

18-545 Advanced Digital Design

Digital Logic
Analyzer
Fall 2014

Doci Mou, Julian Binder, Tom Mullins, Brent Strysko
December 8, 2014

1 | D L A

TABLE OF CONTENTS

Overview 3

Project Description/Motivation 3

Tools & Platforms 3

Competitive Analysis 3

Schedule 4

Technical Specifications – Design 6

Sampler Module 6

Overview 6

Interface 6

Sampler Module 6

Sampling Channels 6

Trigger Module 8

Block Diagram 8

Sampler Interface 9

Overview 9

Sample Routing 9

Block Diagram 9

SPI 10

I2C 12

UART 14

XMEM 15

Memory 16

CPU Interface 19

Driver 20

Technical Specifications – Testing 24

Unit Testing 24

Integration Testing 24

Results 25

Complete 25

Incomplete 25

Challenges 26

2 | D L A

Lessons Learned 27

Personal Statements 28

Julian 28

Doci 30

Tom 32

Brent 33

Tables & Appendices 34

Register Map 34

Table 10: Sample Clock Configuration Register 36

Statement of Use 37

3 | D L A

 OVERVIEW

PROJECT DESCRIPTION/MOTIVATION
Our goal for this project was to create a logic analyzer capable of performing basic functions an

electronics hobbyist would be interested in using. As hobbyists ourselves, we wanted to create a logic

analyzer that would be both fast and customizable. We looked at consumer-grade products that were

on the market, and aimed to improve upon them. Using a Xilinx Zynq FPGA board, we wanted to design

a logic analyzer that would be both useful and affordable for our intended audience.

We determined that two of the most useful features of a logic analyzer were the ability to use many

channels at a time and the ability to decode protocols. With that in mind, we decided that our logic

analyzer would be capable of supporting up to 32 channels and a maximum sampling rate of 100MHz.

Thirty-two channels allows for a much greater bandwidth than most products we looked at, and

100MHz is faster than all reasonably priced consumer products we could find. With these settings the

user can choose when to begin sampling data, either manually or on certain trigger conditions. We also

support the ability to decode features of certain protocols, specifically SPI, UART, I2C, and XMEM.

All of the data gathered by our device was to be displayed by a web interface onto an external screen,

managed by a web interface running Linux off the ARM core on the Zynq board. This interface both

displayed data and allowed the user to set configuration settings. The data displayed included the raw

data sampled by the device as well as decoded protocols. In choosing configuration settings, the user

sends data to the driver, which then sends it to the memory module, which forwards it to the relevant

part of the system hardware.

TOOLS & PLATFORMS
We chose to break the project up into three levels of abstraction: low-level hardware, kernel-level

driver, and higher-level software. Our hardware consisted of the Xilinx Zynq board, an expansion board

for the GPIO pins, and an external Arduino microprocessors we used for testing. We used the Vivado

Design Suite to simulate and synthesize our design onto the FPGA. Some of us also utilized Synopsys

VCS to simulate when not in the lab or when someone else is holding the license to Vivado’s IP cores,

which were essential to our project. The Zynq FPGA also included an on-board ARM dual-core Cortex,

which allowed us to boot into PetaLinux and to use our driver to connect to the web interface. The ARM

chip interacted with the programmable logic through AXI ports, which we utilized primarily for memory.

COMPETITIVE ANALYSIS
As engineering students, we were very familiar with the basic functions of an oscilloscope and have all

tinkered with a logic analyzer when making our own projects. When coming up with the specifications

for our project, we wanted to make sure that our logic analyzer would be comparable to commercial

4 | D L A

products marketed for hobbyists. We did not have the opportunity to personally test many products,

but we did have the opportunity to become familiar with the Saleae Logic.

The Saleae Logic is a logic analyzer marketed for “embedded developers” and often used by hobbyists.

It is marketed to run at 24MHz and has 8 channels, and can decode up to 17 different protocols (though

9 of these are currently in beta). It is a very popular device and was fairly affordable at about $150. The

Saleae Logic offered free software separate from the hardware device and meant to be run on another

computer, a feature common to low-end logic analyzers. Because of the feature set included in this

product, we decided to implement a subset of the features and improving upon them. For example, we

can run 32 channels where they can only run 8. We can sample at up to 100MHz whereas they are

marketed to run at 24MHz. Our software features were very much inspired by those included in the

Saleae Logic, especially the interactivity of the graph. We did not include as many protocols as the

Saleae did, but instead focused on the technical specifications that would hopefully put our logic

analyzer ahead.

Other products we looked at were high-end oscilloscope/logic analyzer combinations. They were all

scopes that ran at high speeds and had very large bandwidth and also cost five or six figures. Some

examples were the Agilent 16900 Series, the Tektronix MSO70000 series, and the Tektronix TLA7000

series. The purpose of exploring these options was to determine the tradeoffs the large companies

made in terms of price, bandwidth, sample rate, and speed. The conclusions drawn from comparing

these would help us determine which combination of those settings would be most applicable when we

encountered the situation ourselves.

In the end, we decided on our final numbers as a result of considering the ease of implementation, the

ability to integrate well with our layers of abstraction, our audience, and most importantly, the scope of

our project. As impressive a feat as it would have been to optimize our design for as ridiculously fast a

speed as possible, we only had a semester to do it.

SCHEDULE
An approximate schedule for our group was as follows:

5 | D L A

As is obvious from the graph, only small amounts of work were done early on, and they were done at a

very slow pace. The work began to pick up about halfway through the semester, but for the rest of the

semester there was a lot of work to be done by everyone. We did not start integrating our modules

until about November, at which point there was a significant amount more to do. More and more work

was crammed into the last few weeks of the semester, and although some of us were on track according

to our own schedules we were rarely ever in the green as a group.

We encountered the most problems toward the last three weeks, time we had originally planned to be a

buffer for unexpected bugs and integration errors. Because we were so behind on work, we never got

the chance to use this buffer time and in the end went through the public demonstrations with bugs in

our code. That said, we did achieve basic functionality and many of our features were buggy but still

implemented.

6 | D L A

TECHNICAL SPECIFICATIONS – DESIGN

SAMPLER MODULE

OVERVIEW
The sampler module controls the sampling on all thirty two channels, triggering of all channels, and

compression of the samples into a bandwidth friendly format. The sampler module contains all of the

registers for controlling sampling and triggering. It is split into three functional units. The overall sampling

module contains mostly status and control registers. Inside of the sampling module is the triggering

module which controls triggering. Finally there are 32 separate sampling channels which can be

configured to sample and send their data to any of the protocol engines.

INTERFACE
The sampler module primarily interfaces with the interface module. Each of the sampling channels has its

own input port. The sampling module as a whole also has an input port from the configuration bus. The

sampling module interfaces with the router using a 32 bit packet where the most significant 31 bits specify

the time that the sample occurred at and the least significant bit is whether the edge is rising or falling.

SAMPLER MODULE
The sampler module includes several status registers. The sampler module has a register which of the

sampling channels are enabled. It also includes registers for storing the maximum sample age, the

maximum number of samples, and for keeping track of which channels are running. The sampler module

also has a register which can be used to trigger a set of channels from the external software interface. In

addition to these registers the sampler module also interfaces with the configuration bus in order to allow

the CPU module to write to the sampling registers.

