18545 Final Report
Fall 2013
Team OneMoreThing

Project:
Super Nintendo Entertainment System

Team Members:
Saketh Pothireddy
Niharika Singh
Delvis Taveras
{spothire, niharika, dtaveras} @andrew.cmu.edu

We give Professor Nace and the 18-545 staff permission to post this report online.

Contents

Contents

The Original System
The SNES

The Original Block Diagram

The Video System

The Audio System

The Cartridge

The Lock-Out Chip

The Memory Addressing

The Controller Inputs

The CPU
Our Implementation

The Modified Block Diagram

The Modified Modified Block Diagram

The Video System

The Audio System

The Cartridge

The Controller Inputs

The CPU

Memory Accesses

DMA and HDMA

Logistics

Partitioning the Work

Schedulin
Tools Used

Design Methodology
Testing and Verification Methodology
Status
Lessons Learnt
Pivotal Decisions and Their Results
Words of Wisdom
Individual Pages
Saketh Pothireddy
Niharika Singh
Delvis Taveras
Code

The Original System

The SNES

The Super Nintendo Entertainment System was released by Nintendo in 1990-1992 in
different parts of the world. This is a 16-bit gaming console that can support two players.
It also supports a variety of cartridges

The Original Block Diagram

cico-3] CIC _ RESET _— —
SYNC
R. G. B.
OSC| CONTROLLER I F“ElgETl ~ viDEO con.sgfuh;;Ngr-_ 12P
CONNECTOR _b g:‘J‘"T_TI
4.00MHz IUNI |
- RESET
62P 21MH. . RF
r4 | 21MHz
J—UIL . + RESET | MOD
ISUPER}-= : SUPERI® g JSUPER
8 | emeommor | NES NES | vovews [I50
K crurocruwn | CPU osc PPU1 [iaso-ts N %2,
21 arran /R0 VAWR VOWR L+R
__VRAM DATA BUS: VDAO-7
M [VDBO-7 P f LR
c A ot T CPUDATABUSCDOT —] [~ | i=m====m=m—————————o o
0] . .
N <_ lBJ B BUS ADDRESS: PAQO-7 CONTROL: PARD, PAWH '-DTN‘FA—‘I conv || AMP AMP ig&
N] 1 - |mm === == '_—_—_":'._;"_“ _'_ + DATA
E S iﬁ J [- acsert -I U l l’ CONTROL/BCK LACK N
\ XTAD \
T SUPER= > 23p| ' [Sounol<——*{souno]_ ' SOUND| «===-5=5=~==~11-
(HD V\,I:‘HEASM gl pIGN. : CPU *ﬁhﬁ DSP 'qmﬂ RAMl : Pr(?clgsls?in
L | custom NN ' [CPyAD-15 —wasis] PEERL L Unit (APU
128KXBBIt \ JCONTROL: '.’.\.7?.:1/ SLOEWE PSHAM \
\ “CPUDG-7 : T wo-7 \
LA oL S et
' I — - — EXP LR
S I SRR -
L+R
SUPER NES BLOCK DIAGRAM
The Video System

The on-board video is implemented by two Picture Processing Units (PPUs). One PPU is
primarily responsible for the background while the other is responsible for sprites. These
PPUs are supported by three types of RAM: 64 kB of video RAM (VRAM), 544 bytes of

object attribute memory (OAM) and 512 bytes of color generator RAM (CGRAM).

The maximum resolution possible is 512 x 478 pixels. However, smaller resolutions are
possible. Super Tennis, for example, has a resolution of 256 x 240 pixels. The colors are
represented in memory using 15 bits with 5 bits each for red, green and blue. Graphics
on screen consist of a background with sprites drawn on top of it. The background tiles
are stored in VRAM, from which colour information can be located by the PPU. At the
beginning of every game, every time the screen changes, and every time the PPU isn’t
actively outputting colours to the screen (i.e. in video blanking modes) DMA and HDMA
transfers take place on a maximum of eight channels to load new video data into the
VRAM. This colour information points to specific colours present in the CGRAM (which
contains a palette of colours). The colours can be added or subtracted to form a layering
effect. These colours are then drawn on screen. The background is implemented with
many 8x8 pixel tiles. Background is present on one of two layers: foreground or
background. Scrolling registers in the PPU can be set to translate the background
slightly each frame to create a scrolling effect for the user.

