
Team PSX

Anita Zhang

Arnob Mallick

Mike Rosen

Carnegie Mellon University

Electrical & Computer Engineering

18-545

Fall 2013

“Satisfaction lies in the effort, not in the attainment.

Full effort is full victory.”

∼ Mahatma Gandhi

Contents

1 Overview 1

1.0.1 Schedule . 3

2 Tools & Platform 4

2.1 Xilinx . 5

2.1.1 Virtex-7 FPGA VC707 Evaluation Board 5

2.1.2 Vivado Design Suite . 5

2.2 Altera . 5

2.2.1 DE2-115 . 5

2.2.2 Quartus . 6

2.3 Miscellaneous . 6

2.3.1 No$PSX Debug Emulator . 6

2.3.2 Synopsys VCS . 6

2.3.3 SPIM MIPS Simulator . 7

2.3.4 Python . 7

3 Components 8

3.1 System . 9

3.2 CPU . 10

3.2.1 MIPS . 10

3.2.2 GTE . 12

3.2.3 CPU Modifications . 15

3.3 GPU . 18

3.3.1 Overview . 18

iii

3.3.2 Interpolation . 25

3.3.3 Testing . 25

3.4 MDEC . 26

3.5 Video . 26

3.5.1 Adventures with HDMI . 26

3.5.2 VRAM and Display . 28

3.6 Memory . 29

3.6.1 BIOS . 30

3.6.2 Scratch Pad . 32

3.6.3 Main Memory . 32

3.6.4 Hardware Registers . 32

3.6.5 Memory Controller & Address Interpreter 33

3.7 DMA . 35

3.7.1 Mode 0 . 36

3.7.2 Mode 1 . 37

3.7.3 Mode 2 . 37

3.8 Controllers . 38

3.9 Game Data . 40

4 Status 43

4.1 What is Done . 44

4.2 What Needs to be Done . 44

5 Words of Wisdom 46

5.1 Don’t Take on Two Major Challenges at Once 47

5.2 Follow a Nice Style Guide . 47

5.3 Interfacing with the Outside is Not Reliable 47

5.4 Selections from our “Stupid Things” Document 47

iv

6 For Future Iterations 49

7 Personal Statements 52

7.1 Mike Rosen . 53

7.2 Anita Zhang . 56

7.3 Arnob Mallick . 59

8 Acknowledgements 62

A GPU Tables 64

A.1 GP0 Command List . 64

A.2 GP1 Command List . 75

B CDROM Memory Map 79

B.1 CDROM Memory Map . 79

C Hardware Registers 80

D The Fence 85

v

1 Overview

1

Our team’s original goal was to recreate the original Sony PlayStation (PSX) on the

Virtex-7 FPGA VC707 Evaluation Board. We planned to implement all major components

including sound, video, controller input, and game data from ROMs. Although our goals

remained constant throughout the semester, a few key alterations were made to the original

goal. Over a month into the semester we made the decision to switch to Altera’s DE2-115

Evaluation Board and dropped some major components including sound. The reasons for

these changes will be discussed later in the report.

The PSX was originally planned as a new version of the SNES with CD-ROM input

rather than the traditional cartridge games. However, as Sony continued to work on the

project, Nintendo, the makers of the SNES, grew increasingly frustrated with the develop-

ment of the new console and decided to pull support from the PlayStation. When Nintendo

announced that they were breaking their sound-chip contract with Sony in favor of a competi-

tor’s chip, Sony decided to continue the project alone and create their own gaming console

for the market. A few years later, in December 1994, the PlayStation was released in Japan.

The console was released in the USA the next year in September 1995. The PSX contained

the following components:

• MIPS I, 32-bit CPU with 2 co-processors and 2MB of RAM

• 2D GPU with 1MB of VRAM

• SPU capable of generating 24 voices with 512KB of RAM

• CD-ROM reader for reading game discs

• New controllers with 10 buttons (two joysticks added to the controllers in 1997)

• 2 slots for EEPROM memory cards

We attempted to reconstruct these components as close to the original as possible.

However, due to the period in which this console was made, availability of documents is

2

sparse and the quality of documentation is often questionable. This means that most of the

components we have recreated are not identical to their counterparts in the original system.

Video output on the Altera board is handled via VGA while the PSX used Composite Video.

While the GPU in the PSX was responsible for handing video RGB data output to a video

digital to analog converter (VDAC), our system’s VGA module directly reads VRAM data

sharing the VRAM bus with the GPU. Also the omission of components such as the MDEC

and SPU requires providing a dummy interface that will behave in a predictable manner

and provide the CPU with signals that emulate “normal” operation. There are several other

alterations that will be explored in the later sections. In the following sections, we will work

our way through all the components of the PlayStation describing the original hardware

alongside our implementation and important details we learned in the process.

1.0.1 Schedule

TASK DURATION

(weeks) 9/16 9/23 10/07 10/14 10/21 10/28 11/04 11/11 11/18 11/25 12/02

MIKE

ANITA

ARNOB

REMOVED

HDMI

 - SPDIF 2

 - VIDEO 2

- CONFIGURATION 5

CPU 2

GTE 2

Controller 1

Memory/DMA 2

Game ROMS 1

GPU 3

MDEC 2

SPU 2

Debug & Consolidation 4

The further we got in the semester, the more behind we got in our project. It was a

mutual understanding, but had to shave components in order to meet our goals.

3

2 Tools & Platform

4

2.1 Xilinx

2.1.1 Virtex-7 FPGA VC707 Evaluation Board

We started off the semester using the VC707. The VC707 looked like a promising option

for us because of the huge number of resources it carried and its sheer power. We believed

that since we were going to try to implement a PlayStation, we would be needing all the

FPGA logic units we could get. The Virtex-7 bit us in the back with two critical obstacles

that we were not able to fully overcome. The first was a combination of the I2C Bus and

the ADV7511 HDMI chip. Second, the board only has eight GPIO pins.

2.1.2 Vivado Design Suite

Vivado is nice. It runs on Windows (even Windows 8 64-bit). It also supports Sys-

temVerilog. The ChipScope tool packaged with Vivado is easy to configure and is an ex-

tremely valuable debugging tool. But it is slow, even for the simplest of designs.

2.2 Altera

2.2.1 DE2-115

Roughly half of the way through the semester we switched to the Altera board, hoping

to remedy the roadblocks we faced using the VC707. With the new board we had all the

GPIO pins we could ever need. Also we were able to switch to a much more familiar VGA

interface for video output. The less powerful DE2-115 came with a few drawbacks. On-board

memory was limited and we had to come up with some creative solutions to work with what

was available. Also the Altera board is much slower than the Virtex-7, so we ran into timing

constraints that were not issues before.

5

2.2.2 Quartus

Its synthesis mechanism is dumb and leaves something to be desired. At one point we

managed to get it to use less than 1% of logic units, which is completely wrong. But when

simulation starts taking hours to reach the same point the actual hardware can reach in 10

seconds, you will need a new way to look at waveforms. For Quartus, that is SignalTap II. It

may take some experimentation to find the limit of how many signals can be viewed at once.

Asynchronous resets are a must. Being able to change the trigger point such that signals

before and/or after the trigger can be viewed is very useful.

2.3 Miscellaneous

2.3.1 No$PSX Debug Emulator

It was amazing. It was like Christ’s resurrection or the Buddha’s enlightenment. Finding

this tool was a religious experience unlike anything before it. This messiah of software was

discovered right in time to guide us through the desolate path of integration and debugging.

