer’s maximum count, the user can produce a 
waveform at different frequencies. The speaker can be driven in three different ways, all of 
which may occur simultaneously. The first is to create a pulse train from the 8255. The second is
to create a waveform via the timer clock channel. The third is to modulate by activating or 
deactivating the 8253 timer via the 8255 Programmable Peripheral Interface. 

We originally thought that we would have to acquire a piezoelectric speaker to use with 
this project. As it turns out, there is a piezoelectric speaker available on the Virtex-5 FPGA. At 
first we were concerned that the speaker would have insufficient power to deliver audible sound.
However, it proved to be loud enough for our purposes. 



We did not have to implement the speaker as its own subsystem because its operation 
was governed by the 8253 and 8255. However, we discovered early on that sound did not work 
as we expected. Sometimes beeps did not occur, other times beeps could not be disabled, 
requiring a reboot of the system. These problems led us to make revisions to the 8255 and 
scrap most of the code that we had modified for the 8253. The necessity of getting sound 
working motivated us to scrap and rebuild the 8253 completely. However, the sound works now 
and can play a nice arpeggio for the demonstration. 

Since the speaker system is driven by the 8255 and 8253, responsibility for the system 
fell to Patrick Brown, who wrote both the 8255 and 8253. Since the 8253 needed to be scrapped
and rebuilt, completion of the speaker system did not occur until mid-November. 

Programmable Interrupt Controller (Intel 8259)

The IBM PC has two types of interrupts, maskable and non-maskable. Non-maskable 
interrupts, or NMI, are inputted directly into the processor through the NMI pin. Maskable 
interrupts pass through the Intel 8259 Programmable Interrupt Controller before being sent to 
the processor via the IRQ pin. The purpose of the Programmable Interrupt Controller (PIC) is to 
control how the processor receives interrupts. This involves setting priority of interrupts, 
masking interrupts, and determining which interrupt to send.

There are three important registers on the Intel 8259 that determine what data is 
delivered to the processor: the Interrupt Request Register (IRR), the Interrupt Mask Register 
(IMR), and the In-Service Register (ISR). The IRR is a series to latches that are set by data 
coming in on the interrupt lines, IRQ0 - IRQ7. They are cleared by the ISR when their respective
interrupt is being serviced. They are activated regardless of the mask on the IMR. The IMR is a 
bit mask that determines which interrupts are blocked and which ones are not blocked. If a bit 
on the IMR is asserted high, this means that the respective interrupt is blocked. The ISR holds 
the interrupt currently being serviced by the PIC. It is cleared when the interrupt service routine 
is done.

The interrupt service routine consists of six steps. First, one or more of the interrupt 
request lines (IRQ0-IRQ7) are raised high, which sets the corresponding IRR bits. Second, the 
8259 evaluates the requests and sends an INT signal to the CPU if the request needs servicing.
Third, the CPU acknowledges the INT by sending back an INTA pulse. Fourth, the 8259 
receives the INTA pulse. It then sets the highest priority ISR bit and clears the corresponding 
IRR bit. The 8259 does not drive the data bus during this step. Fifth, the CPU will initiate a 
second INTA pulse. The 8259 makes an 8-bit pointer available on the data bus that points to the
interrupt vector table in the BIOS. Sixth, the 8259 waits for an End Of Interrupt (EOI) command 
from the processor before clearing the relevant ISR bit. 

Like many of the other chips in the Intel family, the 8259 has many operating modes that 
the IBM PC does not utilize. For example, the 8259 can be configured in automatic end of 
interrupt mode, in which it does not have to wait for an EOI command to clear the relevant ISR 



bit. Once again, examining the BIOS code proved to be the key to simplifying the 8259. The 
processor starts the 8259 by issuing a series of command words that govern its modes of 
operation and the 8-bit pointer to the interrupt vector table. The 8-bit pointer to the interrupt 
vector table is 0x08. As a result, our 8259 bypasses the BIOS’s configuration processes and 
configures itself for operation.

This is an important lesson for any future 545 groups - the BIOS is your friend. We were 
lucky in finding documentation from IBM for their BIOS. It was not just an assembly dump - they 
had comments that explained how each chip is configured. This saved us a huge amount of 
time by allowing us to know what we had to implement and what we could safely ignore. There 
are many chips that are used in early computers that can handle a multitude of different 
configurations. It was not uncommon for companies to make a chip that was versatile enough to
be used in different computers. Look at the BIOS, datasheets, and documentation before you 
start slinging Verilog to implement these components. 

Work on the 8259 was conducted during late October. Patrick Brown took the lead on 
this part, as we had stipulated at the beginning of our project. 

Clock Generator (Intel 8284)

The IBM PC uses an Intel 8284A chip as the clock generator for the main processor. The
8284A is a single chip clock generator which has a divide-by-three counter. The chip has a 
special input called CSYNC which allows the 8284A to be synchronized with another external 
clock, for example, other 8284A clocks throughout the system. The Intel 8284A also has the job 
of generating READY and REST signals for the main processor. 

The clock generator chip implementation ended up being a pretty simple combination of 
several clock dividers. Because we are implementing this on a FPGA we can use the existing 
clock and simply divide the time to get the correct period and duty cycles. In total, the IBM PC 
required 4 clocks each with different periods and duty cycles. The FPGA clock has a duty cycle 
of 50% and a 10 ns period which translate to a 100 MHz clock. The first new clock needed was 
the CLK which was used as the clock input for the 8088 processor as well as its local bus. It 
required a 33% duty cycle and had a 210 ns period which translates to a 4.77 MHz clock. The 
next clock required was the peripheral clock (PCLK), this was used as input to the timer chip 
(8253) as well as the IO ports. It requires a duty cycle of 50% and has a 420 ns period. 

The next clock was the oscillator output (OSC) which is used as the clock input for the 
IO connectors. This clock had a duty cycle of 50% and a 70ns period which is a 14.32 MHz 
clock. However, because the original FPGA clock had a period of 10 ns, we could not achieve a 
50% duty cycle for this clock. Instead we ended up with a 57.1% duty cycle still with a 70 ns 
period, we predict that this will not affect the behavior of the system. Finally, the last clock is 
used for input to the VGA which is called (VCLK), this has a duty cycle of 50% and a period of 
40ns. This was not originally part of the 8284a but was added out of necessity for the VGA 
implementation. 