Sprites can be of many sizes, and use data stored with VRAM and OAM. The OAM is a
small table containing pointers into the VRAM where data about sprites is stored. The
OAM also contains some other small pieces of information related to rendering the
sprites, like whether the sprite should be flipped vertically or horizontally. Sprites can be
drawn on top of each other for depth effects. There are four layers that sprites can be
present on. There is a limit to the number of sprites that can be drawn on screen at a
time, and there are certain idiosyncrasies as to how they overlap with backgrounds
depending on which has a higher priority.

The Audio System

The audio system for the SNES consists of two chips: the SPC700 and a DSP. The
SPC700 is an independent CPU responsible entirely for running and processing the
sound program. This chip then transfers the actual sound data to the DSP which applies
different effects to the sounds that make it into music. This data can then be output to
the user. These two chips share a working RAM sized 64kB.

The audio system only communicates with the CPU using four registers shared by both
systems. These registers are used by the CPU to copy the sound program files (in the
.spc file format) from the game ROM to the SPC700. The SPC700 can then take over
execution and work independently to create and output the sounds. This lets the CPU
handle other tasks instead of having to continuously output sounds.

Using the DSP allows the game designers to save ROM memory. The game designers
can simply store some basic sound samples and rely upon the DSP to mix them and
apply filters to create numerous tunes with the same basic samples. The DSP can
support effects like ASDR envelope control, Gaussian filters, echos, frequency and pitch
modification, delays and volume control. The DSP can also mix sounds on up to 8
channels simultaneously which allows for richer sounds.

The Cartridge

Cartridges come in different shapes and sizes depending on their memory size. They are
broadly divided into two categories: LoORAM and HiRAM. LoRAM cartridges have a
smaller connection area with the SNES and a smaller memory. Cartridges contain a small
battery.

The Lock-Out Chip

Cartridges contain lock-out chips designed to ensure games only run on consoles when
the location for both match. That is, American games can only be played on American
consoles. The cartridge lock-out chip must complete an undocumented secret handshake
with the console chip before the rest of the chip can be accessed.

The Memory Addressing

The CPU has access to memory from a variety of other modules and inputs. The
memory addressing ensures that each possible source of information has a specific
address that the CPU can refer to. The CPU memory has 16-bit addresses, and can be
present in one of 256 banks.

All addresses between 0x8000 and 0xFFFF in all banks refer to information present
on the game cartridge. Different banks translate to different offsets on the cartridge, and
the translation scheme is different for LoROM and HiROM games.

Addresses between 0x0000 and 0x1FFF in all banks refer to the stack used by the
CPU, which is usually initialized to ox1FFF.

Addresses between 0x2100 and 0x213F refer to PPU registers. This includes registers
used to setup the video effects, and registers used to read from and write to the various
RAMs inside the PPU.

Addresses between 0x2140 and 0x2143 are used to communicate with the audio units
and transfer the sound programs to them.

Addresses between 0x2180 and 0x2183 are used to write to and read from specific
addresses in the CPU RAM.

- Addresses of the form 0x42xx are used to setup various parts of the CPU, to read from
the game controllers and access the multiplication and division units.

- Addresses of the form 0x43xx are used to setup DMA and HDMA channels.

- Addresses in the banks ox7E and ox7F are used to access the CPU RAM.

The Controller Inputs

The controller pins are laid out in the following manner:

SNES PINQUT
= x ul < [(4] [m
[Ty [m =
4 = = e =
g g 0 a
t

The controller must be fed a special clock by the CPU. This special clock consists of a
latch signal followed by 16 quick pulses. The controller will then pull down the data pin
voltage from high to low for the cycles corresponding to the buttons pressed on the
controller.