A true miracle. Giving pause only to silently crash frequently, No$PSX proved itself of being

worthy of god-like praise and admiration. With its every touch, the clouds of evil and hatred

departed and the way towards a successful BIOS boot laid bare. If only we could follow this

magnificent beast into the shining gold yonder. Alas it was not meant to be.

2.3.2 Synopsys VCS

Our go-to simulator from 18-341 proved to be very useful in debugging our modules. The

GPU and CPU, especially, benefit from using VCS to run simulations and view waveforms

of various signals.

6

2.3.3 SPIM MIPS Simulator

The best way to test a MIPS. Write assembly, run it through SPIM and you will have

perfect hex codes for your Verilog CPU. Use system tasks to feed the codes to memory and

youre set for CPU testing. One idea that came up late in the game is to test CPU, memory,

and GPU integration by using the CPU to load the right instructions into memory and have

the GPU execute them. Writing Pong in MIPS is one way to do this (see “What Needs to

be Done”).

2.3.4 Python

Python was an invaluable resource for converting files and quickly scripting useful things.

For GPU debugging, python served to convert easily readable files of instructions into HEX

files for both simulation and synthesis as well as convert VRAM HEX dumps from the GPU

testbench into PNG so that VRAM could easily be viewed and verified.

7

3 Components

8

3.1 System

The PSX can be broken down into 9 primary parts. These are the CPU, GTE, GPU,

MDEC, SPU, Controller Interface, Main Memory + DMA, ROMs/Game Data, Audio-Video

Interface. As seen in the schedule, we planned out times and members to work on each piece.

Figure 3.1: Original PSX

CPU

COP0

GTE

Main Bus

MDEC

GPU VRAM

Video Out

SPU
512KB

RAM

Main Memory
Controllers +

Memory Cards

DMA

Original PSX

Figure 3.2: Our PSX

CPU

COP0

GTE MDEC

GPUSPU

Controllers

Main Memory + DMA

SDRAM

SRAM (VRAM)

VGA

BIOS (Block RAM)Scratch Pad (Block RAM)

Our PSX

9

3.2 CPU

3.2.1 MIPS

The CPU we are using is an OpenCores MIPS CPU written by the University of Utah

for the XUM project/architecture. The schematic pictured at the end of this section is the

one they created. It is a fairly standard MIPS with a five stage pipeline, 5 general purpose

hardware interrupts, one non-maskable hardware interrupt, data forwarding/hazard detec-

tion, and branch delay slots. In addition, it also implements a special memory handshake in

which every memory access sends a request and waits for an acknowledge before moving on

in the pipeline. We are fortunate enough to have the OpenCores CPU implement coprocessor

0, which handles all the exceptions and interrupts in the CPU.

A classic RISC pipeline contains five pipeline stages for instruction fetching, decoding,

execution, memory access, and write-back. The key points where each implementation of

the MIPS ISA differs comes from branch execution and data/control dependencies. In the

OpenCores MIPS they have chosen to implement a single branch delay slot (standard MIPS

feature) instead of stalling. For performance reasons they have also implemented data for-

warding. The data forwarding logic is based on a want or need condition contained in each

instruction when it gets decoded. Each stage in the pipeline then uses this to check for data

availability. For example, if data is available in the memory stage and the decode stage

wants/needs it, then the data will get forwarded. However if data is still not available by the

time the instruction reaches execute, and it needs it to perform an ALU operation, then the

execute stage will stall until the data is available. The hazard detection logic and forwarding

logic live in the same module.

The memory interface in the OpenCores MIPS is very robust. When the CPU has

a memory request, it sends the request high. It then waits for the memory controller to

send the acknowledge high, the earliest being on the next cycle. The CPU will then go low

10

the cycle after, and the handshake is complete when the memory controller goes low. This

handshake worked well with our memory controller because the controller had to service

more than just CPU requests.

It is important to note that the OpenCores MIPS does not implement virtual memory

operations, nor cache operations. The original PSX implements virtual memory the way the

MIPS standard does it, by separating virtual memory into three 2 MB segments: KUSEG,

KSEG0, and KSEG1. Specifically, KUSEG is direct mapped and contains user and kernel

data, KSEG0 is cacheable and is a mirror of the kernel and user data, and KSEG1 is the

same as KSEG0 but is not cacheable. Each region has a specific set of upper bits such

that replacing them with a different set of upper bits will be the translation from virtual to

physical memory. For example, in KSEG0 and KSEG1, replacing the 3 upper bits of the

virtual address with 000 will give the physical address. The OpenCores MIPS did not handle

this, so our translation happens in the memory controller.

Coprocessor 0 (Cop0) is what handles virtual memory and exceptions in the MIPS pro-

cessor. It contains 32 registers for exceptions, CPU parameters, and various debug and cache

options. Exceptions can be divided into two categories: synchronous and asynchronous.

Software interrupts and exceptions appear synchronous in the program order and so no in-

structions after the interrupt should start until the interrupt has been processed. At the

same time, all instructions in forward stages of the pipeline should complete before the in-

terrupt processing is done. This is accomplished by stalling the pipeline in the stage that

the exception appeared. Asynchronous interrupts have a little more leeway. The OpenCores

MIPS Cop0 detects and handles asynchronous interrupts in the decode stage of the pipeline.

Because of their asynchronous nature, forward instructions in the pipeline may either run to

completion or get flushed and restarted. Allowing forward instructions to run to completion

is easier on for the hardware so it consistently takes that approach. This makes it nicer to

not have to handle instruction restarts, but this increases interrupt latency if, for example,

a memory stall is in progress.

11

As mentioned before, the OpenCores MIPS does not implement virtual memory, and

thus does not have a TLB implemented. Any form of caching available is also unavailable.

We have come up with some hacks around this, mentioned below. Another thing to note is

that the PSX CPU is LSI’s LR33x30 implementation of MIPS. The only notable difference

in implementation in the LR33x30 compared to the OpenCores MIPS is load scheduling,

which, we are disregarding. The LR33x30 datasheet that exists does not contain anything

deviating greatly from a standard MIPS.

3.2.2 GTE

The Geometry Transformation Engine (GTE) is the heart of all 3D calculations in the

PSX. Anything involving vector/matrix operations, perspective transformations, color equa-

tions, etc. are done by the GTE. It has about 20 instructions, with parameters encoded in

the instructions, especially suited for this task and thus is much faster than a general purpose

CPU for doing 3D calculations. It also contains several special load/store instructions for

accessing the 32 32-bit control registers and 32 32-bit data registers. Loads/stores through

the CPU are documented to have a delay of at least 2 cycles. And there cannot be multiple

GTE instructions running at once.

The GTE is mounted to the PSX’s MIPS as coprocessor 2 (Cop2). To program the

GTE, the appropriate bits in the status register of Cop0 must be set in order to enable

Cop2. What this meant for us is that the relevant portions of Cop0 disabling Cop2 were

removed. One of the great features of MIPS instruction encoding is that the first 6 bits of the

instruction indicate which coprocessor it is issuing commands to, or which kind of instruction

it is executing. And so programming with GTE commands are just like running any other

MIPS instruction, just that the decode of the first 6 bits will tell us if it is a coprocessor

instruction or not. Then the CPU will pass the instruction along and the GTE will handle

it. As a programmer of the GTE the biggest restrictions are that GTE instructions should

not be used in branch delay slots, nor in event handlers or interrupts. The CPU or GTE

12

does not seem to enforce this behavior on the hardware side, so it is a risk the programmer

will have to handle.

The control registers in the GTE contain all of the scale factors, offsets, rotation ele-

ments, etc needed for the various transformations. Although each register is 32-bits wide,

most of them contain two 16-bit registers in specified signed fixed point format (most of

them are 1.3.12). The data registers contain color, vector values, sums, etc. as results of the

various instructions. Some of them may contain two 16-bit registers as seen with the control

registers, and some come in different fixed point formats (depending on the operation). All

of this is detailed in the commands listing (not detailed here, but the overview is below).