The sampling module features a configurable sampling rate. This is achieved through a configurable

sample clock. The clock is set by registers which can be controlled through the configuration bus. A

separate FSM controls the Xilinx MMCM which is able to set a clock divider and multiplier. While the clock

is being set and not yet stable the sampler is held in reset via a synchronized reset module.

SAMPLING CHANNELS
There are 32 sampling channels integrated into the sampling module. Each of the channels are identical.

Each sampling channel has two status registers. The first keeps track of the sample count. It starts counting

on startup and is reset when each sampling run is complete. The second register keeps track of the sample

count when the trigger is engaged. This allows the sampling module to calculate the age of each sample

and determine when to stop sampling.

In order to capture the IO signal the sampler uses a two register synchronizer. Once the data progresses

through the synchronizer it is compared against the previous sample’s result. If the two samples are

different then an edge was detected and the module calculates whether it is a rising or falling edge. These

7 | D L A

edges are then paired with the sampling time to create a time-edge packet. The first 31 bits are the sample

number and the last bit represents the edge type. Zero is used for a falling edge and one for a rising edge.

Each of the sampling channels also features pretriggering. Pretriggering is implemented using two FIFO

queues. The first FIFO is used when the channel has not been triggered. It stores the first n samples where

n is the depth of the fifo. Based upon the maximum sample age which is a sampler module level setting it

will discard old samples. It will also discard samples as the FIFO becomes full.

When a trigger event occurs all triggered channels output the oldest value that they have. This is the initial

value. Then the pretriggering buffers are cleared. These values are stored in time edge format and the

signal is reconstructed based on the initial value. Finally, the sampled values are outputted as they enter

the sampling channel. Two FIFO queues are used as buffers to allow for only one sample to be outputted

each clock edge. An additional requirement is that the sampling channels all output their data in order

with respect to the remaining sampling channels. In order to achieve this a counter is used so that the

sample that is outputted is no newer than the samples being outputted on any of the other channels.

Once sampling is over, the sampler waits until its buffers have been cleared before switching to a reset

state.

Each sampling channel interfaces with the interface module through a node. The node handles all of the

FIFO interface signals. The interface uses a valid ready handshake. In this method the sampling channel

asserts valid whenever there is a valid signal to be output. The interface module reads these signals and

asserts ready in order to read the data. Such a fashion ensures that no data is lost.

Here is a diagram of the sampling channel states:

8 | D L A

TRIGGER MODULE
The trigger module is part of the overall sampler module. The trigger module consists of eight sets of three

thirty two bit registers. Each set is called a trigger group. Each trigger group contains one enable register

which masks the thirty two channels. The remaining two registers combine to allow the user to set a value

for each of the thirty two channels. A group triggers when the enabled channel value registers match the

sampled value. A trigger is generated on the same cycle that any of the trigger groups find a match. This

trigger setup is useful because it allows users to configure the trigger for their custom application. For

example this trigger setup can be used to monitor an address bus and trigger when the address is a certain

value.

BLOCK DIAGRAM

DEN RST

QsCLk

ldValMask1Hi rstB

valMask1Hi[31:0]

RegIn[31:0]

DEN RST

QsCLk

ldValMask1Lo rstB

valMask1Lo[31:0]

RegIn[31:0]

DEN RST

QsCLk

ldEnMask1 rstB

enMask1[31:0]

RegIn[31:0]

DEN RST

QsCLk

ldValMasknHi rstB

valMasknHi[31:0]

RegIn[31:0]

DEN RST

QsCLk

ldValMasknLo rstB

valMasknLo[31:0]

RegIn[31:0]

DEN RST

QsCLk

ldEnMaskn rstB

enMaskn[31:0]

RegIn[31:0]

DEN RST

QsCLk

ldValMask8Hi rstB

valMask8Hi[31:0]

RegIn[31:0]

DEN RST

QsCLk

ldValMask8Lo rstB

valMask8Lo[31:0]

RegIn[31:0]

DEN RST

QsCLk

ldEnMask8 rstB

enMask8[31:0]

RegIn[31:0]

Trigger Logic

valMasknHi[31:0]

valMasknLo[31:0]

enMaskn[31:0]

dSyncedn[31:0][1:0]

triggered

empty

re

clkrstB

FIFO
R

EA
D

fifoOut[49:0]

sCLkrstB

sampleFifoRe

sampleFifoEmpty

Register Load Logic
fifoOut[49:0]

sampleFifoEmpty ldEn(…)

RegIn[31:0]

D
EN

R
ST

Q D
EN

R
ST

Q

dInn dSyncn dSyncedn

D
EN

R
ST

Q

Edge Detect
Logic

isRisingn

isFallingn

sC
Lk

1
'b

1

sC
Lk

1
'b

1
rs

tB

rs
tB

1
'b

1

sC
Lk

rs
tB

DEN RST

QsCLk

ldMaxSampNum rstB

maxSampNum[31:0]

RegIn[31:0]

DEN RST

QsCLk

ldMaxPretrigAge rstB

maxPretrigAge[31:0]

RegIn[31:0]

DEN RST

Q
CNT

clrSampCount

sCLk

rstB

31'd0

sampCountn[30:0]

Time-Edge
Conversion Logic

isRisingn

isFallingn
timeEdgen[31:0]

sampCountn[30:0]

DEN RST

QsCLk

rstBtriggered

sampCountn[30:0]

ageTrign[30:0]

DEN RST

QsCLk

ldMaxSampleNum rstB

maxSampleNum[31:0]

RegIn[31:0]

full

empty

re

we

clkrstB

FI
FO

full

empty

re

we

clkrstB

FI
FO

rstB

rstB sClk

sClk

fifoIsFulln

fifoIsEmptyn

fifo2IsFulln

fifo2IsEmptyn

AB

F
S

timeEdgen[31:0]

timeEdgen[31:0]

timeEdgeTopn[31:0]

DEN RST

QsCLk

ldManTrig rstB

manTrig

RegIn[31:0]

chanEnMask[31:0]

DEN RST

QsCLk

ldIsRunning rstB

isRunning[31:0]

runnningIn[31:0]
runnningIn[31:0]

ldIsRunning

manTrig

Sample Age Logic

ageTrign[30:0]

sampCountn[30:0]

timeEdgeTopn[31:0]

isRunning[31:0]
bleedTopn

Sample Number
Logic

ageTrign[30:0]

sampCountn[30:0]

isRunning[31:0]

maxSampleNum[31:0]
runnningIn[31:0]

ldIsRunning

chnDone
fifoIsEmptyn

(!chnDone & !fifo2IsEmptyn)

fifoIsFulln

!fifo2IsEmptyn & !fifoIsFulln

(isRunning[n] & (fifoIsFulln | !fifo2IsEmptyn) & (isRisingn | isFallingn)

fifo2IsEmptyn

((isRisingn | isFallingn) & !isRunning[n]) | ((isRisingn | isFallingn) & fifo2IseEmpty & !fifoIsFulln) | (!fifo2IsEmptyn & !fifoIsFulln)

(!isRunning[n] & bleedn) | nodeWe

full

we

clkrstB

FI
FO

W
ri

te

Node Logic

rstB sClk

nodeFulln

nodeWen

Router
Interface

chnDone

nodeFulln
nodeWen

Sampling Channel(x32)

Sampling Module

packetToRoutern[49:0]

packetToRoutern[49:0]
timeEdgeTopn[31:0]

Register Read Logic

RegIn[31:0]

RegReadEn

fifoIn[49:0]
full

we

clkrstB

FI
FO

W
ri

te

rstB sClk

sampleFifoFull

SampleFifoWe

fifoIn[49:0]

Router
Interface

TODO:
Two Wide Writes

Destination Location
Sample Frequency/PLL?