The CPU

The CPU used in the SNES was a Ricoh 5A22, which was based on a 16-bit processor
named 68516 created by the Western Design Center. The underlying design by WDC is
responsible for implementing opcodes, interrupts and execution. The parts added by
Nintendo to this underlying processor serve to implement computation units for
multiplication and addition, provide RAM and stack space, take care of memory
management to peripherals and other chips, provide address and data buses, provide
DMA and HDMA channels and implementations, and have registers needed to provide
specific functionality within the SNES.

Our Implementation

The Modified Block Diagram

CPU: Add-ons -

floating point

Digital Addr,
Cartridge j 02 [ROMI
Xilinx-5

Multiplier, divider,

SPC700:

]
J

Pass on A
unprocessed Y
data

Digital Button CPU: WDC

Pressed 65C816

GPIO Pins

PPU:
Backgrounds

DVI Output

L

b

A

Software
(Xilinx)

Sound File

> Sound
l Chip

[3
Sound Effects v

DSP:
Signal

Processing

Output Sound
)

Audio

Codec

~——

Speaker Data @
)

Speakers

~—

The Modified Modified Block Diagram

“ Pigital Addr,
[Data [ROM]

CPU: Add-ons -

floating point

Multiplier, divider,

Xilinx-5
. Pass on A
GPIOPins | hprocessed ¥
data
i CPU: WDC
Controller Digital Button

PPU:
Backgrounds

Software
(Xilinx)

The Video System

Sound Effects

N—

SPC700:
Sound
Chip

)

Audio
Codec

Output Sound

—

Speaker Data |
—

Speakers

~—

y

)

Test bars output using just the DVI module

Background with smiling face in top left corner generated using PPU

Our team created a working DVI module using the Chrontel datasheet and other
specification and timing documents. However, we found out in the middle of the

semester that this DVI module only worked intermittently. Hence, we switched to using
the DVI module that was created in a previous year by Team Dragonforce. Comparing
these two modules showed us that our module had been correct apart from the

constants we used for the blanking intervals in the sync signals. The intervals we had
coded were identical to those provided in the Xilinx and Chrontel documentation;
however, they did not work with the monitors provided in lab. The game we attempted
to build had a resolution of 256 x 240 pixels, so we created a wrapper for the video
module that output a black color to the DVI module outside of the game screen, since the
Chrontel DVI module was configured to output a resolution of 640 x 480 pixels.

The main PPU system code was found in partially completed form online. The code we
found was given in VHDL and was only about half complete. We were able to take this
code and use it as a foundation to implement backgrounds completely and sprites
partially. Apart from fixing holes in the code itself, we also had to add in memory
arbitration units to account for the fact that the CPU, OAM and the drawing unit would
all want to access VRAM and CGRAM simultaneously.

To provide RAM to the PPU, we synthesized Block RAM cores using the Xilinx Core
Generator. Using this module, we were able to display various images on screen when
using just the video module. However, we had difficulties with integrating this video unit
into the entire system due to the video unit running on a different clock which caused
some errors when the CPU tried to write to the video unit.

The Audio System

Early in the semester, we were able to code the entire SPC700 sound processor CPU
instructions in Verilog by using emulator code as a reference. However, after
implementing all the instructions, we realized that the SPC700 relied heavily on the DSP
chip and would not be able to output any coherent sounds without using the DSP. The
DSP chip had to implement sound effects for the sound to be created from the programs
loaded onto the SPC700 chip. Unfortunately, none of the team members had enough
experience with sound or DSPs to be able to code the DSP in a reasonable amount of
time since it was a very complex and specialized chip with little documentation. We were
also not able to find any reference code online for the DSP.

Hence, we decided to change the design to implement sound in our system. Instead of

loading the sound programs and running them to generate the sound, we found the
music data online and loaded this into flash memory on board. Due to the size of sound

10

files, we only used the sound for one channel (of left and right channels) and used a
reduced loop time to be able to fit it into the given memory.

We were then able to simply run this music using the AC97 sound module created in Lab
2. Similar to the DVI module, our team created its own audio module which was fully
functioning and used to output the sound.

The Cartridge

Our team initially wanted to read the game ROM data directly from the cartridge. We
were able to create a cartridge reader circuit. However, when we attempted to power up
this circuit the game cartridge would become excessively hot. The documentation we
had offered conflicting information as to which pins were connected to what on the
cartridge. Since we were not able to find a combination of connections that accessed the
cartridge without almost burning it up, we changed our design to load the game ROM
data onto on board flash.