Bus Controller (Intel 8288)

The IBM PC utilizes an Intel 8288 bus controller to manage the address and data buses.
The bus controller receives three status signals, s0_n, s1_n, and s2_n, directly from the 8088 
that indicate what sort of signals it should broadcast to control the bus. These bus control 
signals include interrupt acknowledge (inta_n, when s_n = 000), read I/O (iorc_n, when s_n = 
001), write I/O (aiowc_n, when s_n = 010), code access (mrdc_n, when s_n = 100), read 
memory (mrdc_n, when s_n = 101), write memory (amwc_n, when s_n = 110), and halt/passive 
(no signals asserted, when s_n = 011 or 111). In addition, there are special latch controls that 
help the processor send and receive data. These latch control signals include data 
transmit/receive (dtr), which determines the direction which data is sent, address latch enable 
(ale), which latches the address the processor has sent, and data enable (den), which latches 
the data the processor has sent. 

Whether these signals are sent is determined by two control signals, aen_n and cen. 
The 8288 sets its signals to high impedance if cen is not asserted. The reason why this is the 
case is that the 8237 DMA controller can assert some of these signals as well. The logic that 
governs DMA accesses is responsible for asserting cen. The other control signal, aen_n, is 
address enable. If asserted low, it allows the 8288 to broadcast its bus control signals. If 
asserted high, all the 8288 bus control signals remain asserted high. As is the case with cen, 
aen_n is determined by the DMA logic in module 2 of the motherboard. 

An important feature of the 8288 is the strapping option that configures it for use with a 
multi-master system bus and separate I/O bus. Placing it into I/O bus mode requires asserting 
pin iob high. However, the IBM PC asserts pin iob low, permanently placing the 8288 into 
system bus mode. Since we only use the 8288 in system bus mode, we did not implement I/O 
bus mode. 

Likewise, there were several signals that we did not implement because the IBM PC 
leaves them unconnected. Signals mwtc_n and iowc_n are alternate signals used for memory 
and I/O reads. They are sent one clock pulse later than amwc_n and aiowc_n. They are unused 
and are unimplemented in our 8288. Likewise, signal mce is for master cascade enable and 
peripheral data enable. It is intended for use with cascaded Intel 8259 Programmable Interrupt 
Controllers. However, the IBM PC utilized only one 8259, so this signal was unnecessary in our 
implementation of the 8288.

Work on the 8288 was conducted during late October. Aalique Grahame was originally 
the lead on this part. However, verification of the 8088 was not complete by the required 
deadline. As a result, responsibility for this part was given to Patrick Brown.

Motherboard



The IBM PC’s motherboard integrates all the various components described above into 
a complete computer system. The IBM PC documentation provides a complete description of 
the motherboard, including all of the chips and logic required to make the IBM PC run. However,
the IBM PC’s motherboard is a massively complex piece of computer hardware. The diagram for
the system takes ten pages, all of which needed to be converted into Verilog. In order to simplify
the process of design and debugging, each page of the motherboard diagram was converted 
into separate Verilog modules. Each page contains different sub-systems critical to the 
functionality of the system as a whole. Some of these pages required the implementation of 
smaller chips in the 74LSxxx family. Patrick Brown completed these chips in mid-September not
long after we decided on our project. These smaller chips are latches, parity checkers, and bus 
arbiters. For the sake of simplicity, descriptions of these small chips will not be covered in this 
report. In the next few sections, we will describe the ten sections of the motherboard and what 
chips go into them. 

Motherboard Section 1

The first section of the motherboard includes the most important part of the system, the 
Intel 8088 processor. It also includes several important chips that assist the processor, including
the 8284 timer, the 8259 programmable interrupt controller, and the 8288 bus controller. The 
8284 timer generates the desired clock signals for the processor. The 8259 programmable 
interrupt controller alerts the processor if an interrupt occurred. The 8288 bus controller 
determines which system buses are activated. In addition, it orders several LS373 bus driver 
latches to output the address and a LS245 bus driver to receive or send data.  



Motherboard Section 2

The second section of the motherboard is a complex web of combinational and 
sequential logic to determine several system signals. These signals handle such jobs as DMA 
transfers, bus arbitration, NMI, device reset, and I/O check. For this section, we decided to copy
the combinational and sequential logic directly from the IBM PC documentation. 

Motherboard Section 3



The third section of the motherboard governs access to the RAM and ROM banks. A 
series of LS138 demultiplexers translate the ROM or RAM request into access requests for the 
specific bank that the user requires. ROM requests are fairly straightforward. The address is 
decoded, the particular bank is selected, and the data at the address is sent to the data line. In 
the original implementation, RAM requests require the use of row and column access strobes. A
special time delay module was constructed to assist with this process by delaying the column 
access strobe until 100 nanoseconds after the row access strobe. This ensures that data is 
latched at the correct moment. However, we decided to modify the RAM implementation, which 
meant removing much of this circuitry. 

Motherboard Section 4



The fourth section of the motherboard consists of the 8237 DMA controller and its 
associated support chips. The purpose of this module is to perform DMA reads and writes. It 
includes latches to grab data from I/O devices and send it to memory. Most of the DMA 
operation takes place within this module.

Motherboard Section 5



The fifth section of the motherboard contains the ROM. The ROM consists of eight 
banks, each of which is eight kilobytes, adding up to a total ROM size of 64 kilobytes. The ROM 
covers addresses 0xF0000 to 0xFFFFF. The first 16 kilobytes are reserved because the original 
IBM PC had only six banks of memory. The BIOS images we obtained were 64 kilobytes, hence 
we have instantiated eight banks of memory. These images leave the first sixteen kilobytes free.

Motherboard Section 6 and 7





The sixth and seventh sections of the motherboard contain the RAM. The IBM PC could 
have anywhere from 64 to 256 kilobytes of RAM. We have chosen to instantiate the maximum 
of 256 kilobytes. The RAM is divided into four banks of 64 kilobytes each. Since there is plenty 
of RAM aboard the Virtex-5, we decided to instantiate all 256 kilobytes. In the original IBM PC, 
each RAM bank would consist of nine slices of RAM, each of which would hold 64 kilobits. The 
extra ninth slice would hold the parity of the other eight banks. This extra check was necessary 
at a time when RAM was less reliable than it is now. As a result, we decided to forego the parity 
storage. In addition, we decided to eliminate the row access strobe and column access strobe, 
which greatly simplified the implementation of RAM. The parity bit is fixed to zero, indicating a 
successful RAM read or write. The parity bit is made available to the processor via the 8255 
programmable peripheral interface.