Some (minimal) background on vector math: 3D coordinates are represented through a

vector consisting of X, Y, and Z. The GTE considers two kinds of vectors: variable length

and normal vectors (unit length) in order to describe direction and location in 3D space.

Rotating vertices involves multiplying the vector of the vertex with a rotation matrix which

is a 3x3 matrix with 3 normal orthogonal vectors. Rotation about any axis has a specific

matrix with which to multiply by. The order of multiplication matters.

Implementation was made easy with a fantastic document detailing each instruction

(reduced to arithmetic operations) was found. It contains the instruction, cycle count,

equations needed to perform the instruction, and which registers are read and modified

during the operation. This shows us how the PSX GTE works at a high level and enables

us to create a cycle accurate implementation of the GTE, with accurate modifications of

registers. Due the resource constraints the GTE right now is not timing compliant, but it

operates correctly.

For our project implementation, the GTE sits around the decode stage of the CPU with

Cop0. When a GTE instruction is decoded, a flag is set telling the GTE which instruction

is entering and the GTE buffers the necessary information to run the instruction. This

includes the parameters passed into the GTE, the command itself, and the number of cycles

this instruction will take. The GTE then sets a flag telling the CPU that is is unavailable

13

for more GTE instructions. Each instruction is individually pipelined; that means that

depending on what cycle it is since the instruction started, it will execute a different part of

that instruction. Because each instruction was specific and has a different number of cycles,

there was no obvious way to pipeline it according to operations. On the last cycle of an

instruction, the counter and all internal signals used for calculation are cleared. It takes at

least 2 extra cycles more than what is specified in the GTE document in order to latch the

command, and clear the signals before the next command can come in. Two commands use

division, but a single cycle divider does not meet the timing requirements of our system on

the Altera boards. This was replaced with a 3 cycle pipelined divider from the Quartus IP

cores library. A high-level datapath can be viewed below.

Figure 3.3: GTE Datapath

cycle
counter

3 cycle
divider

control
registers

data
registers

32x32
/

32x32
/

32
/

--- 5

perform
instruction
(variable
cycles)

instruction
decode

cycle
register

32x32
/

32x32
/

16
/

16
/

register
out

16
/

24
/

6
/

6
/

available

register in ready

halted
gte instruction

register select

register in data

32
/

32
/

5
/

24
/

instruction ready

As stated before, the PSX is documented to take at least 2 cycles to access the registers

in the GTE. In our project, it may take fewer than 2 cycles depending on the operation.

During CPU and GTE integration, it was easier to have the register to register data for

14

reads or writes available by the next cycle so as to combine it with Cop0’s logic in the CPU.

This made it easier to implement CFC2, CTC2, MFC2, and MTC2 (CPU/GTE register to

register moves) the same way MFC0 and MTC0 (CPU/Cop0 register to regsiter moves) were

implemented. Forwarding from any stage made this possible.

Memory to register operations to and from GTE to CPU to memory were a little trickier.

Writing from a GTE register to memory was easy; the GTE data was available immediately

so it could easily propagate down the CPU pipeline with a GTE flag telling the memory

stage to write GTE data instead of other data. Reading from memory and writing to a GTE

register was trickier. To avoid any potential forwarding that might occur and pollute the

pipeline with incorrect data (ie. the CPU sees a write to register 14 of the CPU but really it

is writing to register 14 of the GTE), these memory reads stall the whole pipeline until data

is written back to the GTE. A flag on the CPU’s register file enable prevents write back to

the register file.

Stalling for multiple GTE commands was trivial; it checks the available bit in the GTE

and the Cop2 bits in the decoded instruction to see if it needs to stall. Stalling the pipeline

at the right time for memory operations was the most difficult part of this integration.

One of the challenges of implementing the GTE was the fixed point math and overflow

handling. The command list does say which flags to modify in case of sub-instruction

overflows, but there are also situations in which the result is output to a 44+ bit fixed point

number and will eventually need to be stored back in a 32 bit fixed point register. The

way it is implemented now is to truncate the necessary bits according to the format. Every

operation stores in a much larger register than needed so as to set overflow bits correctly.

There was no good way to test edge cases, and so the GTE is working for basic cases only.

3.2.3 CPU Modifications

Because this is a standard MIPS, the OpenCores version probably assumed users would

look at the ISA rather than want implementation specific information. Because of this, the

15

OpenCores version is not entirely documented. Fortunately, the Verilog has a consistent

style that had odd variable names, but was easy to read. Comments were added for major

design decisions (exceptions, memory operations, etc), but it took a series of redirects to find

everything.

To test the CPU, the Spring 2013 18-447 MIPS testbench was integrated and run

with a batch verify operation on all the MIPS programs available from the course. This

covered most of the standard operations, which includes jumps/branches, ALU operations,

and multiplication and division instructions. A lot of tests needed modifications because the

18-447 MIPS was not designed with a branch delay slot.

The OpenCores MIPS was written for big endian memory accesses; the PSX ran with

little endian. To force it into little endian mode a define statement in the memory module

forces the CPU into little endian ragardless of what bits are set. On that note, reading the

BIOS in 32-bit blocks is not correct; read 32-bit blocks, reverse the endianness of each block,

and then feed them into the CPU.

During these runs of batch verification, it was discovered that the OpenCores MIPS

implemented MTLO incorrectly. Since the LO and HI operations of the CPU lived in the

ALU, this meant the ALU took in two operands as inputs. Instead of moving in the first

operand to the LO register during MTLO, OpenCores MIPS was moving in the second.

Simple fix, but it shows the importance of verification.

During BIOS runs, we found that Cop0 was not behaving correctly during an event

that wrote to the exception program counter (EPC). The first exception wrote successfully

to EPC, but later exceptions could not write to EPC. It turns out that when an exception

occurs, MIPS specifies that it will set the exception level (EXL) bit in the Status register of

Cop0 as well as write EPC. The EXL bit does a few things, but the relevant thing it does

with EPC is disable writes to EPC during later exceptions. When running on the No$PSX

debugger, EXL never gets set. One of the undocumented subtleties of the PSX CPU.

16

The PSX does not explicitly use any of the standard MIPS interrupt ports. Instead

our implementation creates a new input to the CPU that will take the 10 hardware registers

needed by the PSX. These values are then latched in the top module of the CPU so as to

avoid having to read from memory to see if an interrupt has been acknowledged. Both the

interrupt mask (I MASK) and interrupt status (I STAT), are hardware registers which live

at address 0x1F801070 and ox1F801074 respectively are latched. Reads to these locations

return the values in the CPU. Writes go to both the CPU latched version and to memory. To

set up execution of a hardware interrupt, I MASK and I STAT must be non-zero; this sets

the Cause register (r13) bit 10 in Cop0 to high, mimicking a standard hardware interrupt

being received. If the Cop0 Status register (r12) bits 0 and 12 are also set, indicating

interrupt enabled and interrupt mask, respectively, then the interrupt gets executed via

normal hardware interrupt facilities. This means it jumps to the exception vector and

executes until a return from exception (RFE) instruction.

One trip up during BIOS testing was cache initialization. Because we had no cache

facilities implemented, all memory writes wrote out, regardless of whether it was meant for

the cache or not. One of the things cache initialization does is set a PSX defined bit called

Isolate Cache (Cop0 Status register bit 16) which means all access will now be cache only.