To do so, we first obtained the game data online, where it was quite easily found as these
same files are used by emulators. We then converted this binary file into a .mcs file that
could be loaded onto flash memory. Finally, we created a memory accessing module that
would access the same flash memory chip to obtain both sound and ROM data without
causing excessive latency for either request.

During debugging, we also loaded the game ROM into block RAM so we could see the
memory access results during simulation and ensure we were executing the correct
instructions.

The Controller Inputs

11

Controller circuit

We used wires and a breadboard to create a circuit that would be able to read controller
data. A voltage shifter was needed to translate the controller voltages to board voltages.
The wires were connected to GPIO pins on board. A controller reader module then
stored the button information in the appropriate register. We were able to use an
oscilloscope to test the controller signals and verify they looked as expected.

The CPU

12

%

I
I
I
L[]
I
I
]
=

[A
]
o |

—
TTT00111 ﬁ—
R R

CPU sending out reset vector, labelled address[15:0]

—
—
E—
—
S
]
—
—
E—
E—

Our team was lucky enough to receive the 68516 processor’s Verilog description from
WDC after reaching out to them and agreeing to sign a NDA. We did not modify this code
apart from some small syntax changes to make this code run well with the Verilog parser
we used. To setup and use this CPU, we had to ensure the following:

The clock had to be constant before the CPU reset could be de-asserted.

The CPU sent out addresses when the clock was low, and expected data back when the
clock was high, so we had to ensure we would meet these timing deadlines.

We had to turn the CPU off when executing DMA and HDMA accesses to prevent
address and data bus collisions.

We had to send the CPU the correct interrupt and enable signals to ensure it ran.

Memory Accesses

The memory accesses for the CPU were handled in a wrapper module for the CPU. They
were implemented by using various flags to direct addresses and data to the appropriate
destinations, and wait state in the FSM to ensure we met the CPU’s timing
requirements. Specifically:

The stack and RAM for the CPU was implemented using Block RAM.

The game ROM addresses were translated to their location on the flash memory. We
had to account for the fact that the flash memory was stored on 16-bit word boundaries,
and the CPU could operate in both 8-bit and 16-bit modes.

13

The PPU registers were implemented internally within the PPU module, so those
addresses and data were simply passed on to the PPU.

CPU registers were implemented using Verilog registers and continuous assignments
to ensure all related registers would change appropriate (for example, the multiplication
result register would change when the multiplicand registers were written to).

To be able to use variables to select register bits, we had to use a new Verilog compiler
within ISE. This meant that we had to change the syntax of some other statements,
especially those involving arithmetic in all our modules.

DMA and HDMA

- —————
! T2 AN A N N A

¢ vblank

DMA transfer happening to CPU RAM (purple signals)

DMA transfer happening to PPU (yellow signals)

The DMA and HDMA channels were an integral part of the system as they were the
modes used to transfer information from the game ROM to the PPU and the SPC700.
The peripheral modules could not work without having information transferred to them.
DMA and HDMA were used instead of CPU instructions due to their greater speed. The
CPU was paused during these instructions to allow them to execute with the greatest
speed possible. The difference between these two types of transfer was that DMA
happened as soon as instructions asking for DMA were executed, while HDMA happened
only when the PPU wasn’t actively drawing to screen (i.e. during the screen blanking
intervals). HDMA transfers took precedence over DMA transfers. Both types of
transfers could happen on one of eight channels, and hence eight such transfers could be
queued by the game.

These instructions were implemented with a very large FSM that took into account the
pausing of the CPU and the priority of HDMA and channels. The FSM also took into
account the fact that certain registers related to DMA could be written to by both the
CPU and the DMA controller, and hence would need to be appropriately shared and
updated to ensure no new information was lost. DMA was tested in simulation to send
information to both the PPU and the CPU RAM from the game ROM, PPU and CPU
RAM.