9 | D L A

SAMPLER INTERFACE

OVERVIEW
The interface module routes packets between the sampling channels, the functional modules, and

memory. The interface module is configurable and allows for any sampling channel to be routed to any

functional module. The interface module interfaces to the sampling channel, the functional modules,

and memory module via the valid/ready handshake.

SAMPLE ROUTING
Samples enter the interface module through an asynchronous FIFO queue. This FIFO forms the clock

barrier between the sampling module, which can have a clock frequency between 3 and 100 MHZ and

the interface module which has a set clock. From this point the samples travel through multiplexers to

another set of FIFOs. There are thirty two multiplexers that route the input signals to a total of 47

different functional channel inputs. There are 47 multiplexers that route the valid/ready signals back to

the input FIFOS. The memory module latches onto the output of the input FIFOs. If there is a functional

channel reading from the FIFO it will catch the data as it is output. If not, then the memory channel itself

will pull the data out of the FIFO.

BLOCK DIAGRAM

.

.

.

fu
ll

em
p

ty

re

w
e

clk
rstB

FIFO
timeEdge[31:0]

sClk

rstB

dataIn
Sampling
Channel

we

full

F
S

chn0Re

chnNRe

...

samp0Out

samp0Empty

fu
ll

em
p

ty

re

w
e

clk
rstB

FIFO
timeEdge[31:0]

sClk

rstB

dataIn
Sampling
Channel

we

full

F
S

chn0Re

chnNRe

...

samp0Out

samp0Empty

fu
ll

em
p

ty

re

w
e

clk
rstB

FIFO
timeEdge[31:0]

sClk

rstB

dataIn
Sampling
Channel

we

full

F
S

chn0Re

chnNRe

...

samp0Out

samp0Empty

fu
ll

em
p

ty

re

w
e

clk
rstB

FIFO
timeEdge[31:0]

sClk

rstB

dataIn
Sampling
Channel

we

full

F
S

chn0Re

chnNRe

...

samp0Out

samp0Empty

timeEdge[31:0]

sClk

rstB

timeEdge[31:0]
Functional

Channel
re

empty valid

F
S

empty31

empty0

...

F
S

timeEdge31[31:0]

timeEdge0[31:0]

...

chn0Re

chn1In

chn2In

valid1

valid2 I2C Module

timeEdge[31:0]

sClk

rstB

timeEdge[31:0]
Functional

Channel
re

empty valid

F
S

empty31

empty0

...

F
S

timeEdge31[31:0]

timeEdge0[31:0]

...

chn0Re

timeEdge[31:0]

sClk

rstB

timeEdge[31:0]
Functional

Channel
re

empty valid

F
S

empty31

empty0

...

F
S

timeEdge31[31:0]

timeEdge0[31:0]

...

chn0Re

timeEdge[31:0]

sClk

rstB

timeEdge[31:0]
Functional

Channel
re

empty valid

F
S

empty31

empty0

...
F

S

timeEdge31[31:0]

timeEdge0[31:0]

...

chn0Re

timeEdge[31:0]

sClk

rstB

timeEdge[31:0]
Functional

Channel
re

empty valid

F
S

empty31

empty0
...

F
S

timeEdge31[31:0]

timeEdge0[31:0]
...

chn0Re

timeEdge[31:0]

sClk

rstB

timeEdge[31:0]
Functional

Channel
re

empty valid

F
S

empty31

empty0

...

F
S

timeEdge31[31:0]

timeEdge0[31:0]

...

chn0Re

chn1In

valid1
UART Module

chn1In

chn2In

valid1

valid2

SPI Module
chn3In

valid3

..

.

..

.

10 | D L A

SPI
The serial peripheral interface (SPI) protocol is one of the four protocols we chose to implement a

decoder module for. It is a common protocol that is a synchronous serial data link by Motorola. It

usually operates in full duplex mode and communicates in a master/slave medium. It is sometimes

called four-wire serial bus or synchronous serial interface (SSI).

This protocol requires either three or four lines of data which are provided to it by the sampler

interface. A configuration bus provides additional inputs. This is summarized in the following table:

SPI Data Inputs SPI Configuration Inputs

SCLK (clock) spiMode (type)

MOSI (master-out, slave-in) cpol (clock polarity)

MISO (master-in, slave-out) cpha (clock phase)

SS (slave select) wordSize (size in bits)

For our module, configuration must be sent before samples can be taken, as the data collected would be

meaningless otherwise. The register spiMode refers to whether the sample will be traditional four-wire,

half-duplex three-wire, or no-slave three-wire. In four-wire mode, sclk is sent with the data lines, mosi

and miso, and slave select is an active low line indicating which slave is to receive the data from the

master line. In half-duplex three-wire, the mosi and miso lines are combined. In no-slave three-wire

mode, the signal on the slave select line is ignored and the device is assumed to always be the active

slave. The cpol refers to the polarity of the clock, whether the first edge will be rising or falling. The

cpha is the clock phase, which determines whether data is taken on the first edge of the clock signal or

the second edge per clock tick. Since our system uses time-edge packets rather than signals themselves,

the current status of the signals must be kept track of internally.

The following image provided by WikiMedia illustrates cpol and cpha. The red line represents (!cpha)

and the blue line represents (cpha):

11 | D L A

Data communication occurs when the master configures the clock, then transmits a low signal along the

slave select line to the intended slave device, and a bit is shifted out on the MOSI line one clock cycle at

a time until the entire block of data has been read out. As this is occurring, the slave device shifts out a

bit on the MISO line, creating a ring of data that has effectively caused the master and slave devices data

bits to change places. The bits transmitted are usually 8-bit words, but other word sizes are allowed and

common. Our device allows for up to 32-bits of transfer at a time. The following diagram provided by

WikiMedia illustrates this for an 8-bit transfer:

When data transmission has ended, the sclk line is returned to its original state.

At that point, we take the mosi/miso data we collected in shift registers and output them along with the

times during which they were received. Two packets are sent out, one after the other according to the

module clock, and the first packet appends a 1 to signify that it is not an error packet to the 31-bit time

during which the packet data was first received, which is appended to the 32-bits of data, and then

sends it to memory. The second packet appends a 1 to the 32-bit time during which the last data packet

was received which is turn is appended to the 32-bits of data as well, and then sends that to memory.

The SPI module in our design is completely implemented for all three modes, all four clock modes, and

least significant bit shifting. Making modifications to the code to make it shift in most significant bit

shifting as well will not be difficult, but because we chose one and stuck to it, it will likely not be

supported by the driver, memory, or software interface and that will require additional modifications.

The biggest error we ran into was that it worked completely in simulation and synthesized on the board,

but failed to run correctly onward. Data was being transmitted in the first iteration of sampling, but

either got stuck somewhere in the pipeline or simply wasn’t going through to memory when on the

board. This was not solved in time for the end of the class, but the code for SPI is still included in the

files.