Motherboard Section 8



The eighth section contains the 8253 programmable interval timer, the speaker control, 
and the cassette drive control. The 8253 has three channels and controls three important 
devices. Channel 0 controls the timing for DMA refresh. Channel 1 controls the timing for the 
time-of-day functionality. Channel 2 controls the timing for the speaker. Channel 2 broadcasts a 
pulse train that, if activated by speaker data, makes noise on the speaker. Normally, the eighth 
section would have several relays and an opamp to control the cassette drive. However, we did 
not implement the cassette drive. Hence, it is not included in this section.

Motherboard Section 9



The ninth section holds most of the peripheral I/O. At its core is the 8255 programmable 
peripheral interface, which has been described in detail in an earlier section. It includes 
simulated DIP switches that govern system functionality. It also includes the keyboard controller,
which receives data from the keyboard and interrupts the processor to make this data available. 
This section also generates several signals relevant to the operation of the cassette drive, which
we did not choose to implement. 

Motherboard Section 10 



The tenth section holds the link between the main system and the I/O devices. In 
particular, it includes the VGA controller and the floppy drive. These devices would usually be 
connected to the system via cards that plug into a 62-pin I/O connector. We implement this 
functionality by declaring these modules inside the tenth section and linking them to our main 
system bus. 

Interface Definitions

Control Bus

The control bus is one of the three major buses on the IBM PC. It includes all the signals
that govern the operation of the PC. Such signals include: Address Enable, Address Latch 
Enable, System Clock, DMA Acknowledge 0-3, DMA Request 1-3, I/O Channel Check, I/O 



Channel Ready, I/O Read, I/O Write, Interrupt Request 2-7, Memory Read, Memory Write, 
Oscillator, Reset Drive, and Terminal Count. 

Address Bus

The address bus is one of the three major buses on the IBM PC. It is 20 bits wide and it 
holds the address of the data being accessed. It can allow for the access of up to one megabyte
of memory. A0 is the least significant bit and A19 is the most significant bit. Either the processor 
or the DMA controller generates these bits. These signals are active high. 

Data Bus

The data bus is one of the three major buses on the IBM PC. These lines provide
data bus bits 0 to 7 for the microprocessor, memory, and I/O devices. D0 is the least significant 
bit and D7 is the most significant bit. These signals are active high.

Detailed Software Description

Software/Hardware Partition

The software on the IBM PC is stored in two hardware areas, the Read Only Memory 
(ROM) and the Floppy Drive. The ROM stores the IBM PC’s BIOS and the Floppy Drive stores 
the IBM PC’s Operating System. The software stored in each area is executed by the Intel 8088 
processor. We have obtained the binary file of the IBM PC’s BIOS.

ROM and BIOS

The ROM on the IBM PC consists of 64 kilobytes of memory. It contains two important 
pieces of software, the IBM PC’s BIOS and a copy of IBM PC BASIC. The IBM PC starts by 
reading from its BIOS and determining if its floppy or cassette drive contains an operating 
system. If they do not, the BIOS starts loading IBM PC BASIC. This BASIC interpreter is very 
similar to BASIC found on other early computers, such as the Commodore 64. 

We have made use of ISE’s CoreGen to obtain block RAM to hold the binary file for our 
BIOS. We started out by testing it under simulation and our image can be read from block RAM.
Once we had the whole system together, we utilized the BIOS to see if our system boots 
correctly. 

Our first goal on start up was to get the BIOS to run without halting the system. If an 
error is discovered on startup, the BIOS halts the system. This proved a good way of debugging
our design. Once we passed all the BIOS tests, we were able to move on to our second goal, 
which was to get the BIOS to boot us into IBM PC BASIC, which is included on the binary file 



we have obtained. The below table details the 38 tasks the BIOS performs as part of the 
initialization and self-test routine. Some of these tasks were bypassed or failed. However, 
because their correctness did not interfere with the system operation as a whole, we could 
safely ignore them. 

Step Action Comment Reference

1 8088 PROCESSOR TEST -
PASSED!

If the test fails, halt
the CPU.

Page 5-34

2 DISABLE NON MASKABLE
INTERRUPTS - NMI BYPASSED!

Disable NMIs from
reaching the CPU.

Page 5-35 (line 370)

3 DMA CHAN 1 PAGE REGISTER -
PASSED!

Zero the page
register for DMA

channel 1.

Page 5-35 (line 371)

4 DISABLE VIDEO - PASSED!  Page 5-35 (lines 372-376)

5 8255 OPERATION - PASSED! 8255 PPI chip. Set
port B lines to

outputs. 

Page 5-35 (lines 377-378)

6 8255 OUTPUTS - PASSED! Set the 8255's port
B lines to various

states.

Page 5-35 (lines 379-380)

7 ROS CHECKSUM TEST I -
PASSED!

Verify that the
checksum of the

BIOS ROM, U33, is
00. If verification

fails, halt the CPU.
(U33 = 8 KB block

at FE000)

Page 5-35 (lines 381-380)

8 TEST TIMER 1 - BYPASSED! Timer #1 on 8253
interval timer chip.
Used in RAM refresh
process. If the test
fails, halt the CPU.

Page 5-35 (lines 402-430)

9 INITIALIZE TIMER 1 - PASSED! Initialise timer #1
with divisor of 18 -
results in one pulse
per approx. 15 µs.

Page 5-35 (lines 435-436)

10 8237 DMA TEST - PASSED! Test 8237 DMA
controller chip. If
the test fails, halt

the CPU.

Page 5-36 (lines 439-462)

11 START RAM REFRESH - PASSED! Initialise and start
DMA for RAM

refresh (RAM refresh

Page 5-36 (lines 464-486)



done via dummy
DMA transfers).

12 EXPANSION I/O BOX - ENABLE -
PASSED!

Write 1 to port
213h. 

Page 5-36 (lines 498-500)

13 BASE 16 KB RAM TEST - PASSED! If a cold boot, test
the first 16 KB of
RAM. If the test

fails, halt the CPU.

Page 5-36 (lines 502-508)

14 ZERO MOTHERBOARD RAM
UP TO 64 KB - PASSED!

Size determined by
examination of
switches 3/4 on

switch block SW1.

Page 5-36 (lines 509-520)

15 ZERO RAM PAST 64 KB - PASSED! Conventional
memory only.
Upper limit

determined by
examination of

switches 1 to 5 on
switch block SW2. 

Page 5-37 (lines 525-551)

16 8259 INITIALISATION - PASSED! Initialise the 8259
interrupt controller

chip.