15

Logistics

Partitioning the Work

Due to the changing design of the project as the semester progressed, the responsibilities
of each team member changed. This is indicated in the chart below, the first two columns
of which were included in the mid-semester report.

Team Member Initial Responsibility Actual Responsibility
Delvis Taveras PPU, Continue DVI PPU
development
Niharika Singh SPC700, DSP, DVI output | SPC700, Flash memory,
module Sound output, CPU,
Memory accesses,
DMA/HDMA, Initial DVI,
AC97, Reports
Saketh Pothireddy CPU, CPU modifications, Flash memory, sound and
Hardware interface video integration,
Debugging, Cartridge HW,
Controller HW and code
Scheduling

We created a schedule in the first week of class to guide our work. We had learned from
Professor Nace’s introduction to the class that the most common mistake teams made
was not beginning work early, and we really wanted to avoid that mistake. We had also
learned from the introduction that to do a good job on the project, we would need to set
aside a lot of time to polish and debug the project at the end. With this in mind, we
created the following schedule:

Date Milestone

13 October Controller communications code finished,
PPU research finished and coding begun,
SPC700 CPU code finished

14 October Design Review Due

16

4 November Coding and Unit Testing Finished

21 November Integration Testing Finished

2 December Polishing Finished

This schedule was shared using an online calendar we all used. The shared calendar also
contained milestones for the class such as due dates for the labs and reminders to submit
weekly reports.

Towards the end of the semester, we needed tighter scheduling controls, so we created a
shared spreadsheet with a list of tasks yet to be completed, who was responsible for
completing them, when they would be completed by, and reasons for why the deadline
had not been met (if applicable). These tools greatly helped us organize our time.

Tools Used

Board: Xilinx Virtex 5 110T

Design Environment: ISE 14.2

Code Repository: Github

Document Repository: CMU Box

Collaborative Assignments (ex: Reports, Presentations): Google Docs

b i b b b

Design Methodology

Since this was a project with well defined specifications to work towards, we had a
waterfall approach for our code. Each team member worked on their own section of the
code, with collaboration occurring when discussing how to implement tricky sections of
the code or how to debug malfunctioning code. We used documentation about the SNES
found online, along with emulator descriptions to guide our coding.

Testing and Verification Methodology

Our testing followed the following steps:

Find out what the correct output should be from documentation.

Ensure code has no syntax errors.

Ensure code simulates waveforms identical to those given in documentation.
Put code on FPGA board and connect inputs and outputs to switches and LEDs
respectively. Ensure results are as expected.

Run code on FPGA.

X Ot % %

)

17

o For video, ensure results from FPGA are identical to those shown by loading
identical instructions into an emulator.

o For audio, ensure sound coming from FPGA code sounds like original sound
file.

o For memory/CPU, the LCD screen was used to output the current execution
address and instruction for further debugging. For certain stages of the project, we
would connect the clock to an external button instead of the onboard clock to be able to
step through individual memory accesses and learn how the program was running.

o For others, use ChipScope to confirm board waveforms are identical to
simulation waveforms.

% Integrate with larger section of design.

If errors were found, we debugged with the following steps:
% Ensure correct setup using documentation.
% Browse Xilinx forums for similar issues.
* Find a similar pre-written working module online and ensure simulation results of
both are identical.
% Use Chipscope to see if simulation results match FPGA results.
% Talk to team member to get outsider’s perspective.

Status

18

Device Utilization Summary [-1
Slice Logic Utilization Used | Available | Utilization | Note(s)
Mumber of Slice Registers 788 69,120 1%
Mumber used as Flip Flops 772
Number used as Latches 16
Number of Slice LUTs 1,106 69,120 1%
Mumber used as logic 1,099 69,120 1%
NMumber using 06 output only 807
Number using 05 output only 105
Number using 05 and 06 187
Number used as exclusive route-thru 7
Number of route-thrus R. 112
Number using 06 output only 112
Number of occupied Slices 404 17,280 2%
Mumber of LUT Flip Flop pairs used 1,178
Mumber with an unused Flip Flop 390 1,178 33%
Mumber with an unused LUT 12 1,178 6%
Mumber of fully used LUT-FF pairs 716 1,178 60%
Mumber of unique control sets 34
Mumber of slice register sites lost 44 69,120 1%
to control set restrictions
Mumber of bonded I0Bs 97 640 15%
Number of LOCed IOBs 94 97 96%
Number of BUFG/BUFGCTRLs 6 32 18%
Number used as BUFGs 6
Average Fanout of Non-Clock Nets 4.60