To ignore these memory operations, the CPU checks for that bit and during decode it will

override the impending memory access, turning it into a NOP. This got us past the cache

initialization stage of the BIOS, because it prevented overwriting memory locations at the

wrong time. But this may be an issue later on if those values need to be read from at a later

time.

17

3.3 GPU

3.3.1 Overview

The documentation on the original PSX GPU is limited to the outward interface. Thus,

our design attempted to implement this interface while including as many internal elements

as are know to be part of the original GPU. Figure X contains a basic diagram of how our

implementation is laid out. The GPU in the PSX is limited to rendering only 2D primitives,

including lines, rectangles and triangles. The GPU has access to 1MB of VRAM, laid out as

a 1024x512x16-bit array. X coordinates range from 0 to 1023, Y from 0 to 511, which each

color being 16-bits with a mask bit and 5-bits for each RGB channel (the mask bit used to

determine if a pixel is allowed to be overwritten). However, the GPU also allows VRAM to

be treated as having 24-bit colors, with RGB channel having 8-bits and no mask bit. This

mode is only used by memory transfers (ie, the GPU cannot draw 24-bit color primitives).

The GPU in the PSX receives commands from one of two mapping memory addresses

(0x1F801810 and 0x1F801814). Typically, either the CPU writes to these addresses explicitly

or sets up a special DMA channel (DMA2) to send a stream of data or commands to the GPU.

Commands sent to the first address (0x1F801810) are typically put into a 32-bit, 16-deep

FIFO. These commands are any drawing, memory, or drawing parameter instructions; these

are denoted as GP0 commands. Any commands sent to the second address (0x1F801814)

are not stored on the FIFO and are processed immediately; denoted as GP1 commands.

These include instructions such as reset and display mode instructions. Commands consist

of 8-bit opcodes and 24-bit arguments. As most commands (expect all GP1) requirement

more than the remaining 24-bits for arguments, the following 32-bits in the FIFO contain any

additional parameters needs by the instruction; like coordinates and color information for

drawing commands. All opcodes and their associated instruction are provided in Appendix

A.

18

The CPU can also read of these addresses to get status information about the GPU;

reading from the first address yields a dynamic parameter or data (set by a special GP1

command); known as the GPU read register. Reading from the second address returns the

GPU status register. This register contains a number of current operation status and control

bits; including the GPU interrupt bit, video mode bit, drawing enabled bit and more. A

complete map is provided below (GPU Status Register table).

Table 3.1: GPU Status Register
Bit Description
31 Interlaced Mode
30 DMA Direction
29
28 Ready to receive DMA block
27 Read to send VRAM data to CPU (via GPU read register)
26 Read to receive command
25 DMA/data request
24 Interrupt request
23 Display enabled
22 Interlaced enabled
21 Color Depth in display area
20 Video Mode (PAL vs NTSC)
19 Veritcal Resolution
18
17 Horizontal Resolution
16
15 Textures enabled
14 Flip Textures
13 Reserved
12 Mask enabled
11 Set mask when drawing
10 Allow drawing to display area
9 Dither enabled
8
7 Texture color mode
6
5 Semi-transparency mode
4
3
2 Texture page
1
0

19

The GPU has three types of GP0 commands (all GP1 commands setting flags or reset the

system and are handled immediately as mentioned above); drawing, memory transfer, or set

parameter. All of these commands are stored on the FIFO and dequeued by the Decode FSM.

This FSM will then execute the instruction by setting various control signals within the GPU.

For setting parameter commands, the Decode FSM will immediately process the instruction

and change whatever setting is being modified. For example, GP0 opcodes 0xE3 and 0xE4

set the drawing area coordinates; these x-y values being stored in internal GPU registers

which as loaded with the new values as soon as the Decode FSM dequeues the instruction.

Any command requiring more parameters, like drawing or memory transfer instructions are

processed by the Decode FSM by first dequeuing the instruction and saving the opcode in a

set aside register. All important parameter information, such as corner vertices for drawing

commands and amount of data requested for memory transfer commands, is stored in the

Global CMD register (GCMD). Some drawing commands include color information in the

first 32-bits (lower 24-bits), so this information is stored immediately. Other parts of the

system use the data in the GCMD in order to correctly determine their own operation. For

example, the texture unit uses the information in the GCMD to get the correct texture and

how to properly blend the text with the primitive’s color.

Another type of GP0 command, memory transfers, are more complicated and thus take

more power to perform. Memory transfer commands are handled the Decode FSM and

several small memory FSMs to move data from the FIFO to VRAM (in the case of a CPU to

VRAM transfer), from VRAM to VRAM or from VRAM to the GPU read register. These

commands are used typically to transfer large image data or textures from Main Memory

into VRAM.

The third type of GP0 command, drawing instructions, are the most complex and

require an entire graphics pipeline to perform. For these commands, the Decode FSM is solely

responsible for getting all the needed parameters, including vertices, texture coordinates

(inside VRAM) and colors from the FIFO and putting them in the GCMD and initiating

20

the pipeline. The pipeline is a four stage pipeline (excluding the fetch and decode stages

which consist of the Decode FSM and FIFO), a Drawing Stage, Color Stage, Shade Stage

and Writeback Stage. The pipeline processes 1 pixel, in the form of x-y coordinates in

VRAM, in parallel (limited to 1 due to board constraints, but the pipeline width can be

parametrized). In order to process a single primitive, the pipeline is filled multiple times

by the X-Y generator, which continuously feeds new coordinates to the top of the pipeline

for rendering. The pipeline does not process all drawing area pixels for each primitive, but

blocks the drawing space in 32x32 blocks and determines which of these blocks contains parts

of the primitive by simple minimum x-y, maximum x-y comparison.

The GPU can render 3 basic primitives; triangles, lines and rectangles. Polygons are

either 3- or 4-vertex shapes, and can be colored, textured and shaded. 4-vertex polygons are

rendered as two 3-vertices polygons inside the GPU, with the first 3 argument coordinates

forming the first and last 3 coordinate arguments forming the second. Lines are defined by

2 vertices and can be colored and shaded. Some commands in the GPU specify “poly-lines”

which are simply a multi-point stream of vertices, with each two forming a new line. Poly-

lines are like 4-side polygons in that the first 2 vertices are rendered as a single line, then

the next vertex from the FIFO is used to for a line with the second coordinate from the

previous segment. A special en code (0x55555555) is sent to denote the end of the poly-line.

The third type of primitive, the rectangle, is simply defined by a coordinate for the top-left

corner and a width-height pair. Rectangles can be colored and textured by not shaded. All

primitives can be turn semi-transparent; or mixed with the pixel currently at the point.

In order to draw and color these primitives, 32 pixels are send through the drawing

pipeline. In the first stage, the given 32 pixels are determined to be inside or outside the

primitive. For rectangles, a simple comparison is done. Both triangles and line rely on a

special “line finder” module to determine what points are contained in them. The line finder

works by determined whether a point is on, “above” or “below” a line defined by 2 points

(The module uses some techniques similar to barycentric coordinates; taking a determinant,

21

so it uses two multipliers, several adders and a bit of combinational logic). Using this module,

the lines can clearly be draw (by snipping the lines based on the maximum/minimum x-y

from the segment). Triangles can also be drawn using this module. Three of these modules

are used near the GCMD to determine which side of the line formed by 2 of the triangles

vertices the third point is on. By doing this for all three vertices, a set of three sides is used

by the line finders in the drawing stage to check if the processed pixel is also on the same

side of the three lines as the third point. If this is true for all the vertices of the triangle, the

point is within it. A map for which points are contained within the primitive (in the form

of an in shape bit for each pixel) is passed along the pipeline.