Page 5-37

17 SET UP STACK SEG AND SP -
PASSED!

Set up the stack
segment and stack

pointer.

Page 5-37

18 8259 TEST - PASSED! If the test fails,
beep 1 long then 1
short, then halt the

CPU.

Page 5-38

19 TEST/SET TIMER 0 - PASSED! Timer #0 on 8253
interval timer chip.

If the test fails,
beep 1 long then 1
short, then halt the

CPU.

Page 5-38

20 INIT/START VIDEO CONTROLLER -
PASSED!

Examine video
switches on

motherboard
(SW1:5 and SW1:6)
to see which type of

video card is
selected.

Pages 5-39 to 5-41

21 EXPANSION I/O BOX - TEST -
PASSED!

If an extender card
for the IBM 5161
Expansion Unit is

Page 5-41

http://www.minuszerodegrees.net/5150/misc/5150_motherboard_switch_settings.htm
http://www.minuszerodegrees.net/memory/Conventional%20memory.htm
http://www.minuszerodegrees.net/memory/Conventional%20memory.htm


fitted in the 5150,
then test

communications
with the 5161.

22 CALCULATE TOTAL RAM -
PASSED!

Calculate the total
RAM.

Page 5-42 (lines 934-951)

23 ADDITIONAL RAM TEST -
PASSED!

If a cold boot, test
the RAM past 16 KB.

Page 5-42 (lines 952-998)

24 KEYBOARD TEST - PASSED! If the test fails,
display a "301"

error.

Page 5-43

25 INTERRUPT VECTORS - PASSED! Set up the interrupt
vector table.

Page 5-43 (lines 1034-1049)

26 CASSETTE PORT - INTERNAL
WRAP/LOOPBACK TEST - NOT

PASSED! Current system works
fine without it

Page 5-44

27 EXPANSION ROM SEARCH -
PASSED!

Look for BIOS
expansion ROMs in

address block
C8000 - F5FFF

Page 5-44

See note 1 for more info.

28 ROS CHECKSUM TEST II -
PASSED!

Page 5-44

29 DISKETTE ATTACHMENT TEST -
PASSED!

Only performed if
switch 1 on switch
block SW1 is in the

OFF position.

Page 5-45

30 SET UP KEYBOARD BUFFER -
PASSED!

 Page 5-45 (lines 1188-1194)

31 8259 - ENABLE TIMER/KYB INT -
PASSED!

Enable interrupts
from 8253 timer

[chan. 0] and
keyboard.

Page 5-45 (lines 1195-1197)

32 DETERMINE LPT (PARALLEL)
PORTS - PASSED!

Check for printer
ports at the
following I/O

addresses, in that
order: 3BC, 378,

278

Page 5-45 (lines 1198-1216)

33 DETERMINE COM (SERIAL) PORTS
- PASSED!

Check for RS-232
serial ports at the

following I/O
addresses, in that

Page 5-45 (lines 1217-1241)



order: 3F8, 2F8

34 GAME CARD - PASSED! Is a game card
present?

Page 5-46 (lines 1242-1246)

35 SET LPT/COM TIMEOUTS -
PASSED!

 Page 5-46 (lines 1249-1259)

36 ENABLE NON MASKABLE
INTERRUPTS - PASSED!

 Page 5-46 (lines 1263-1264)

37 BEEP 1 SHORT TONE - PASSED!  Page 5-46 (lines 1267-1268)

38 DO BOOTSTRAP - PASSED! Attempt to boot
from floppy drive 0
(if switch 1 on SW1

is OFF), else try
hard drive (if

present), else run
cassette BASIC.

Page 5-46 (line 1271)

We located BIOS images from several locations, but the most relevant images were 
located at http://www.vintagecomputer.net/ibm/5150/BIOS_dumps/. Of particular interest is the 
fact that there were three different versions of the BIOS. The first BIOS revision was April 24th, 
1981 and is only for 16K/64K motherboards. We did not find an image of this BIOS. We did not 
want an image of this BIOS because we were implementing a 64K/256K motherboard. The 
second BIOS revision was from October 19th, 1981 and is only for 16K/64K motherboards. We 
found two images of this BIOS at the vintage computer website, 0159618.BIN and 
0192562.BIN. There was no significant difference between these two images. Again, we did not 
use either of these images because they were for 16K/64K motherboards. The third BIOS 
revision was from October 27th, 1982 and is for 16K/64K motherboards and 64K/256K 
motherboards. We found two images of this BIOS at the vintage computer website, 
0239462.BIN and 10048725150.BIN. The former features a copy of IBM PC BASIC 1.00 and 
the latter features a copy of IBM PC BASIC 1.10. We were initially unsure if BASIC 1.10 would 
work, so we used the former image with BASIC 1.00. Once we gained more confidence in our 
design, we added the code for BASIC 1.10 to the previous ROM image.  

Floppy and Operating System

The BIOS on the IBM PC tests to see if any peripherals are connected that contain an 
operating system, such as a cassette drive or diskette drive. For our system, we have chosen to
emulate a diskette drive rather than a cassette drive. Our original plan was to use CoreGen to 
instantiate block RAM to hold our floppy disk image. We found a copy of DOS on the internet to 
run on our PC. However, we did not finish the floppy drive. After getting DOS to run, we planned

http://www.vintagecomputer.net/ibm/5150/BIOS_dumps/


to get a floppy disk image of a game and run it on the IBM PC. Again, the lack of a floppy drive 
prevented us from doing so. 

BASIC and Games

Despite lacking a floppy drive, we were not deterred from developing a demo for our 
project that was fun and informative. Without a floppy drive, the IBM PC automatically loads its 
BASIC interpreter. One can write a program in this interpreter and execute it by hitting “F2”. 
However, typing a program in from scratch can be a long and error-prone process. To make 
demo easier, we developed a keyboard loader and keyboard translator to convert a BASIC 
program into keystrokes and load them directly into the BASIC interpreter. The keyboard loader 
is described under “Keyboard Loader” and the keyboard translator is described under 
“Keyboard Translator”.

By using the keyboard loader, we were able to load in a demo program that features two 
games, Hi-Lo and Game of Life, as well as two sound demos, Arpeggio and Imperial March. 
These demo programs are described in detail under “Game Description”. The games were 
obtained from a book of BASIC games from 1978. The wrapper program, Arpeggio, and 
Imperial March were written by us. 