12 | D L A

I2C
The Digital Logic Analyzer also features four I2C functional modules. I2C, also known as TWI, is a two wire

serial protocol developed by Philips Semiconductor that is commonly used for chip to chip communication.

The protocol is often used by hobbyists to communicate with off chip resources such as EEPROM, RAM,

ADCs/DACs, and a large variety of sensors.

The I2C protocol features a master with multiple slaves. Each of the salves on the bus is given a unique

salve address. In order to communicate the master first issues a start bit. After the start bit the master

transmits the slave address over the bus followed by a read/write. If the slave recognizes its own address,

it will assert an ACK signal on the bus. Otherwise the lack of signal is called a NAK. If a read bit was asserted

then the slave will transmit over the bus. Otherwise the master will write. After the transaction is

completed the master will assert a stop bit and the communication is over.

Here is an example bus waveform courtesy of Microchip.

13 | D L A

The DLA uses a finite state machine to keep track of the state of the bus. The state machine is capable of

determining what part of the transaction is occurring. It is also possible for the FSM to determine the data

that was sent as well as any errors that occur during transmission.

DATA

Start
Condition

Slave Addr

Reset

ACK/NAK R/W

Stop
Condition

The I2C module must also keep track of the two sampling inputs. It must be able to determine which input

is older and then update its own internal model of the bus. From this internal model edges are detected

and used to drive the finite state machine.

In order to manage the large amount of output two FIFOs are used. The data is split based upon type

between these FIFOs in a fashion that ensures that if two data packets are generated in the same clock

cycle they will go to different FIFOS. After the data is written to the FIFOs it is read out as soon as the

memory channel is ready using the standard valid/ready interface.

14 | D L A

UART
The Universal Asynchronous Receiver/Transmitter (UART) protocol is a simple protocol that shifts out

individual bits of data to another device, least significant bit first. The protocol requires a single start bit,

five to eight data bits, an optional parity bit, and one or two stop bits. Since the idle state of the line is

low, the start bit must be logic low and the stop bits must be logic high. An example of the format is as

follows:

0 1 2 3 4 5 6 7 8 9 10 11

START 5 – 8 DATA BITS PARITY STOP BIT(S)

The way through which UART transmitters and receivers obtain information require that both devices be

set to the same settings. In our module, this requires that configuration data be set before sampling

begins. The configuration data needed for UART is summarized in the following table:

UART Configuration Inputs

stopBits (number of stop bits)

bitRate (bit rate)

bits (size of data)

parityBits (parity)

While UART is a very simple protocol, it was one we could not get working in the end. It output the

correct data for certain inputs in simulation, but because of existing errors was put on hold so that focus

could shift on the other modules. The biggest issue was that the module was designed under the

assumption that the first data bit would be logic high, for whatever reason. This allowed for the module

to internally calculate the time difference between the 0th and 1st bits, therefore also allowing it to know

how many bits had been transmitted between edges. The implementation also did not take the parity

bit into account, ignoring it entirely when settings dictated that it existed.

The reason this method of calculating time and bits did not work is the fact that two consecutive edges

are not guaranteed prior to the start of receiving data. A proposed solution to this was to read in

sampling speed and mathematically compute the time between packets, as baud rate is a given with

configuration. However, given that at this point the final demo was a few days away, we chose to focus

on other portions of the system so that we would at least have a full end-to-end chain of functionality

for some protocol. As a result, the new system was half-implemented and not even working in

simulation, so it was scrapped entirely at the end and did not make it into our code base.

15 | D L A

XMEM
The XMEM analysis module was designed to trace external memory transactions on an AVR

microcontroller. The protocol which AVRs use for external memory is a pretty simple parallel protocol

designed to support a 16-bit address space with limited I/O pins. There are 8 pins specifying the high

byte of the address, and 8 bidirectional pins which are multiplexed between the low byte of the address

and the 8-bit data. The AVR requires an external 8-bit latch, which latches the low byte of the address

when address-latch-enable (ALE) is asserted. Then either read-enable (RDN) or write-enable (WRN) is

asserted low, and the external memory or the AVR drive the data pins accordingly.

The analysis module simply keeps track of the current state of all 16 address bits and all 8 data bits, and

then generates information packets whenever a falling edge is seen on RDN or WRN. It does this by

watching all input channels and pulling in the valid one with the earliest timestamp. Because of the

ordering guaranteed by the sampler interconnect, this guarantees it won't later receive a sample from

an earlier time. Between a rising and falling edge of ALE, it will continuously update current known state

of the low byte of the address with the current known state of the data lines. If it sees both WRN and

RDN asserted, or if it sees ALE asserted during a WRN or RDN, or if it sees data lines change while WRN

is asserted, it will generate an appropriate error packet, since these are invalid in the protocol.

Figure 4: XMEM analysis module

16 | D L A

MEMORY

The sample data and analysis data is sent to memory through an AXI port accessible to the FPGA. This

port, the accelerator coherency port (ACP), is connected to the cache coherency unit of the CPUs, so

that all DRAM accesses done by the FPGA are coherent.

There are fourteen memory channels, one for the sample data and one for each analysis module. Each

channel has an input of 64-bit values, with a valid/ready interface. The memory system does not need to

know about the format of this data; it simply writes 64-bit double-words into the memory buffers. Each

memory channel has an internal buffer so that it can collect double-words into larger bursts of data, up

to 128 bytes of data. This is because AXI3 can have address-incrementing burst transfers of up to 16

beats, with 8 bytes per beat. Collecting data into bursts allows greater bandwidth due to the overhead

of each transfer.

The memory channels output a custom BurstIf interface, which is a pretty simple interface which

transfers bursts of up to 16 64-bit data elements accompanied by a base address and a response signal

for when the write is finished. It was designed so that the AxiMaster module, which accepts a BurstIf

and issues AXI writes, would have minimal buffering or extra logic. The memory channels themselves

keep track of the head and tail pointers for the circular buffers in memory and send the base address for

each transfer, so that the AxiMaster modules don't need to worry about buffer addresses or offsets.

One problem encountered was that the AXI crossbar IP statically assigns each of its slave inputs to an ID

on its master output. Because the ACP AXI interface has only 3-bit IDs, this meant there could be at most

8 AXI masters connected to the interconnect. The solution was the BurstSwitch module, which merges

two BurstIf buses into one by selecting whichever has available data. BurstIf allows only one outstanding

transaction, so this could cause bandwidth problems, but it is actually not much of a performance

penalty. The ACP AXI interface only accepts three outstanding writes at once so that is the limiting factor

in the system. That said, the sampler channel was deliberately not put on a BurstSwitch, since it has the

largest bandwidth requirements.

The 32 sampler channels are sent into the SampleToMemInterconnect module. This has internal buffers

for each channel at the input. It then outputs 64-bit data to a memory module just like the analysis

modules with a valid/ready interface. Each 32-bit time/edge input on a channel is appended to the 5-bit

channel number, and the remaining 27 bits are zero. In order to ensure fairness amongst the channels,

the sample with the earliest time is selected each cycle, which has the added benefit that samples are

written to memory in order of sample time.