The next stage is the color stage, which is responsible for applying textures to the

primitive (or leaving it untextured if it is not a textured shape). The color stage is split

between calculating the texture coordinate within the texture page (the location in VRAM

where the texture data is stored; either given in the command or in a special register in the

GPU set by GP0 commands) and applying the texture to the primitive. As image data can

take up a significant amount of memory, textures in the PSX can take be either 4-bit, 8-bit

or 16-bit color. For 4-bit or 8-bit, each pixel represents an index into a color look-up table

(CLUT) which exists as a 16x1 or 256x1 image in VRAM. If the primitive being decoded is

textured, the decode FSM will initiate an FSM to retrieve the CLUT from VRAM and store

it in a cache. Just as in the original PSX, the GPU has a 256x16 CLUT buffer able to store

a single CLUT for the primitive currently being drawn. However, unlike the original PSX,

which had a small texture cache for storing the texture data, the GPU in our implementation

retrieves the data from VRAM for each interpolated texture coordinate and stores it in a

texture buffer. provided by arguments to the command (this texel coordinates are stored

in the GCMD). While polygons may have scaled textures (as a result of the interpolation),

rectangles may not have scaled or rotated textures (note that they may be flipped along

the x or y axis based on GP0 command 0xE1). This process uses the writeback FSM and

triggers a pipeline stall until the texture buffer is full. The texture buffer stores the 4-bit,

22

8-bit or 16-bit color which is translated by using the CLUT if needed in the second color

stage. The first 15 bits of the texture is used for color information while the 15th bit is used

to determine the transparency of the pixel. This setting overrides the semi-transparency flag

in the status register and is applied in the writeback stage.

The shader stage applies the final color to the primitive (before blending). This means

either using the color provided in the GCMD or uses the interpolated colors for gouraud

shading. As this calculation is also complicated, it is split into two pipeline stages. These

are done in 32-bits then saturated to the 24-bit color used by the writeback stage. The

calculations are further explained in the interpolation section. The final stage, the Writeback

stage, writes any pixels who are inside the shape back to VRAM. However, it first reads in

the pixel values at that coordinate in VRAM to check the mask bit and perform transparency

blending if needed. If the mask bit for a pixel is set, the new pixel will not be written back

over the current one.

This pipeline allows all the PSX primitives to be drawn. VRAM is dual-ported to allow

the video display module to read the drawing data and display it on the screen.

23

Figure 3.4: GPU Pipeline

Draw Stage

Color Stage

Shader Stage

Writeback Stage

Command

FIFO

(32bit x 16) Decode FSM

Global CMD Register

X-Y

Generator

Main Bus

GPU Status Register GPU Read Register

In Triangle

Logic

In Rectangle

Logic

On Line

Logic

Texture Unit

Gouraud Shader

Writeback FSM

SCREEN (VGA OUT)

CLUT

Cache

CLUT FSM

FILL FSM

V2C FSM

V2V FSM

C2V FSM

SRAM
VRAM

Controller

Display Controller

GPU

24

3.3.2 Interpolation

Linear interpolation is the technique used by the PSX to determine intermediate colors

when shaping or applying textures to polygons. The technique is essentially a remapping of

x-y coordinates into the color or texture plane. That is, the given x-y coordinate inside the

shape is linear transformed into a color or texture coordinate using the following equation:

cxx + cyy + cs = n

Where x and y are the x-y coordinates, n is the interpolated coordinate, and cx, cy and cs

are constants. In order to apply the interpolation equation, the constants must be found. To

do this, a special module is used by the GPU (the interp module; which is heavily pipelined

to meet timing constraints), which uses the given three coordinates and their corresponding

color or texture coordinate. Using these three equations and Cramer’s rule to solve for cx,

cy and cs for each color (R, G and B) or the texture coordinate (u and v). Thus, there are a

total of 5 of these interpolation modules near the GCMD to calculate the constants needed

by the color and shader stages. These stages simply apply the above equation to determine

the needed coordinate or color.

3.3.3 Testing

Verification of the GPU came in stages. The first stage was small unit tests of the line

finding and triangle modules with a testbench that fed in coordinate data and printed to the

terminal a grid of either hash marks or periods which clearly illustrated whether the proper

shape was being drawn. Next came testing the whole GPU module, in pieces. Thus, a single

command was tested and VCS was used to track down any problems by flowing through the

data path and FSMs used by that instruction. Verification of the GPU consisted primarily of

running short programs (of GPU commands) in simulation with a testbench that simulated

VRAM. Periodically, the testbench would dump the contents of VRAM into a HEX file,

25

on which a python script was run to convert the data into a PNG image. Viewing the

image provided invaluable insight into what might be going wrong and illustrated the GPU

could function in simulation. Once synthesized, SignalTap was used to debug any strange

synthesis-related errors.

3.4 MDEC

The MDEC (Macroblock Decoder) unit is responsible for decoding compressed image

data from the CDROM and transforming it into full 24-bit color representations to be stored

in Main Memory. The MDEC has access to two DMA channels for retrieving and stor-

ing compressed and decompressed image data in Main Memory. Compression of images

and video frames allows PSX games to have more content in the limited memory space on

CDROMs.

The compression scheme used by the PSX is similar to JPEG file format. The decom-

pression algorithms are provided in the documentation, though we haven’t had a chance to

look over them yet.

We attempted to create the MDEC for this project, but due to time constraints and

lack of documentation detailing some key hardware details of how commands are processes,

the unit was abandoned. There is also reason to believe that it would not have fix on the

board with all the other components as it relies on a good amount of multiplication.

3.5 Video

3.5.1 Adventures with HDMI

For standard outputs of audio and video the Virtex-7 (VC707) board only has HDMI.

An intermediate chip, the ADV7511, made by Analog Devices facilitates (lol, facilitates. . .)

communication between the FPGA and the HDMI output. It also handles many functions

26

specific to the HDMI spec including but not limited to: data encryption, EDID processing,

etc.

The ADV7511 chip has several registers that have to be configured before it can operate

properly. Configuration of these registers is handled over the I2C bus. Initially we created out

own I2C interface using a previous team’s code as a model. There is also a reference design

available from Analog Devices which we used to find/verify which registers needed to be

configured. However this wasn’t leading to much success. There was still confusion regarding

how to deal with inout ports in Verilog. However by this point we already transitioned to

using an IP Core from OpenCores. The transition to the IP Core didn’t solve the issues we

were facing, but it did clarify the proper use of inout ports. Careful testing with a drastically

reduced clock showed the correct output from the FPGA, but not acknowledgement from the

ADV7511. Later we discovered that there is a mux on the I2C line of the VC707 that has to

be configured as well before anything can be sent to the ADV7511. This mux sits between

the FPGA and eight different slave devices. Once configuration of this mux was sorted out,

and all the inout ports correctly wired, finally ACK signals were begin received from the

ADV7511. To verify that the data being written over I2C, out interface was modified to

perform a read following each and every write to ensure that the configuration was being

done exactly as we wanted it. This verification led to further confusions. Of the 62 registers

written to for configuration, only one failed to read back the same value as its write. This

is the register responsible for setting the ADV7511 in HDMI or DVI mode (this basically

means audio ON or OFF). Despite setting the register to be in HDMI mode, it would always

read back in DVI mode. This led to a curious observation. When first testing out HDMI and

using the reference design to experiment, we could not get sound to play no matter what

we did even though the reference design claimed to play clicks’ of audio. It isn’t just an

empty claim either, the code clearly performs a simulated audio DMA and it also configures

the registers to play audio as well as video. Currently we are trying to work with Analog

Devices to troubleshoot this anomaly.