Keyboard Translator

In order for our keyboard loader to work correctly, we needed a way to translate text into 
scan set 1 keystrokes. Eliot, who had experience with scripting and web design, developed an 
online tool to convert BASIC programs into keystrokes. The translator can be found here 
(http://www.contrib.andrew.cmu.edu/~ecwong/). It provided us with a way to translate our 
prototype BASIC programs into keystrokes that could be placed into a CoreGen core as part of 
the keyboard loader. The code did require some debugging, but it was up and running within a 
few hours. 

How We Built It

Our Approach

Our initial approach was based on making a prototypical IBM PC. In other words, we 
decided to build the system based on the the original motherboard blueprints. The module 
definitions and subsystem divisions were based off of the signals going into and out of the 
components on the original IBM PC. For example, the module for the Intel 8253 features most 
of the same signals as the real Intel 8253. The reason for adopting this approach was to ensure 
that the system works correctly by making the various parts match those on the IBM PC.

http://www.contrib.andrew.cmu.edu/~ecwong/


From a theoretical standpoint, this philosophy should work well. In practice, it was 
grossly unrealistic to make every component work exactly like it does in the real world. In some 
cases, we needed to make simplifications to the components to complete the project in time. 
For example, the Intel 8259 Programmable Interrupt Controller has multiple modes of operation,
but the IBM PC only uses it in EOI mode. In addition, the operation of some chips needed to be 
modified to make them run predictably. For example, the Intel 8259 operates without a clock, 
latching everything asynchronously. However, making an asynchronous system work 
predictably is difficult, and debugging it is even harder. We ended up implementing the 8259 
with an FSM that runs based on the CPU clock. 

However, our prototypical philosophy carried us to our final design, with a few caveats. 
The final design has many of the same signals and interface definitions as the original IBM PC. 
However, many of the signals have been changed and parts simplified in order to suit our 
purposes.

Design Partitioning

Our design partitioning philosophy closely followed our initial approach to the design. 
Since we decided to implement the components as closely to the original as possible, we 
partitioned the project similarly. Everyone was given a number of chips to work on. Aalique 
Grahame would handle the Intel 8088 CPU and Intel 8288 Bus Controller. Meghan Kaffine 
would handle the Floppy Drive and Video Controller. Eliot Wong would handle the Intel 8237 
DMA Controller and Intel 8284 Timer. Patrick Brown would handle the Intel 8255 I/O Controller, 
the Intel 8259 Programmable Interrupt Controller, the RAM, the ROM, and the various smaller 
chips. Once all the chips were complete, the group would implement the motherboard glue logic
to tie the system together. 

As in most projects, there often arises a situation in which responsibility for certain parts 
need to be reassigned. Verifying the 8088 took a bit longer than expected, which meant that 
Patrick Brown took responsibility for the 8288 Bus Controller. The floppy disk controller was 
several orders of magnitude more complex than we had anticipated. Thus, responsibility for the 
video display module was shifted to Patrick Brown.

Tools and Design Methodology

For an FPGA, we selected the Virtex-5 LX-110T board from Xilinx. There were two 
reasons behind our choice. First, it provided plenty of logic space for our project. We projected 
that we would need a lot of logic space for a project as immense as ours. Second, it appeared 
to provide VGA capabilities via the DVI port. We discovered later that it was not as simple as 
sending VGA signals from our modules to certain pins on the DVI connector. The DVI connector
has its own processor which could not be bypassed. Instead we built a VGA connector of our 
own, but we really should have done more research before choosing our board.

For a toolchain, we made use of Xilinx’s ISE Design Suite. We would have preferred 
using the more modern Vivado, but Vivado does not work with this board. We had a number of 



gripes with ISE. ISE takes a lot of time for synthesis, as much as ten minutes for our project. 
ISE’s CoreGen tool generates extra files that interfere with synthesis. ISE is prone to dumping 
its own core. This happens more frequently with simulation than it does with synthesis. 
However, there is nothing more irritating that waiting ten minutes for a synthesis job then finding 
out that ISE has fallen flat on its face. Finally, ChipScope has a bad habit of editing out signals 
that you really need.

On the other hand, ISE was a relatively simple tool to learn. ChipScope proved to be a 
powerful debugging tool. That is, when it doesn’t edit out signals. Even though synthesis was 
slow, it forced us to give careful thought to our changes before trying to re-synthesize. Having 
talked with other groups, neither ISE nor Vivado were especially fun tools to work with. Vivado 
was faster, but there was a steeper learning curve. 

Our design methodology was relatively straightforward. We divided up the project into 
the various components on the motherboard. Each member of the group was responsible for a 
few components. We set deadlines for completion of each component. Each member was 
expected to have written and verified the component before the deadline. All the parts, minus 
the floppy disk controller, were completed by the end of October. Once all the parts were 
complete, we integrated them together. Once the parts were integrated, we began the 
debugging of the project. The debugging phase took the entire month of November. After 
debugging was complete, we developed our demonstration program and refined our final 
design.

Testing and Verification Methodology

Our testing and verification methodology closely paralleled our design methodology. We 
assigned each group member responsibility for a component. Each component is written and 
verified before a set due date. In theory, if all of the components work as expected, then the 
system should work as expected.

Reality is very different from theory. We knew early on that we were making assumptions
about the operation of components that might be incorrect. In certain cases, we would have to 
rewrite components entirely, such as the Intel 8253. In other cases, we needed to make serious 
modifications to some components, such as the Intel 8259. However, this begs the question of 
how we find out if our assumptions were wrong.

Our salvation was the IBM PC’s BIOS. The BIOS runs a gauntlet of 38 tests before 
letting the user into the BASIC interpreter. Within our IBM PC Hardware Manual was a 
well-commented description of all 38 of the tests. These tests formed the core of our testing and
verification strategy after integration.

We quickly developed a post-integration testing and verification strategy based on the 
BIOS. For the first few tests, the system halts if the test fails. To figure out what went wrong, we 
needed to find where the test was failing. The Hardware Manual listed the address of each 



instruction in the BIOS. We then use ChipScope to determine which test we have failed. We did 
this by setting ChipScope to record data when we pass a test’s address. We then reset the 
machine. If ChipScope gets no data, then we need to backtrack farther. If ChipScope gets data, 
we look to see if we halt at the end of the test. If so, we pull any relevant signals and check the 
BIOS to see what we are doing wrong. 

We gradually improved our strategy as we moved through the BIOS tests, fixing our 
components along the way. It became almost second nature around mid-November. By the time
we passed all the tests, we had fixed most of the bugs in the system. However, using BASIC 
revealed a few more that we needed to solve. 