Testing of the memory interface was largely done in simulation using the AXI bus functional model (BFM)

available in the processing_system7 IP. There was actually a simulation bug with the ACP interface where

it would drop every fourth write, which was very inconvenient. The ACP interface in hardware accepts

only 3 outstanding write transactions at once, so the BFM was configured to allow only 3. However, the

BFM did not work with non-powers-of-two outstanding transaction limits, so every fourth write would go

out of bounds of an array and provide X's. Even though the simulation files for the IP were supposed to

17 | D L A

be read-only, I was able to change the parameters to allow 4 outstanding writes and that fixed the

problem. As of now, the bug has not been reported to Xilinx.

18 | D L A

Figure 1: Memory Interface

Figure 2: Sampler to Memory Interconnect

19 | D L A

CPU INTERFACE
Configuration parameters are set by the CPU through memory-mapped registers. Accesses to the

memory region 0x40000000-0x7FFFFFFF are sent to the FPGA through AXI port GP0. All write

transactions are then broadcast on the global configuration bus, which consists of an 8-bit register

number derived from the accessed address and a 32-bit data payload. All modules in the system watch

the data bus for writes to their internal configuration registers. The bus does not support reads so most

registers are write-only, and those which are readable are handled directly by the AXI slave. This

includes the tail pointer for each memory channel, and one interrupt status register. If any bits in the

status register are set, the first of the 16 shared interrupts IRQ_F2P[0] is asserted. There was a bug in

the IP generation tools in Vivado which caused the processing_system7 Verilog wrapper to give the

IRQ_F2P input a width of 1 instead of 16, so I only felt safe using the first interrupt, but only one was

really needed. The interrupt handler can read the interrupt status register for more information. To

acknowledge receipt of the particular interrupts, the driver writes back a 1 to each flag it wants to clear.

This eliminates races where a flag gets set while the driver is already in the interrupt handler, so when it

clears all of the flags it clobbers that flag without ever seeing it.

Testing of the CPU interface was done in simulation using the AXI bus functional model (BFM) available

in the processing_system7 IP. It had an internal task write_data() which would send AXI writes on the

GP0 interface, just like driver writes in the real system. Testing on hardware was initially done by setting

up a small FSM that would write a bunch of consecutive values into memory, and configuring it using the

actual CPU interface.

Figure 3: System-level Diagram of CPU and Memory Interfaces

20 | D L A

DRIVER

The Linux driver is responsible for two different tasks. First, it exposes all of the configuration options for

different parts of the design to userspace via sysfs, and writes that configuration to the design. Second,

it provides sample and analysis data to userspace through special character devices by providing target

memory buffers to the design and reading data from them.

Configuration is handled through sysfs, a Linux kernel mechanism for exposing internal kernel data

structures. Linux has a tree structure of kobjects, which automatically generate a directory structure

inside of /sys, and each kobject can have a number of attributes, each of which has a file in the directory

of its kobject. For example, the dla-sample character device created by the driver has an embedded

kobject, and I added the “clock_cfg” attribute, so this made a file called /sys/devices/virtual/dla-

sample/dla-sample/clock_cfg. Each attribute has a store() function, which is called when the file is

written to, and a show() function, which is called when the file is read. Initially, upon store() being called,

the driver would save the value locally and write it to the design immediately. Because none of the

configuration registers in our design were readable by the CPU interface, saving it locally allowed the

driver to use the local value in show(). However, later on the driver design changed so that most of the

registers would be written all at once when triggering was armed, not immediately inside of store(). This

way, when the sample clock changed, the entire sampler could be reset and its configuration could be

rewritten next time the user wanted to collect data. Also, due to some lack of communication, the

analysis modules were written to accept configuration exactly once before operating, so that

configuration was also delayed until triggering was actually armed. Arming the trigger is done through

the “trigger_arm” or “manual_trig” attributes of dla-sample, which each have a store() function which

rewrites sampler and analysis module configuration then arms the trigger.

The sampler configuration was a little challenging to handle, because after its clock is reconfigured there

is a delay before the clock becomes stable during which it is unavailable. In order to avoid overflowing

the asynchronous FIFO holding configuration writes, the driver avoids any configuration writes during

that time. The sample clock stable interrupt was added to the memory interface's interrupt status

register, so that the driver would know when it became stable. It keeps a local flag, clock_stable, and

clears it whenever writing to the clock configuration register. If it is about to write to any sampler

registers and the flag is 0, the writing process will sleep in a waitq. When the interrupt occurs, the flag is

set to 1, and any processes sleeping in the clock waitq are awoken.

Result data is provided to the user through character devices in /dev. Each character device corresponds

to one memory channel, which corresponds to one buffer in memory. The driver allocates these using

kmalloc(), which guarantees contiguous physical pages, then the physical base addresses and lengths are

written to the memory interface configuration registers. Whenever a process uses the read() syscall on

one of the character devices, the driver reads the tail pointer from the memory interface and compares

it to its saved head pointer. If they match, there is no new data, so it sleeps in a waitq. On a memory

write done interrupt, all processes sleeping in that waitq are awoken. This way read() will block until

data is available, which is the behavior that is usually expected of the syscall. Finally, the driver copies all

21 | D L A

available data into the userspace buffer, and writes head back to the memory interface to let it know

there is more space in the memory buffer.

The Linux kernel used was the PetaLinux kernel provided by Xilinx, and the driver code and Makefile were

written based on the kernel module template provided by the PetaLinux SDK. An Ubuntu Linaro filesystem

image was used for the rest of the Linux system instead of the usual PetaLinux ramfs, because we wanted

a writable filesystem on the SD card which we could install node.js and other tools on.

22 | D L A

WEBSITE

OVERVIEW

The Web Interface is the interface through which a user interacts with the DLA. The interface’s design

goals were ease of use, full functionality of all registers exposed through the driver, and the ability for

more than one user to use it at a time. Through a combination of several technologies any device

connected to the Internet can access the interface (when DLA is powered on) by visiting

crystal.ece.cmu.edu. As other users make changes to the registers and the data changes, the user’s

interface is updated in real-time to reflect those changes.

CLIENT SIDE

The client side of the interface was constructed using Bootstrap, jQuery, Socket.IO, and Flot Charts. When

a user visits the url crystal.ece.cmu.edu the interface is loaded. The only pieces of data that must be

known at page load are the number of channels and triggering group in order to create the HTML DOM.

Once all resources are loaded, the client opens a Socket.IO connection to the server where the server

sends the status of all the registers, current data, and # of users connected. Whenever any of this

information changes on the server each client will receive a new message from the server.

The registers are configured on the left-hand side of the interface. Each menu group is collapsible. When

each input is changed the client emits a message to the server over the Socket.IO connection. If another

instance of the interface changes a register all other clients will receive that change and update the HTML

element through JQuery.

23 | D L A

Each channel has its own (collapsible) graph allowing for easy viewing of data. Each channel can be

individually panned and zoomed. Moving one’s cursor over the data points display their value, timestamp,

sample #, and functional module information (if pertaining).

SERVER SIDE

The server side of the interface was created using NodeJS and Jade. Whenever a user makes a request

for the interface the server is responsible for serving the respective files. The server also listens for

Socket.IO connections and communicates the state of the DLA by reading the files exposed through the

driver. Whenever a sampler or functional module would have more data available on its respective dev

device the server would detect the change and broadcast this information to all connected clients.