27

The audio for the ADV7511 can have several protocols (selected by the control registers).

However, on the VC707 board, only the SPDIF protocol seems to be available. As we could

not find any good ip cores for SPDIF (Core Gen has a non-synthesizable one, and OpenCores

has a VHDL one which had other problems), we decided to create our own. The SPDIF

protocol is pretty straightforward and did not take too long to implement. We simulated

the module with some sample data (gotten via a simple FSM reading from what will be

an on-chip ROM) to ensure the waveform for SPDIF was correct. After some debugging,

we were able to get the waveform to match the protocol standard. Unfortunately, since

configuration has not been complete, we do not yet know if the SPDIF module will work

with the ADV7511 chip.

The video for the ADV7511 appears to follow the timing protocols of VGA. It takes

in the familiar VGA signals of HSYNC, VSYNC, and DE, as well as an HDMI/pixel clock.

The documentation was a vague about whether it also followed the front porch/back porch

protocol of VGA and its example chart values used terminology different from those com-

monly used to describe VGA. At any rate, the video module currently outputs the waveforms

corresponding to a VGA 720x480 video frame. It uses a simple two state FSM to go from

frame setup to data enable, and most of the sync output is handled by counters that are

managing the horizontal and vertical resolutions. For testing purposes we are sending one

hard-coded color to the chip. We have not been able to see the video output due to a hold

on the configuration.

Unfortunately, we were unable to get HDMI functioning during this project, but our

description is provided here for posterity.

3.5.2 VRAM and Display

The video system in our implementation uses the on-board SRAM and VGA to display

video to the screen. SRAM is used as VRAM for the GPU and a memory control module

arbitrates access between it and the display module. When the display module needs to

28

display new data, the memory controller disables the GPU’s ability to perform memory

accesses and dumps an entire row of the display area into a dual-ported row buffer. The

display module reads out from this row buffer and send the colors to the VGA output via

a DAC on the board. The display out module converts screen row coordinates to VRAM y

coordinates and only requests a new row if the new y is different from that stored in the row

buffer. The memory controller is responsible for converting the screen column coordinate

(along with the y coordinate from the display module) into a VRAM address and loads up

the row buffer completely. After this operation is complete, the memory controller gives back

control of VRAM to the GPU, allowing it to perform reads and writes. Due to the timing of

the VGA module, the display module runs on a 50 MHz clock while the memory controller

runs at 33.3 MHz. We attempted to implement a more complex memory controller that would

run at 100 MHz and would never block the GPU nor display module. However, timing issues

plagued this implementation and it was abandoned in favor of the more synchronous design

described above.

3.6 Memory

The PSX has several memory elements that can be accessed by the CPU, and by other

components via DMA. The memory breakdown of the PSX is illustrated in the Memory

Overview.

The primary memory chips are Main Memory, VRAM, and Sound Ram (SRAM). In

addition there is also memory used by the CD-ROM controller as a buffer for data being read.

The 32-bit addressing to Main Memory has three mirrors to the same physical memory space.

The top three bits of the address serve as a mapping to different memory related functions. If

the address is mapped to KSEG0, with a 100 prefix, then caching is enabled. Alternatively,

memory that is mapped to KSEG1 with a 101 prefix does not perform any caching. Cop0

handles nearly all interactions with Main Memory and CPU related caching. The PSX also

29

Table 3.2: Memory Overview
Size Details

Main Memory 2048 k Main body of RAM. Consists of four 512k
SRAM chips creating a total
of 2 megabytes of system memory.

KUSEG 0x00000000 ‘Virtual memory’ - maps to the full addressable
to 2 M of Main Memory. KUSEG addresses have a ‘000’
0x001FFFFF prefix. Contains mirrors of KSEG1 and KSEG0.

KSEG0 0x80000000 ‘Virtual memory’ - mirrors KUSEG
to with caching enabled.
0x801FFFFF KSEG2 addresses have a ‘100’ prefix.

KSEG1 0xA0000000 ‘Virtual memory’ - mirrors KUSEG
to with caching disabled.
0xA01FFFFF KSEG1 addresses have a ‘101’ prefix.

VRAM 1024 k Contains frame buffers, textures,
palettes; has a 2k texture cache

Sound RAM 512 k Contains capture buffers, ADPCM data,
reverb workspace

CDROM Control 1 + 32 k Includes RAM, ROM, and buffer
Memory Cards 128 k Extra memory slots that

can be accessed through memory-mapped I/O.

contains several addresses of memory mapped I/O. Memory mapped I/O is used by the CPU

to communicate with other pieces of hardware such as the GPU, SPU, controller peripherals,

CD-ROM controller, etc. It also includes several registers that control internal functions such

as timers and DMA. What would typically be the data cache in a standard MIPS is instead

used as a Fast RAM, or scratchpad in the PSX. This region of memory can only be used for

data and cannot be used to store code. The BIOS is stored in a separate 512KB ROM in the

PSX and can be accessed using the last 512K addresses in each memory mirror. VRAM and

SRAM are self-explanatory. They deal with their respective media outputs and processing.

The GPU handles the framebuffer, texture pages and texture palettes in VRAM.

3.6.1 BIOS

The Altera board has a rather limited space in terms of memory elements. There is

2MB of SRAM, 432KB of blockram, and 128MB of SDRAM. Sound was entirely dropped

30

from our project so we didnt have to worry about the 512KB of SRAM required by the PSX.

For the BIOS we decided to use blockram because it has the option to be initialized to a

prescribed value when synthesizing the design. The Quartus MegaFunction library provides

a very nice interface to set up blockram of whatever size you want and prompts you to

provide an initialization file. Using a BIOS dump we found online, we wrote a short Python

script to produce a MIF file (used by Quartus). This was before we knew that the DE2-115

only has 432KB of blockram. This posed an interesting problem. Luckily, (using another

python script) we found that a huge chunk of the BIOS we were working with was filled with

all zeros; enough to bring the size down below 432KB. The Block RAM Arrangement shows

how this shrinking was achieved.

Table 3.3: Block RAM Arrangement

BIOS Total Size 512 KB

Available Size 432 KB

The Breakdown

Number Address Range

Blockram (256K) - 0x00000 0x0FFFF

Blockram (16K) 0 0x10000 0x10FFF

1 0x11000 - 0x11FFF

2 0x12000 0x12FFF

[— All Addresses in this range contain zeros —]

3 0x19000 - 0x19FFF

4 0x1A000 - 0x1AFFF

5 0x1B000 - 0x1BFFF

6 0x1C000 - 0x1CFFF

7 0x1D000 - 0x1DFFF

8 0x1E000 - 0x1EFFF

9 0x1F000 - 0x1FFFF

31

3.6.2 Scratch Pad

The Scratch Pad was also located in blockram. Unlike the blockram used for the BIOS,

the Scratch Pad was configured as RAM, not ROM. In the BIOS we only cared to read,

so in the MegaFunction setup, we just created the necessary lines for reading and omitted

the rest. For blockram configured as RAM, there are three additional inputs; data in, write

enable, and a byte enable. The Scratch Pad only takes up 1KB, so it was able to fit in what

was left of the blockram after stuffing the BIOS in.

3.6.3 Main Memory

Main Memory requires 2MB of physical address space. The only remaining body of

memory that could fit that size was the SDRAM. Working with DRAM in general can be

tricky. There is a tight protocol that has to be followed, and direct addressing is not an

option. The chips are organized into banks, rows, and columns, and require precisely timed

strobes of each of these signals to read and write from a desired address. Trying to generate

the provided interface from the Quartus MegaFunction library was not leading to much

success. There are a few other tools within quartus that can be used to generate SDRAM

interfaces but many of those want you to also include a NIOS soft-processor in your project

to manipulate the SDRAM controller. We were fortunate enough to get some help from the

F12 Real Time Ray Tracer team and take their SDRAM module entirely and use it in our

project without any problems. It should be noted that the qsys SDRAM module used in

our project has been known to fail timing when the board is approaching the 80% capacity

mark.