The first was the beep function. If we called beep, the system would keep beeping and 
hang completely. We could not stop it after it started beeping. Everyone in lab hated us until we 
fixed the bug. It turns out the Intel 8253 was the cause of the problem. This prompted us to 
rewrite it from scratch. As it turns out, the computer keeps track of time using the 8253. The 
beep function is programmed to run for one-fourth of a second. If the 8253 does not work, the 
beep function will run forever! 

The second bug was the execute state interrupt bug. This was the most evil, pernicious 
bug any of us had ever seen. When using our keyboard loader or typing on the keyboard, the 
system would lock up randomly, requiring us to do a hard reboot. The cause was the execute 
state of the Zet processor. There are a few instructions that cause the Zet processor to have an 
extra-long execute phase. If the Zet processor is interrupted during the execute phase, it will try 
to service the interrupt. Trying to service the interrupt causes the Zet to clobber its own stack, 
destroying the return vector. As a result, the Zet returns to an invalid location, loads an invalid 
operation, and traps itself in the invalid instruction internal exception handler. The solution was 
to only allow interrupts to occur during the fetch state. 

Status and Future Work

At the end of the semester, we accomplished all but one of our goals. We built a 
machine that runs well, passes all of the BIOS tests, boots into IBM PC BASIC, and runs games
from BASIC. However, the floppy disk controller did not come to fruition in the time we had 
available. If we had one more month and we all worked on it together, we think we could do it. 

The floppy disk controller is the perfect thing for a future project. In fact, there are 
several parts of the IBM PC that we encourage future groups to work on. If anyone would like to 
base their project on ours, then by all means do! 

Here is a list of things that can be done by future groups:

1. Make a floppy drive controller and boot into DOS.
2. Expand the VGA unit’s capability to include 640 x 200 pixel graphics instead of our 80 x 

25 character text.



3. Develop an implementation of the IBM PC’s cassette drive. 
4. Get a mouse working with Windows 1.0.
5. Look at the IBM 5160 documentation and make a hard drive controller.
6. Develop the Intel 8087 Math Coprocessor.
7. Get a joystick and the IBM PC Game Card working.

Original Schedule Plan

Task Due Date

BIOS, RAM, and ROM 9/30

Keyboard and I/O Interface (Intel 8255) 9/30

Programmable Interval Timer (Intel 8253) 9/30

Direct Memory Access (Intel 8237) 10/9

CPU (Intel 8088) 10/10

Floppy Drive 10/10

Timer (Intel 8284) 10/15

Video (VGA) and Speaker (Piezoelectric 
Speaker)

10/22

Programmable Interrupt Controller (Intel 
8259)

10/22

Bus Controller (Intel 8288) 10/22

Basic System Functionality 10/31

Debugging 11/15

Design Improvements 11/23

Demonstration Ready 11/25

Revised Schedule Plan

Task Due Date

BIOS, RAM, and ROM 9/30

Keyboard and I/O Interface (Intel 8255) 9/30

Programmable Interval Timer (Intel 8253) 9/30



Direct Memory Access (Intel 8237) 10/14

CPU (Intel 8088) 10/17

Floppy Drive 11/07

Timer (Intel 8284) 10/27

Video (VGA) and Speaker (Piezoelectric 
Speaker)

10/22

Programmable Interrupt Controller (Intel 
8259)

10/22

Bus Controller (Intel 8288) 10/27

Basic System Functionality 10/31

Debugging 11/15

Design Improvements 11/23

Demonstration Ready 11/25

What We Learned

What We Wish We’d Know at the Beginning of the Project

The number one thing that we wish that we had known at the beginning was how 
complex the floppy disk drive system was. If we had known that it would become the most 
difficult part of the project, we would have placed more people on the system than Meghan. We 
thought that the floppy disk drive system would take only two weeks. However, Meghan found 
herself unable to finish the system despite having spent several months on it. 

The big mistake we made early on was not looking at project reports from previous 
years, especially those from projects similar to ours. In Fall 2012, two teams worked on 
implementations of the Apple II. Both teams tried to implement a floppy disk drive system. Both 
teams failed at that objective. If we had looked at reports from prior years as part of our 
research program, we would have realized that the floppy drive system could only work with a 
lot of hard work and team effort. 

It would have been prudent to assign two people to the more complex components such 
as the floppy disk and main processor. This is something that we ended up doing in the later 
part of the semester, but looking back it would have been better to do this in the beginning. 

Particularly Good Decisions We Made



The best decision we made was to make a plan early on. We developed a schedule at 
the beginning of the semester, laying out what parts we needed to complete and when we 
needed to complete them. We targeted October 31st for system integration, which gave us all of
November to debug the system. Having a plan benefitted us in two ways. First, it told us when 
we had serious problems. If a part was running behind schedule, we needed to work together to
solve the problem or work harder to complete the part. Second, it provided a bit of stress relief 
for us throughout the semester. Knowing that sticking to the plan meant completing the project 
on time provided peace of mind during the project’s rough patches. 

Another good decision was canceling the floppy disk controller before the last, most 
critical week. Instead of stressing about whether or not we’d be able to get it to work and 
integrated into the system without breaking everything, we just took what we had working and 
made it better. That allowed our demo to be more interesting. It also reduced the team’s stress 
considerably, allowing us all to get some sleep before the public demo. 

Particularly Bad Decisions We Made

Our worst decision was not appraising how long each part would take accurately. When 
we made our schedule, we assigned at two week completion period to nearly every part. What 
we should have done was research the part more before making assumptions about completion
time. Modifying and verifying the processor was a very complex task that took longer than 
expected. The Intel 8253 was a far simpler part than we thought, but because we thought that it 
was very complex, we used the horrendous code from VCS. Both the 8255 and 8288 were 
completed in less than a day each, yet we allocated two weeks for each. Finally, the floppy disk 
controller was the cherry on top of our misappraisal sundae. We thought that it would take two 
weeks. In the end we did not finish it. If we had to do it all over again, at least two people would 
have been assigned to it for the entire semester. 

Words of Wisdom for Future Generations

1. Look at project reports from previous years to get an idea of the practicality of your 
project proposal. If we had looked at the reports for the Apple II groups, we would have 
taken the floppy disk controller more seriously.

2. Take the time early on to research each part of your project and come up with a good 
estimate for how long it will take. If we had made better estimates for how long each part
would take, we would have been able to balance work better between us.

3. Make a plan after you come up with good estimates for how long each component will 
take. Having a plan helps focus your energy, which prevents the end of the semester 
from becoming a panic. 