Utilization Information

19

We were able to play the sound, run the program on the CPU and process controller
input simultaneously by the end of the project. This was verified by having sound
playing on speakers, while we used the LCD screen onboard to verify the execution
addresses and instructions were changing, and the oscilloscope to ensure controller
inputs and outputs looked as expected.

We were also able to display background video tiles on the monitor when we loaded the
PPU with the relevant information directly. We verified this by displaying a smiling face
and a tic-tac-toe board on screen. We were also able to send the correct data transfer
signals to all modules, which we were able to verify using simulation waveforms.

However, our team was not able to integrate our PPU module with the CPU module due
to timing errors between the two modules. Hence, we did not have working video for our
demo. We're fairly certain this was because the two modules used different clocks (the
PPU had to run on a clock that allowed it to have a 60Hz refresh rate on the screen,
while the CPU from WDC could run at a maximum of 10MHz and had to run at a lesser
speed to allow memory accesses to meet timing deadlines).

20

Lessons Learnt

Pivotal Decisions and Their Results

Debugging DVI module: Since our DVI module worked intermittently, and matched
provided documentation exactly, we had a very hard time figuring out exactly why it
didn’t work consistently. We spent a week and a half towards the end of this semester
trying to fix this problem, and this was time we could have used for more important
things.

Beginning work early: This was a very fruitful decision on our part as our project
underwent several design changes (DVI module, pre-loaded sounds, no physical
cartridge) that would have been difficult to all implement under a time pressure.

PPU planning: We would probably have been able to get further on integrating this
module if it could have been finished and ready for testing earlier, or if more than one
team member had been available to help with this. This base code we found for this was
written in VHDL, which meant Delvis had to teach himself VHDL from scratch, and the
other two team members couldn’t help out much with debugging due to lack of
familiarity with the language.

Words of Wisdom

Do not attempt to do everything yourself: Our team implemented its own sound and
video modules, and while this was a good learning opportunity for us and let us have an
early success, it also consumed time that could have been better spent elsewhere. Take
advantage of previous teams’ efforts and ask to access/use their code whenever possible.

Use all resources: Don’t just limit yourself to online documentation. Ask other
classmates for help and learn from their implementation decisions (especially for
common modules like sound and video that all teams implement in some fashion). Also,
always mail sources for the information you find online, as they may be willing to help
answer your questions and provide more personalized help.

Work together in lab: Ensure all team members are in the lab for all work sessions, even
if everyone is working on different modules. It ensures everyone is on the same page,
and that questions about the interfaces between modules can be resolved quickly and
correctly.

21

Individual Pages

Saketh Pothireddy

The first few weeks of the semester were spent on the introductory labs. I
worked with the rest of my team on getting the LCD screen working, as well as getting
the sound working. I generated the Block RAM, and built the Verilog interface for the
block ram while my teammates worked on the audio controller. We ran into a few issues
outputting sound, so all three of us were involved in debugging the audio controller.
During this time, we also spent a large amount of time researching various components
of the SNES, and determining how best to approach each component.

As we began dividing up the work, and beginning to design individual components,
I started to work on the controller interface. The controller needed a specific clock and
specific pulses at the beginning of each clock cycle to latch the state of the buttons. I
initially wrote the timing module, and then tested the controller output on an
oscilloscope. Because of the voltage differences between the controller and the FPGA, I
then implemented the circuit for the level shifter, and wrote a module in Verilog to
convert the serial data into bit vector that the CPU can use.

I then moved on to work on the cartridge interface for the SNES. I found lots of
documentation for the cartridge online, but there was a lot of conflicting information on
the proper wiring of the cartridge. I tried various configuration of wiring up the cartridge
but I found out that the cartridge overheats within a couple of seconds every time power
was applied. This might have been due to the CIC chip that is usually present on the
console that communicates with the cartridge.