3.6.4 Hardware Registers

The PSX has approximately 200 hardware registers each with specific functions. A

general description of each register can be found in the Appendix for Hardware Registers.

32

Looking at the table you can see that there are several broad categories of registers each

dedicated to a specific function or a specific component such as the GPU or SPU. These

registers provide a means for the CPU to communicate with the other components directly

via memory reads and writes.

In our implementation of the PSX all hardware registers are handled through a single

module (io controller). This module with receive read and write requests from the CPU

providing a fairly standard read-write-acknowledge interface to all the more complicated

functions carried out by these registers. A read to a hardware register will latch the ap-

propriate value and send it back to the CPU. When issuing a write, many of the hardware

registers behave slightly differently. Some will trigger a reset of some counter. Others will

only perform an AND operation with the existing value of that register. Some of the hard-

ware registers, particularly those relating to the controller, are connected directly to external

signals.

The addresses that behave as normal registers are handled at the top most level of

the io controller. These registers are declared and handle reads and writes directly through

the FSM of the io controller. For the more complicated registers, several submodules are

implemented within the io controller to facilitate custom actions. These specialized addresses

include but are not limited to the GPU, SPU, MDEC, timers relating to vsyns and hsyncs,

DMA control, and the controller interface.

3.6.5 Memory Controller & Address Interpreter

The memory controller FSM takes in memory requests from the CPU and is also aware

of when DMA wants to do things. In the actual PSX, the CPU has two channels by which it

can request a memory transfer. There is the instruction bus which is used to read the next

instruction, and there is the data bus which is used to perform all other reads, writes, stack

operations, etc. In the console it appears to be that Main Memory is properly dual-ported

so these two channels can simultaneously read and write from memory (the instruction bus

33

Figure 3.5: Memory Controller

Memory Controller

BIOS
(blockram)

SCPAD
(blockram_1k)

b
lk

_
ad

d
r

[1
6

:0
]

b
lk

_
d

at
a

[3
1

:0
]

sc
_

d
at

a_
i

[3
1

:0
]

sc
_

ad
d

r
[7

:0
]

sc
_

w
en

sc
_

d
at

a_
o

[3
1

:0
]

Address Interpreter
(addr_interpreter)

HW Registers
(io_controller)

h
w

_
d

at
a_

i
[3

1
:0

]

h
w

_
ad

d
r

[3
1

:0
]

h
w

_
w

en

h
w

_
d

at
a_

o
[3

1
:0

]

h
w

_
re

n

h
w

_
ac

k
[3

1
:0

]

SDRAM Controller
(qsys_sdram_a2_sdram_0)

sd
_

d
at

a_
i

[3
1

:0
]

sd
_

ad
d

r
[2

4
:0

]

sd
_

w
en

sd
_

d
at

a_
o

[3
1

:0
]

sd
_

re
n

sd
_

v
al

id

sd
_

w
ai

tr
eq

u
es

t

dram_addr [12:0]

dram_bank [1:0]

dram_cas_n

dram_ras_n

dram_cs_n

dram_cke

dram_dqm [3:0]

dram_we_n

dram_dq_in [31:0]

dram_dq_out [31:0]

DMA Controller
(dma_controller)

DMA_MADR_decr

DMA_MADR_incr

DMA_MADR_new

DMAx_MADR [31:0]

DMAx_BCR [31:0]

DMAx_CHCR [31:0]

DMA0 DMA1 DMA6DMA2 • • •

DMA_xMADR [31:0]

DMA_BCR_decr

DMA_CHCR_clr

DMA_IRQ

V
B

L
A

N
K

_
IR

Q

G
P

U
_

IR
Q

C
O

N
T

R
O

L
L

E
R

_
IR

Q

Memory Controller FSM
(mem_controller)

in
te

rp
_

re
n

in
te

rp
_

w
en

in
te

rp
_

d
at

a_
i

[3
1

:0
]

in
te

rp
_

ad
d

r
[3

1
:0

]

service_DMA

in
te

rp
_

re
n

in
te

rp
_

w
en

in
te

rp
_

d
at

a_
i

[3
1

:0
]

in
te

rp
_

ad
d

r
[3

1
:0

]

curr_addr [31:0]

curr_data_i [31:0]

curr_wen

curr_ren

d
at

a_
o

[3
1

:0
]

ac
k

_
o

d
at

a_
o

[3
1

:0
]

ac
k

_
o

data_addr [31:0]

data_data_i [31:0]

data_ren

data_wen

data_ack

data_data_o [31:0]

data_addr [31:0]

data_ren

data_ack

data_data_o [31:0]

(psx_interrupts)

(psx_timers)

(joy_controller)

never does writes). However because of the limitations of the memory elements we used

on the Altera board, there is no way to provide true dual-ported memory. Instead, our

implementation did a dance between the three sources of memory requests; Instruction,

Data, and DMA. The FSM interleaves memory accesses by ensuring that no single channel

will be serviced twice before the other two are service if one of them are requesting a memory

transfer. For example, if the Instruction line requests a read and both the Data line and

DMA want to access memory, the next Instruction read will be stalled until both Data and

DMA are serviced. The same rules apply for all three lines.

The heart of the memory controller is the address interpreter. From the memory con-

troller FSM, the address interpreter takes in a 32-bit address and redirects the read/write

to the appropriate physical memory. The first step of the process is to take the address and

eliminate all of the mirroring bits. In our implementation we did not write the cache. This is

mainly because we could not find any documentation whatsoever detailing the operation of

the cache, and because caches are hard. So, with the mirroring bits dumped, the next step

is to determine which physical memory the address is referring to. The mapping to physical

34

memories is illustrated in the Memory Map table. The address interpreter FSM performs the

read/write to the appropriate memory chip and then feeds back an acknowledge indicating

the end of the transfer and in the case of a read, the data read. The CPU or DMA then

takes the output of the address interpreter and the next memory request is serviced.

Testing the memory controller was done primarily using VCS and its GUI interface.

In order to test interactions with physical memory chips we had to use memory models for

simulation. Memory models were provided by Altera for SDRAM and blockram. In order

to use the memory models for blockram, the necessary files have to be included into the

project. They can be found in the simulation library in the Quartus installation on AFS.

SDRAM had a similar simulation model provided by Altera however to use the memory

model for SDRAM some tweaks had to be made to the HDL. We found that the memory

model does not put data on the line the same way the actual chip does on the board. Once

we were testing the BIOS on the actual FPGA hardware, the main tool for testing became

SignalTap. At this point we were making changes to the code to match the behavior of the

PSX and needed to see how the BIOS responded to our HDL.

3.7 DMA

To allow different components in the console to directly access Main Memory, the PSX

uses DMA. There are seven DMA channels in the PSX listed in the DMA Mode table.

Each channel has three registers that control their function. The MADR (Base Address)

register is used to write the start address of the DMA transfer. The BCR (Block Control)

register is used to dictate the number of words that will be transferred and the size of the

word. The CHCR (Channel Control) register is used to set up the direction of the transfer

(to or from Main Memory), the step direction (forwards, or backwards), the transfer mode,

and it is used to initiate a transfer by setting certain bits. Each of these DMA channels can

operate in three modes.