4. If your project is going to include a floppy drive, have at least two people work on it for 
the semester. If you don’t have two people to assign to this task full time, you aren’t 
going to complete a floppy drive by the end of the semester. And the one person working
on it will go insane and start having nightmares about verifying FDC code.



5. Don’t trust code that you didn’t make yourself. We were burned by the floppy disk 
controller and Intel 8253 code. It’s like the old saying goes, “if you want something done 
right, you have to do it yourself”.

6. Voraciously research your project before starting. The IBM 5150 Hardware Guide was 
our bible for the semester. The BIOS was full of helpful comments. There were system 
schematics and helpful insights. This project would have been impossible without the 
Hardware Guide.

7. Your assumptions may often be wrong, so have time in reserve to make changes. We 
made many assumptions about how the keyboard operated early on that turned out to 
be incorrect. However, we budgeted enough time to correct our early mistakes. 

8. Get the right FPGA for the job. We chose the Virtex-5, but we planned to use the VGA 
module from Zet. The Virtex-5 does not have native support for VGA, it only has DVI that
a VGA dongle can be attached to. We spent a couple of days building our own VGA 
connector and connecting it to our FPGA. 

Individual Pages

Patrick Brown

Throughout this project I had multiple jobs. My primary job was as the team’s unofficial 
project manager. In this role I oversaw the project’s scheduling, balanced work between myself 
and my teammates, made major design decisions, and kept the project mostly on schedule. My 
secondary job was as a Verilog programmer. I oversaw the design and verification of the Intel 
8253 Programmable Interval Timer, the Intel 8288 Bus Controller, the Intel 8259 Programmable 
Interrupt Controller, the Intel 8255 I/O Controller, the RAM, the ROM, the speaker system, the 
keyboard, the keyboard loader, various simple LS-series chips, the Video Display Unit, and the 
motherboard glue logic. In addition, I carried out much of the debugging work for the whole 
system. My tertiary job was as a researcher, obtaining documentation, BIOS images, and 
BASIC code. Much of the documentation I harvested early on provided the backbone of our 
reference materials. 

One thing that I did not do was log how many hours a week I spent working on this 
class. I know that I spent considerably more time towards the end of the semester doing 
debugging than I did early in the semester writing the components. Other than this class, I had a
relatively light load of classes, which meant that I spent a considerable amount of time on this 
project. I would estimate that at most I spent 40 hours a week working on this project. A few of 
the people in the other groups commented that they saw me there all the time, so maybe it was 
more!

18-545 was the best course I had at CMU. It was the first time that I had the opportunity 
to start a project and run with it. I got caught up in the inertia of the project very quickly and 
found myself enjoying every moment of it. I think the reason I became so engrossed in it was 
because two factors intersected perfectly. First, the project made use of all the skills I had 
developed throughout my CMU career. I found myself drawing on knowledge that I had obtained
in 18-340, 18-341, 18-213, 18-349, and 18-220. Second, the project was challenging but not 
overwhelming. I never doubted that we could have something good to show off on demo day. 



However, having something good to show off required a lot of sweat equity, which kept me 
motivated through a very long semester. 

The best part of 545 was the ability to choose a project for the semester and work at it 
for the whole semester. Every day was a new challenge and I found it enjoyable. In addition, I 
picked up skills in debugging that will no doubt be useful in the future. It was beneficial to learn 
the tools that engineers in the field use, such as ISE. I also learned quite a lot about how to 
manage projects and work in groups. Overall, 545 was an exciting and enjoyable course that I 
would highly recommend to anyone in the ECE department interested in hardware design. In 
addition, I have no major complaints or concerns about the course. We had plenty of tools at our
disposal in terms of hardware and software to get the job done. Even though we didn’t place 
any orders for equipment or parts, it was nice to know that we had the option to purchase 
whatever we needed through the ECE department. 

Aalique Grahame

My biggest responsibility in the project was the design of the main processor. As 
mentioned earlier, our goal was complete implementation of Intel’s 8088 processor which was 
very similar to the 8086 processor. We were somewhat fortunate in finding a complete verilog 
implementation of the 8086 processor by another team online. I say somewhat because 
although this meant we didn’t have to implement the processor from scratch which could have 
taken sometime, it also meant that we had to understand their code. If we didn’t understand 
their code completely we were risking not having completely correct functionality once modifying
the code. Actually, we may not have even known where to start when trying to modify their code 
because we simply would not know what did what.

Unfortunately, like most of the code that one finds online, this code was very poorly 
documented. Just about the only comment in the code was their big licensing statement at the 
very beginning. There also wasn’t any good online documents that went along with the code to 
describe exactly how the system was functioning. Thankfully the modifications that would have 
had to be made to this code was very little, the main one being changing the size of the data 
bus from sixteen to eight bits. My initial approach was to simply seek out their data bus, change 
its width and then make little needed tweaks to their code to make sure that it still ran and gave 
correct results. I expected this to take no more than a few hours. However, a few hours went by 
and I was still pulling hairs trying to understand how their code was working, specifically how 
they were reading and writing data and how that data was being used. After a few more hours I 
realized that this just wasn’t going to work. So I took a step back and after some discussion with
my group, I came up with a new approach.

This new approach was to avoid touching any of their code as much as we could and 
write our own system that simply wrapped their system and used it for processing. This solution 
was very promising once we realized that we had the ability to stop and start the processing of 
their processor. Also, I was able to find some pretty good timing diagrams on the memory reads 
and writes for Intel’s 8088 processor which I followed when implementing our wrapper. This took
me just a few hours to design but I then ran into another problem. Although we had the 



possibility to start/stop, it wasn’t completely clear when I needed to do it. Fortunately, I just do 
happened to be reading one of the blogs on the Zet processor and came across a presentation 
that one of the members had given which included their FSM and datapath. This gave me an 
idea of when I needed to halt and it also revealed that I needed to add an extra state to their 
FSM, a fetch state. I believe their reads were combinational so they didn’t need one. All in all, 
the processor took me about 6 hours to write and days to debug.

Once I was done with the processor, we jumped right into integration since we had about
all of the different components completed. The rest of my time was spent helping with 
integration and with the long hours that we spent debugging everything.

I have to say that I really did enjoy this class. I like the idea of choosing a project of our 
own and taking the entire semester to implement. I also like that this course allows us to 
exercise much of the skills that we had acquired in previous ECE classes. My only complaint 
was about the tools we were using, specifically ISE. Every time we wanted to resynthesize our 
project, it took us about ten to fifteen minutes which was a huge waste of time. Besides that I 
think this is an awesome course and I which there were more courses that were strictly project 
based.