The functional flow of the Web Interface is shown below:

Flow

Driver

NodeJS

Server

Web

Interface

Web

Interface

Web

Interface

24 | D L A

TECHNICAL SPECIFICATIONS – TESTING

UNIT TESTING
Unit testing was done by the author of each module. The minimum requirements were to make sure

that data went through correctly for at least some subset of settings, and to make sure that the inputs

and outputs were hooked up accurately enough to be able to be placed in the full testbench during

integration testing. For most of us, unit testing was done almost entirely in simulation. We each had

our own preferred setup- one of us preferred to run simulations in Vivado in the lab, another preferred

running it at home after VNC-ing into the lab computer, and the other preferred to run Synopsys VCS at

home. While our methods differed, the end result was the same for preparing our modules for

integration.

INTEGRATION TESTING
Integration testing was split into two parts. The first part focused on testing in simulation. For this a full

test bench was created. This test bench was capable of writing to registers via simulated memory writes

as well as reading from memory via simulated memory reads. The testbench first set all of the

configuration registers for the memory interface, the interface module and all of the functional

modules. After doing so it would set the clock and wait for the clock to become stable again. Following

this it would write the registers to configure the sampling channels. At this point several tasks were

written to create input data for the DLA. One task was written to simulate a random waveform across

many samples. This was used primarily to test triggering mechanisms and to make sure that samples

reach memory properly. A second task was written to test SPI. This task recreated an SPI waveform and

was capable of sending any arbitrary eight bit packet. This task was incredibly useful in verifying SPI

functionality and integration. A third task was created to verify I2C. This task was capable of sending any

arbitrary packet over I2C. It was used to verify that all created I2C packets reached memory.

The second part of integration testing was performed on the Xilinx Zync ZC706 development board that

the DLA used. A set of scripts were created in order to perform this type of testing. These scripts

activated certain registers in the design using the driver. Based on the configuration various parts of the

design were tested. One script was created which could configure the sampler to preform sampling and

deposit the results directly into memory. Another was created to allow for sampling at different clock

frequencies. Separate scripts were created to test SPI and I2C. Final integration testing involved placing

the web framework on top of the driver and using it to configure the DLA. This was done in a fashion

that allowed for a wide variety of systems tests to be run.

25 | D L A

RESULTS

COMPLETE
While the DLA does not meet the specifications that were laid out at the beginning of the project, many

key portions are complete. The entire sampling system including the triggering system functions exactly

as planned. In testing we were able to configure the trigger module to engage when a number counting

up across eight different channels reached a certain value. We were able to sample a square wave at

frequencies ranging from 1KHz up to 15Mhz. Pre-triggering was also tested in a simulated real world

example and found to work properly. The interface module is also fully functional. It is capable and

tested on board to route signals from any of the sampling channels to any of the functional modules. It

is also capable of bleeding off packets from these lines and delivering them to memory. The memory

interface also worked exactly as planned. It is capable of pulling samples out of the interface and

delivering them to the driver. It is also capable of pulling data out of the functional modules as well.

Additionally the CPU side of the interface is also capable of writing to the configuration bus as well as

reading from the memory module. The Linux driver written to interface between the website and the

FPGA fabric also works as planned. It exposes all of the data coming out and the configuration inputs

while managing all functional requirements. A large portion of the web interface is complete. It is

capable of reading data from the sampling channels and displaying it as a waveform. It is also capable of

setting up the triggering module, initiating a manual trigger, and setting the clock. Finally the website is

also accessible to multiple users simultaneously.

INCOMPLETE
Some parts of the project remain incomplete. The main pieces missing are the full integration of each of

the analysis modules at each level of the design. I2C is the furthest along, working on a basic level in

hardware, and showing up on the interface. However, it is not really displayed on the user interface,

only listed in a text format. SPI works in simulation, but when integrated into the hardware design it

outputs two packets and no more until the FPGA is reset. XMEM was shown to work on a basic level in

simulation, and was synthesized and put onto the hardware, but due to time we did not test it with our

hardware test platform. It also would not be displayed in the user interface anyway. UART was not

finished due to time. One other thing missing from the user interface is the ability to map input channels

to analysis module inputs, which must be done manually by writing to files in /sys exposed by the driver.

26 | D L A

CHALLENGES
The project faced a variety of technical and logistical challenges in design, implementation, and testing.

Many of the challenges arise from interfacing many different types of systems together across multiple

clock domains and platforms. One key problem was how to guarantee that samples from different

sampling channels would arrive in order to the functional modules. This is important to guarantee that

the waveforms would be reconstructed correctly. While this problem was eventually solved it proved to

be a less than optimal solution that limited the maximum pretrigger age to the size of the pretriggering

buffer. Another key challenge was handling the large amount of data streaming across the clock barrier

between the sampling region and the interface region. This required the use of asynchronous queues and

careful planning of how each module would enter and exit reset. By far the biggest challenge during design

was to integrate each level of the stack. There was a major bug in this process which caused the entire

board to crash requiring a hard reset. In the end this bug was traced to an issue in which driver writes to

the configuration bus did not work correctly. However finding this issue was troublesome because of the

complex integration of each of the three levels. The project also faced a significant logistical problem.

Because of group size it was difficult to find times where all four members were available. As a result

meetings did not occur with the frequency that they needed to occur at. Because of the infrequent

meetings certain members of the group got off track and did not meet the schedule. This caused their

parts of the project to slip significantly and require other group members to either complete them or they

were not completed at all.

27 | D L A

LESSONS LEARNED
We chose this particular project because it enabled us to design a system from the ground up instead of

implement an existing design. This helped teach us to think like designers of a system instead of

implementers of a system, meaning that we had to take responsibility for each of our design choices and

thoroughly think through each decision. In addition to this, we had to think through which choice made

the most sense to implement both in terms of time and complexity. We had to design for not only

hardware constraints and ease of implementation but also for the constraints of the course, in particular

the fact that this is a semester-long project and not a multi-year one. There was more space on the

board than we needed, but we also tried to design so that we would keep utilization low in order to

synthesize faster.

As a result, we learned a lot about the consequences of design decisions early on, and how to remedy

them later on when we decided they were no longer the best design. Specifically, we re-designed the

router several weeks in, choosing to instead move data through a set of interfaces as explained in

previous pages. We chose this because it would guarantee order of outgoing packets, simplifying the

protocol analysis modules. This also allowed us to not be subject to the constraints of having a system-

wide data packet and allowed us to run at a faster speed, an important component of a logic analyzer.

We also learned quite a bit about the specific tools we used. None of us were familiar with Vivado

before embarking on this project, so we struggled with a lot of its reasoning at times. We spent a few

weeks discovering (and rediscovering) useful features, sometimes only to forget them later. The

individual who worked on the website portion of the project was also introduced to new applications.

As a group, we learned a lot about time management and project management as well. We went

through several iterations of how we would keep each other in check and on track before finding that

none of us worked in quite the same ways or on the same schedules. We gave each other an arguably

excessive amount of leeway in the beginning for missing our deadlines, and reeled that in significantly as

we got more and more behind. Keeping the entire group up to date on work done and status of

individual portions proved difficult when some members refused to report it. Sometimes the status

reported was inaccurate, and this set a precedent of not being able to trust that work was done without

having proof presented. The lesson learned from this was to find a method or set of methods that

worked for everyone, and to designate someone to keep track of everybody’s responsibilities.