Around this time Neha was also having trouble with building the sound controller
and the DSP chip, and she suggested that we place both the ROM and the sound files on
Flash and read it from there. This required reading ROM data most of the time, and
reading the sound data at a certain frequency. While we were initially able to get sound
working initially while reading ROM data at the same, it took some time to figure out the
addressing of the ROM itself. After a little debugging and carefully looking at the ROM
file layout, we were able to figure out how to properly address the ROM. Around this
time, our DVI module stopped functioning, and we all had to drop everything we were
doing to get the module working. It took us a week to get it reliably working again, after
we tried everything from debugging our module cycle by cycle, and implementing
modules we found online.

Once the flash interface and DVI were completed, I moved onto integration while
Delvis and Neha continued to work on the PPU and CPU respectively. First I integrated
sound and DVI so that we have something to show for the demo. By this time the CPU
was finished and I tried to integrate that in the design as well. The CPU required a lot of

22

debugging since we had only simulated it up to this point. There were a lot of errors and
warnings that needed to be fixed for the design to pass synthesis. Soon after we also
integrated the PPU into the overall design and began debugging the system as a whole. I
helped implement different ways in which we could debug the system, and helped the
team step through the program to figure out exactly what was going on. We fixed a large
number of bugs, but at the end of the day we couldn’t get the entire system working,
which was a little disappointing, but as a whole this class was very memorable and
rewarding. I learnt a great deal about working on large scale projects in a team.

Niharika Singh

This was a very rewarding project for me personally, because I was able to contribute to
my team and pull my weight which I was initially concerned I would not be able to do.
Both my team members had taken Computer Architecture the semester before, while
the last time I had seen Verilog had been in 18-240. I was also concerned about
implementing a system that a previous team had been unsuccessful with. Considering
the size and complexity of the system we attempted to implement, I believe we made
really good progress. I also believe that the next team to handle this project could
definitely make it work completely, using our code as a starting point.

The semester started with creating video and audio output modules, both of which
required a lot of debugging and were essential in making me comfortable with coding in
Verilog again. I also read books and online articles about coding in Verilog to ensure I
could work with the language. After these two basic modules were done, I began
researching the SNES system itself to find out what it would require from me
specifically.

A good resource to use was emulator code since it very closely mirrored the operation of
the SNES and explained how code could be used to implement SNES functionality. I used
an emulator as my primary resource when I began working on the sound system. I was
able to finish the SPC700 instruction set code, but realized that implementing the DSP
would be a lot harder. I hence decided to implement sound by playing pre-loaded sounds
and making use of the already functioning AC97 module to output the sounds. I believe
this incident illustrated a strength of our team in that we were able to realize when initial
design decisions we made weren’t working out and switch strategies as we gained more
information.

I then began writing the memory management unit for the CPU followed by the DMA
and HDMA modules. This was a really big challenge, and I really enjoyed working on this

23

problem. The simulation results for these modules looked correct, and I was eventually
able to verify their correctness by displaying their instruction traces on the LCD screen.

Finally, I was also given a chance to exercise my creative skills during the course of the
class by creating the poster, final presentation, reports and the SNES case. I really
enjoyed this class since it gave me a chance to fully devote myself to a very challenging
problem and solve several sections of it. It was also a great experience working with my
team, since one of my initial concerns was that my team and I would procrastinate on
the project till the end of the semester, but we maintained a fairly constant workload
throughout the semester and stayed on schedule.

Delvis Taveras

When we first began working on the project we decided to read over previous
teams project reports, this turned out to be really useful because we were able to gather
a lot more documentation as far as the SNES was concerned. In addition by reading from
what previous teams had done we were able to avoid some of the pitfalls that they’'d
gone through. Initially we divided the work into three sections PPU, Peripherals, and
Sound. Later on when Neha finished implementing sound she moved on to implementing
DMA/HDMA and adding the missing modules to the WDC core. We started off very well
we had lots of documentation and we had sound and DVI working.