Meghan Kaffine

Originally, I was supposed to have had more than one job this semester. However, the 
first component I was assigned to turned out to be harder than expected, so I ended up working 
on the floppy disk controller for the entire semester, and still don’t have a working FDC to show 
for it.

I had been waiting to take this class since I took 18-240 my sophomore year, and went 
to see the projects in Fall 2012. I knew this was the capstone I wanted to take, and planned my 
course schedule so that I would have all the requirements done. I also tried to make sure that I 
had a relatively light semester so that I could dedicate a lot of time to this project.

Unfortunately, in the beginning of the semester I got sick, and was a little behind 
schedule. I definitely was not able to dedicate all the time I had intended to when I was trying to 
make up work from other classes. However, as the semester moved along into October, I was 
able to spend more time working on the FDC. This lead to me discovering, a bit later than would
have been liked, that the FDC was more complicated than expected. I ran into more problems 
like this, where code we borrowed was complicated and I had to spend a lot of time re-reading 
all the documentation and code we had so that I could come up with a verification program.

During November, I spent a considerable amount of time in lab with my eyes glued to the
computer and all the documentation I had, trying to work on the verification of the FDC wrapper. 
ISE’s waveform reader was nice, and made finding out why things weren’t working easier, 
although still didn’t solve all the problems. I spent most of the last three weeks of November in 
lab, trying to get the read command to verify.



Besides the fact that I spent three months of my life working on something that didn’t 
actually end up in our final project, I enjoyed the class. I learned a lot about relying on other 
people’s code (don’t do it), and documentation (there was a straight up contradiction in the 
diskette documentation on what the memory addresses were), and the reasons why 
commenting code is important. It was also my first time really working on a group project that 
didn’t have an answer. While at times annoying because I would like to have the answer to how 
to make the FDC work, it was also fun because I got to try and figure everything out without 
being able to have something to fall back on. There was no ‘golden FDC’ to compare it to, and I 
had to come up with the verification program on my own, figuring out what values should be 
expected, and when they weren’t being received, try and find out if it was because I had 
calculated the values wrong, or there was something wrong with the code. It was also strange 
having other people relying on me to get my part done (even if it didn’t happen).

Our project was interesting, and even though we couldn’t do really complicated games, I 
found that our demo was still fun. The Game of Life can get really competitive. And I totally beat 
Patrick at it.

Eliot Wong

I admit that in the beginning of the semester, I felt pretty overwhelmed with the scope of 
our project and all the parts that we would have to implement for the IBM PC. This was 
combined with the fact that we had to learn how to use ISE and ChipScope and my skills with 
Verilog were average at best. It was very hard to picture being able to complete the entire 
project and being able to get it to a demo-able state. However, I’m very glad that as a team we 
were able to work together and complete the project.

My tasks for the project included designing and implementing the Intel 8237 direct 
memory access (DMA) chip, the Intel 8284 clock generator, the keyboard translator, a large 
portion of BASIC coding for the demo program, maintaining the team VCS, and initial software 
setup. The DMA controller was the most difficult task for me because type of documentation 
provided for the chip. Unlike other chips, Intel kept the internal design of the chip to themselves 
and only revealed a description of the behavior. 

Once we knew that floppy disk was not going to be a feasible option for demo day, I 
began to brainstorm ideas for a more interesting demo. At the current time, our only plan was to 
type in a small BASIC program. I came up with the idea to use simulated keyboard to allow us 
to program much larger programs. As a result, I ended up working on a keyboard translator 
which would take in any text (or in our case BASIC program) and translate it to the keyboard 
scan codes.

Given that I was taking three ECE classes as well as being a TA for a 400 level CS 
course, my time that I could devote to this class was not as much as I would have liked. I 
estimate that I spent a minimum of 8-10 hours per week on the class. As the semester 
progressed the number of hours definitely increased. 



Overall, I enjoyed the time I spent working on the project for 18-545. However, I am not 
sure that it was the right Capstone class for me. I am primarily interested in software and given 
that there is no software capstone, I ended up picking 545 because the projects seemed 
interesting. However, the class ended up being extremely hardware design focused which was 
not really my expertise or interest. I definitely enjoyed the class much more once we had gotten 
the system to run the BASIC interpreter and I was able to start creating the demo program. 
Given more time, I wish we could have gotten floppy disk and advanced VGA graphics to be 
implemented. This would have allowed me to increase the complexity of the demo program and 
it would have catered more towards my interest.

Appendix

Code Sources

Intel 8237: http://www.cs.ucr.edu/~dalton/i8237a/ 
Intel 8088: https://github.com/marmolejo/zet/tree/master/cores/zet 
Video Display Unit: https://github.com/marmolejo/zet/tree/master/cores/vdu/rtl 
Floppy Disk Drive: https://github.com/alfikpl/ao486/tree/master/rtl/soc/floppy 
BIOS Images: http://www.vintagecomputer.net/ibm/5150/BIOS_dumps/ 
BASIC Games: http://www.vintage-basic.net/games.html 
IBM PC Info Source: http://www.minuszerodegrees.net/index.htm 
IBM PC BIOS Images: http://www.vintagecomputer.net/ibm/5150/BIOS_dumps/
Intel 8253: Located in the Synopsys VCS Installation Directory on AFS at 
/afs/ece/support/synopsys/synopsys.release/vcs-mx-2005.06-SP1/doc/examples/i8253/

Statement of Permission

The members of this team, Patrick Brown, Aalique Grahame, Meghan Kaffine, and Eliot Wong, 
hereby give permission for anyone to use the code they produced for this project in an 
academic, educational, or otherwise non-profit-generating manner as long as the original 
authors (the members of this team) are given credit for their work. In addition, we give 
permission for this report to be posted online on the 545 website. 

If you have questions about the project, you can email us at:
Patrick Brown: newyinzer66@gmail.com 
Aalique Grahame: aalique.grahame@gmail.com 
Meghan Kaffine (only about floppy disk controller): mkaffine@andrew.cmu.edu 
Eliot Wong: eliotw@cmu.edu 
The source code can be found at: http://github.com/eliotw/IBM_PC 

Errata

Project Proposal Video: https://www.youtube.com/watch?v=22WM9m0oEi8 
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Keyboard Translator: http://www.contrib.andrew.cmu.edu/~ecwong/

http://www.contrib.andrew.cmu.edu/~ecwong/