28 | D L A

PERSONAL STATEMENTS

JULIAN
I worked on a large variety of tasks for the Digital Logic Analyzer. In the beginning I worked on overall

architecture including what the different modules would be and how they would communicate with each

other. At this point we assigned specific tasks to each member. I was initially assigned to complete both

the sampler module and the interface module. I designed the entirety of the sampler module. I first

worked on a specification in order to determine what the sampler module needed to do, how it would

interface with the rest of the project, and how the internals of the module would work. After this I created

a very detailed block diagram and data path. These documents went through several iterations based

upon feedback from the group and the course staff. After these documents were finalized I wrote the

initial design in System Verilog. Based on this design I wrote unit tests and verified functionality. In

parallel with writing the Samper module I also began work on the interface module. I went through

several iterations of the interface module due to design requirements changes. The initial version only

expected eight sampling channels and as such was configured as a router. This would have allowed for

significant space savings, easier integration, and two way register communication. This task however

became significantly more complicated when the course staff asked us to increase the number of sampling

channels. This change required a significantly more complicated router. As such I designed and

implemented a most-full-fifo-first router. This router routed the most congested channels. This would

have worked had the functional modules not required both a latency guarantee and an order guarantee.

I thought that these would be solved through reordering but it was determined that this problem was

unbounded and thus unsolvable for streaming applications. I finally rewrote the interface to use a point

to point routing scheme that guaranteed in order correctness. After writing this I completed unit tests and

then integrated with the sampling channel. At this point I created an overall top level design and

preformed a full sampler to driver test with Tom’s help. After this was successful I went back to a couple

other areas including configuring the sampler clock. This concluded all of the portions that I was assigned.

However since the group was behind I also worked on helping Doci complete her SPI module. This involved

significant debugging and logistical help with the tools. I also wrote a full testbench that included the

functional modules. I spent a significant portion of Thanksgiving working on debugging various bugs in

other parts of the design. I also developed the DUT that would be used for our demo. Then on the final

night of the project I wrote the majority of the I2C module as well as tested it since the person who was

supposed to write it did not do it for the entire semester.

There are several improvement that I think could be made to the class. The first of them is that I still felt

that there was too much logistical overhead and that the overhead was not in the right place. I felt that

the weekly individual and group status reports were rather useless. Rather than having to present to the

entire class I think it would have been more useful if each team met with the professor for 15-20 minutes

each week. This would have had a greater effect on accountability and thus allowed teams to remain on

schedule. I also think that the class could have benefited from more involvement by the teaching

assistants. While I understand the difficulty of TAing a capstone class I feel that the teaching assistants

29 | D L A

could have at least provided some sort of design review feedback based upon their experience (which

should be considerable if they are TAing a capstone.) Finally, I really think that the focus on recreating

videogames, while fun, does not serve the best interests of the class. Actually creating a design from

scratch, close to what is done in the real world, provided immense value to me that would not have been

offered had I simply copied somebody else’s work.

30 | D L A

DOCI
I very much appreciated the fact that our project was one we designed entirely. While it may have been

simpler or easier to not do any system-level designing at all and just have to build sets of black boxes

that interacted with one another, I learned a lot more being on a project that required design. Whether

I was giving my own input or listening to the thought processes of others, designing places you in a

different mindset than taking a set of specs and implementing it does. Part of the design process was

research, during which I learned a lot about the low-level specifics on the FPGA of how dynamic clocking

works, particularly how clock dividers and clock regions came into play.

My roles for the group were primarily to work on two protocol analysis modules, SPI and UART, and

later included managing our tasks. While the latter did not take any time during the first half of the

project, I spent almost the same amount of time managing and writing toward the end of the semester.

The biggest issue for me during the first half of the semester was simply understanding all the tools,

protocols, and what requirements for the project were. We as a group spent quite some time narrowing

down our design, as feasibility issues and additionally requested features kept coming up. I personally

barely touched the Vivado toolchain until late in the semester, at which point I had to ask Tom and

Julian how to operate everything in the rhythm with which they had set up. I’d been primarily using VCS

as my go-to simulator, as it was a platform I was already familiar with and took less time to load and run.

I also misunderstood a particular part of the SPI protocol, the clock phase, for a week or so before

catching my mistake. As a result, most of this first half was spent writing and rewriting FSMs and

datapaths, implementing a basic version in simulation, catching an error, and redesigning parts of the

module or scrapping it entirely and starting from scratch.

The biggest issue for me during the second half of the semester was undoubtedly that of team

responsibilities. At this point, we were working on integrating the hardware modules with one another

using the testbench Julian had written. I was not as familiar with Vivado so often required his help to

sort through all the obscure error messages and critical warnings. The memory system and Linux driver

occasionally ran into errors, and it was incredibly difficult to trace and determine whether it was the

fault of the protocol module, the memory interface, the generated IP interconnects, or the driver itself.

These were the errors that eventually killed the SPI module, rendering it unfit for demonstration. We

found it functional during simulation, able to synthesize, but unable to run on the board. While I’m sure

long nights of debugging would have eventually found the issue, we were very behind schedule and did

not have time. Since we did not have a working analysis module at this point, Julian magically wrote an

I2C module in a few hours’ time, and that was the version we were able to demo with.

But the issue at hand really is team responsibilities, and more specifically, personal responsibilities.

While we all started slow during the first few weeks, we were still on top of things and completed our

labs on time. As the semester went by though, this pace intermittently sped up and slowed down. The

person we were annoyed at for being late or absent to every meeting for the first month became the

person we were annoyed at for promising work they did not and would not do. The rest of the team’s

31 | D L A

attitude varied wildly between excessive complaints and excessive complacency, and confronting the

one seemed to have the uncanny ability to bring out the other.

That said, I’m disappointed but just barely satisfied with the state of our project by the end. Incomplete

work, my UART module included, was largely to blame for this but the root causes of such lackluster

performance was really a lack of interest for this project, a lack of motivation for the class, and a lack of

respect for other people’s work and time. Perhaps this would not have occurred if everyone had agreed

on a specific end-goal of the course, or perhaps the TAs could have caught this earlier if they were more

present.

Regardless of our team’s issues, I think there are several aspects of this course that can be improved

upon. We were required to submit online status reports, but nothing was ever done as a result of or

because of them. When issues were raised, which would be a huge red flag if the teaching staff were

verbally told of them, they were left alone and never addressed. I understand it is a very independent

and hands-off course, but having to meet with the course staff regularly (and without the rest of the

class) to report things would have provided a pressure to complete tasks that team meetings and status

report presentations could not. In addition, the detachment of the course staff from the process of our

work felt like passive encouragement to do the bare minimum. The equal grading of mid-semester

conveyed the same message, which was disappointing since we were already facing responsibility

issues. So all in all, this course was one I definitely enjoyed and learned a fair amount from but wish it

was more structurally organized so that students could be held accountable for their work, or lack of it.