Early on I was the one focused on discerning how the whole system worked,
which turned out to be a bit overwhelming because I thought that I could initially just
read through all the documents then just start coding. This would have worked for any
other class however reflecting back on this I should have just started off by just focusing
on one part which would have been the Register File, then when I finished that I should
have moved on to background and sprites. This something that I truly regret I spend so
much time understanding the SNES only to find out that after reading the details of a
certain protocol I would forget one of the details that I had read before because it was
just too much information to digest at once. After struggling with this when I first began
coding I started by writing code in verilog, I started with the register file and as we
continued to search for resources online Neha found a VHDL description of about 60% to
70% of the PPU. Initially I began by just referring to this code by reading it and then
translating it from VHDL to Verilog. A week passed and I continued coding in Verilog
ignoring the elephant in the room. Then I consulted with my teammates because I was
making fairly slow progress. Thats when it clicked why would I just read VHDL and
translate it why don’t I just code in VHDL. It took me about 2 days to pick up the
synthax and the execution paradigm of VHDL and I was off and running. Why I had not

24

just decided to pursue this approach two weeks before I cannot explain I basically
ignored the elephant in the room.

After this realizing that there was no point in trying to understand the whole
system at the same time and deciding that I should code in VHDL things went a bit
smoother. One of the key decisions that we had made early on was that the CPU and
PPU timing were going to be the same however after Saketh and Neha figured out the
interface to the on board SRAM the figured the CPU had to be much slower than the
PPU. I was not initially aware of this so my Register File expected a very different
interface. This something that we did throughout the whole project rewrite working code
because the interface was not correct. Later on Neha and I sat down and discussed the
timing once again and this timing we got it almost right. But I wished we could have
discussed it much earlier since the register file was the only communication point
between the CPU and PPU we should have made sure that the two sides worked as
expected. Finally one of things that hurt us during this time was the fact that the PPU
was in VHDL and the CPU was in Verilog. Neha was the most familiar with the CPU
which was fairly complicated due to the way in which it was coded by the WDC engineers
but because she was not familiar with VHDL. I did not know enough about the CPU to go
about this part so in the end what we needed to do check the simulation together so that
we could solve the problem we did check it together however we did not do it enough
times.

Ok above I have highlighted some of the issues that plagued us throughout the
semester and eventually contributed to us not completely finishing our SNES. Now I will
proceed to highlight some of the accomplishments of our team. In order to test the PPU I
wrote a matlab program that would essentially take background/sprite tiles that would
be eventually be loaded into VRAM and draw them. In addition we got 8x8 and 16x16
tiles to draw on the screen. We did have the sprite code but we did not finish integrating
it due to the fact that we decided to just debug the CPU/PPU communication for the last
few hours. In order to test our CPU we did a variety of things first Neha and Saketh
loaded both sound and super Tennis onto the SRAM chip and were able to devise a
protocol where they could read instructions and sound. But then I asked that we be able
to test it in simulation so then they went about loading the program on to block ram, but
our normal sized game did not fit in block ram so we used an assembler and linker to
generate a small ROM that would fit onto block ram this worked wonders. The CPU and
DMA and HDMA worked correctly you could see it in our demo as we output the
instructions onto the LCD. The bug that stopped us from having a working SNES was the
fact that when DMA executed the Register file received the data and attempted to right
the data to Block RAM however it did not hold it for an entire clock cycle hence the data
disappeared. Its certainly a fixable problem its just be found it a bit too late. Finally we

25

had two controllers working and a sound module that played a loop of about 30s of super
Tennis.

In conclusion although I'm very disappointed that we did not accomplish our
ultimate goal I'm very satisfied knowing that I had some great teammates in Saketh and
Neha. We worked our butts off until the last minute and although many us had other
commitments we found a way to always make it to lab and continue to work. I learned so
much not just about coding but about project management and how to approach
extremely difficult and time sensitive tasks that I cannot wait for the next challenge that
awaits me. In the end we got many parts of the SNES working and if not for one last bug
in our timing we would have been able to have a very nice demo.

Code

Due to the fact that we signed an NDA with WDC, our code is not available on a public
repository. However, since Professor Nace also signed the NDA documents, we will add
him to our Github repository to enable him to look over the code if he just lets us know
his account name.

26