32 | D L A

TOM
My contributions to the design include the CPU interface, the memory interface, the kernel driver, the

XMEM analysis module, and various aspects of system-level design. Initially we had team discussions

about the system architecture, and I did some research on how to interact with the ARM CPUs. Later on

when we decided the sampler interconnect needed an overhaul, I contributed to discussions of how to

solve the problems that had come up. I also helped write the clock reconfiguration FSM early on when we

were playing around with the reconfigurable MMCM provided by Xilinx. When we divided up work among

team members, I was given the CPU interface, the memory interface, the driver, and XMEM. I designed

the complete system for delivering arbitrary data output by the analysis modules and sampler channels

to userspace programs running on the CPU. This included writing the CPU interface and testing it in

simulation, and then writing a single memory channel and testing it in simulation, and then putting the

two together to do a sort of loopback test in hardware. A base address and length were written via the

CPU interface, and a small FSM wrote some values to those locations in memory, which could then be

verified. Once that was working, I significantly expanded the memory system, adding the burst writes, AXI

interconnect, full configuration support, and interrupts. This was in close conjunction with the CPU

interface, which supported the configuration and interrupts. I tested the full system with a single memory

channel in simulation using the AXI bus functional model (BFM) from Xilinx, and then tested the full system

with all memory channels in simulation. This testing was not as thorough as it should have been, but I was

trying to get everything off the ground as quickly as possible since the project depended on a working

memory subsystem. That bit me later when I was finding bugs during full system testing that should have

been found much earlier during unit testing. Anyway, once the sampler was ready, Julian and I worked on

a top-level integration of our parts, and tried it out on the board. I also had to get a basic driver up and

running for this testing. The driver was ultimately not too complex, but had a significant amount of code

due to the sheer number of configuration registers and channels and triggering options it needed to

support. Finally in the last two weeks, I had the memory subsystem and driver in a place where they were

basically working and needed little more work, so I could work on the XMEM analysis module. The

implementation and testing in simulation of that took only a few days over Thanksgiving break, since I had

already made a basic design during our initial design review. Every day of the final week was a large push

to get all of the final features and polish into the memory interface and driver, and to chase down bugs

that came up. Julian and I both worked very hard tracking down a particular bug where the kernel would

crash horrifically if certain parameters were set wrong, which eventually turned out to be an address

decode bug in the memory module. We got the basic system working very reliably in the end.

There are a few things that might improve the class. Firstly, often lecture content did not fill the full time

allotted, which seems like wasted time that could be spent meeting with the team in the lab. These

lectures could either have more content, or be condensed to allow for more lab sessions. Also, the weekly

team presentations were not very useful. The weekly status reports were useful communication to the

course staff, but the presentations were kind of redundant and, again, that time could be better spent

working on the project. Overall, the parts of the project I implemented were fun.

33 | D L A

BRENT
This semester I worked primarily on the Web Interface. This semester our team accomplished the most

of the main functionality we set out to accomplish however we never fully finished any one particular

functional module. Although one might attribute this outcome to fact that our project was self-designed

from the ground up, opposed to building something already designed such as a video game, this was not

the case.

Our biggest challenge was team motivation and dynamics. Originally, our entire team started out

extremely motivated to do this project, however after several rounds of certain members asking for help

and being criticized for it repeatedly, overall team motivation dropped. This project design was situated

to some team member’s strengths much more than others and that should have been acknowledged

more clearly.

The Web Interface took a majority of my time unfortunately this semester. In the beginning of the

semester the interface was projected to take a small amount of time. As other modules changed in design

and features were added and removed this proved to be a very time intensive task. Since other team

members were strongly suggesting that the interface be used to help debug I was told to place a higher

priority on it than the I2C module. I learned a lot from working on this, although I would have preferred

to spend more time on the I2C module.

In regards to the course structure itself I felt that the weekly status updates were not worth it, as we did

not receive any feedback on them. I feel that bi-monthly team meetings with the course staff would have

better helped our team and the course staff’s understanding of our progress.

34 | D L A

TABLES & APPENDICES

REGISTER MAP

Base Address Count Module

0x40000000 96 Memory Interface

0x40000180 32 Sampler

0x40000200 96 Sampler Interface

0x40000380 2 I2C 0

0x40000388 2 I2C 1

0x40000390 2 I2C 2

0x40000398 2 I2C 3

0x400003A0 2 SPI 0

0x400003A8 2 SPI 1

0x400003B0 2 SPI 2

0x400003B8 2 SPI 3

0x400003C0 2 UART 0

0x400003C8 2 UART 1

0x400003D0 2 UART 2

0x400003D8 2 UART 3

0x400003E0 2 XMEM

0x400003E8 1 Sample Clock
Table 1: System-level Register Map

Offset Count Register Group

0x00 4 Sampler Channel

0x10 4 I2C 0 Channel

0x20 4 I2C 1 Channel

0x30 4 I2C 2 Channel

0x40 4 I2C 3 Channel

0x50 4 SPI 0 Channel

0x60 4 SPI 1 Channel

0x70 4 SPI 2 Channel

0x80 4 SPI 3 Channel

0x90 4 UART 0 Channel

0xA0 4 UART 1 Channel

0xB0 4 UART 2 Channel

0xC0 4 UART 3 Channel

0xD0 4 XMEM Channel

0xE0 1 Interrupt Status Register
Table 2: Memory Interface Register Groups

35 | D L A

Offset Type Register Notes

0x0 wo Buffer Base Address 8-byte aligned

0x4 wo Buffer Length 8-byte aligned

0x8 wo Head Pointer Offset 8-byte aligned

0xC ro Tail Pointer Offset 8-byte aligned
Table 3: Memory Channel Registers

Bits Type Field

0 w1c Sampler to Memory Overflow

13:1 ro Reserved

14 w1c Memory Write Done

15 w1c Button 1 Pressed

16 w1c Sample Clock Stable

31:17 ro Reserved
Table 4: Interrupt Status Register

Offset Count Register

0x00 8 Value Mask High for Group n

0x20 8 Value Mask Low for Group n

0x40 8 Enable Mask for Group n

0x60 1 Trigger Control

0x64 1 Max Sample Number

0x68 1 Max Pretrigger Age

0x6C 1 Channel Enable Mask
Table 5: Sampler Registers

Offset Count Register

0x000 47 Input Channel for Signal n

0x0BC 32 Destination Signal for Channel n
Table 6: Sampler Interface Registers

Bits Field

15:0 Bit Rate

16 Parity

17 Stop Bits

20:18 Data Bits

31:21 Reserved
Table 7: UART Configuration Register

36 | D L A

Bits Field

4:0 Word Size

5 Clock Phase

6 Clock Polarity

7 Three-wire Type (1 no SS, 0 half-duplex)

8 Four-wire (1 four-wire, 0 three-wire)

31:9 Reserved
Table 8: SPI Configuration Register

Bits Field

4:0 Data Width

31:5 Reserved
Table 9: I2C Configuration Register

Bits Field

5:0 Half of Multiplier

11:6 Half of Divider

31:12 Reserved
Table 10: Sample Clock Configuration Register

37 | D L A

STATEMENT OF USE
The members of this team, Julian Binder, Doci Mou, Thomas Mullins, and Brent Strysko, hereby give

permission to any members of a non-profit or educational group to use our documents and code in their

projects, provided that no members of the non-profit or educational group benefit financially from these

documents and code, and that the original authors of the works are credited. We are not responsible for

any generated intellectual property cores of Xilinx, which were provided to us as part of the end user

license agreement from Vivado, and are subject to Xilinx’s permissions.