35

Table 3.4: Memory Map
0x00000000-0x0000FFFF Kernel (64K)
0x00010000 User Memory (1.9 Meg)

0x001FFFFF

0x1F000000-0x1F00FFFF Parallel Port (64K)

0x1F800000-0x1F8003FF Scratch Pad (1024 bytes)

0x1F801000-0x1F802FFF Hardware Registers (8K)

0x80000000 Kernel and User Memory
Mirror (2 Meg) Cached

0x801FFFFF

0xA0000000 Kernel and User Memory
Mirror (2 Meg) Uncached

0xA01FFFFF

0xBFC00000-0xBFC7FFFF BIOS (512K)

Table 3.5: DMA Mode
Channel Function Supported Modes

0 MDECin RAM to MDEC 1
1 MDECout MDEC to RAM 1
2 GPU lists and image data 1,2
3 CDROM CD-ROM to RAM 0
4 SPU ??? ???
5 PIO ??? ???
6 OTC Set up Ordering Table 0

3.7.1 Mode 0

Mode 0 is used strictly by channels 3 and 6 (CD-ROM and OTC). This mode behaves

a little differently for the OTC and CD-ROM. With the OTC, what Mode 0 does is set

up an Ordering Table. This is essentially an empty linked list of some prescribed size. At

the start address, DMA will write the next address in memory. The next address will hold

the address that follows it and so on. This write sequence is continued for the number of

36

words declared in the BCR register. At the last address, the escape sequence 0x00FFFFFF

is written to indicate the end of the linked list. For the CD-ROM, this mode is used to

stream in CD-ROM data starting at some address set in the MADR register.

3.7.2 Mode 1

This mode is used to transfer blocks of data either to or from Main Memory. It is

relatively straight forward. The block size and number of blocks is set in the BCR register.

The system should not ever write a block size that is too big for the receiving components

(i.e. the block size should never be greater than 0x10, 16-bits, for the GPU or SPU). The

required number of blocks is transferred in 32-bit sections, and the transfer ends when the

block count is decremented to zero.

3.7.3 Mode 2

The GPU is the only component that uses Mode 2. This mode is used to traverse a

linked list in memory and send instructions and data to the GPU. The start address will

contain a value in the following format: 0xAABBBBBB, where 0xAA is the number of words

stored in that entry, and 0xBBBBBB is the address of the next entry in the linked list. At

each entry, DMA will send 0xAA words to the GPU and then move to the next entry. This

process is repeated until 0xBBBBBB contains the escape sequence 0xFFFFFF. This is how

DMA knows it has reached the end of the linked list and to stop the DMA transfer. DMA

will only send the contents of each entry to the GPU. It uses the pointer information for

itself to know where to look at next.

Should multiple DMA channels be active at the same time, the DMA Control Register

(DPCR) is used to determine which channel has priority and that channel is serviced first to

completion. Finally DMA interrupt requests are triggered upon completion of a transfer.

37

3.8 Controllers

The standard digital controller of the PSX features 14 buttons, active-low, and uses 8-

bit serial communication to talk to the game system. There are also other controller formats

that include analog or digital joysticks (See Controller Diagram). These controller still talk

to the system over the same serial communication protocol and have additional bytes they

have to transfer.

Figure 3.6: Controller Diagram

The serial interface between the controller and the PSX follows a relatively standard

master-slave configuration for serial communication. The PSX is the master. It is responsible

for initiating all data transfers and is also in control of the clock. The controller has no input

to the clock signal and cannot force the system to hang (unlike the I2C serial protocol which is

discussed in HDMI). There are nine pins connecting the controller to the PSX (See Controller

Pinout). Of these pins, five of them are critical to data transfer; DATA, COMMAND, ACK,

ATT, and CLK. There are two pairs of analogous pins. DATA and COMMAND carry the

serial information. DATA is sent from the controller to the PSX, and COMMAND is sent

from the PSX to the controller. Similarly ACK and ATT are signals from the controller

and from the PSX respectively. ACK tells the PSX when a byte has been transferred. The

absence of an ACK indicates the completion of a data transfer. ATT is pulled low by the

38

system when it wants to poll a controller for information. CLK is the the clock signal that

drives the serial communication. CLK is generated by the PSX. The PSX console uses a

250kHz clock for communication with the controllers. However it should be noted that the

controllers are able to operate correctly with a clock frequency anywhere between 100kHz

and 500kHz. The controller operates at a range between 3.3V and 5.0V. Because the VC707

only supports output voltages of 1.8V it is necessary to use a voltage translation circuit to

communicate with the controller. Another point worth noting is that one can get away with

using only four pins per controller. The ACK signal is not entirely necessary on the receiving

end as long as the transmission is begin carried out correctly. The only true purpose of ACK

is to signal when a transmission is over in this particular protocol, however since the PSX

controllers will either always send five bytes if digital or 9 bytes if analog, it isn’t necessary

to have the ACK signal. Errors in transmission can be caught and handled without the need

of ACK.

Figure 3.7: Controller Pinout

Data transmission with the controller is initiated when TXEN (from register

JOY CTRL) and register JOY STAT.2 are set high. This indicates that the system is

ready to poll the controller for its values. The first action is the system pulling ATT low.

ATT is held low for the duration of the transmission. In the first byte, the PSX sends

0x01 (start command) to the controller asking it for an identification code. This code lets

the PSX know what type of controller is being used (Digital, Analog, NegCon, etc.). The

controller doesn’t send anything back on the first transmission. In the second byte, the

39

controller responds with its type identification and the PSX sends 0x42 to request data.

The third byte marks the end of the handshake between PSX and controller. The controller

sends 0x5A indicating that it will now start sending data. The rest of the transmission is all

data, and the number of bytes sent depends on the type of controller. A digital controller

sends a total two bytes of data. In comparison an analog controller sends six bytes. Between

each byte the controller pulls ACK low, but as mentioned earlier, it isn’t entirely necessary

to wait for the ACK. On the final byte, the controller does not pull ACK low, thus indicating

the end of transmission and the PSX responds by releasing ATT. Signals from the controller

are active low.

The entire controller interface is handled through memory mapped I/O. The clock for

the controllers is derived from a counter located in the JOY STAT register. This timer

decrements at 33MHz (the system clock speed) and upon reaching zero, it is reset to the

reload value which is stored in JOY BAUD. The counter elapses twice for each period of

the controller clock; once for the clock set low and once for the clock set high. Under

normal operation the reload value is set to 0x88 cycles, which results in a controller clock

approximately equal to 250kHz. A transfer is initiated by the CPU when writing to the

JOY TX DATA register. This register has the same address as where the RX FIFO is

stored (writes go to TX, and reads come from the FIFO). The controller ACK signal is

connected directly to a bit of the JOY STAT register and is typically held for about 100

system clock periods. It isn’t entirely clear, but it seems to be that the ATT signal is also

controlled by the CPU by a bit in JOY CTRL. The CPU is entirely in control of interactions

with the controller and is alerted of completed transactions via interrupts.

3.9 Game Data

The PSX uses CD-ROMS for games. The CD-ROM reader in the PSX is controlled

by a small Motorola 8-bit CPU. This chip is connected to the main CPU through memory

40

mapped I/O in a rather convoluted way described in the Appendix for CDROM Memory

Map. Data from the disc is read out into a buffer and transferred to Main Memory by

DMA. The Motorola chip is controlled by sending byte commands into a fifo. The CPU can

know the status of the CD-ROM Controller by either reading the status register or receiving

interrupts for each command sent. The CD-ROM controller in the PSX is also capable of

playing audio CDs, but that feature was low in priority compared to playing games.

Having our system interface with physical game discs was thrown out as an option early

on in the semester. Interfacing with an actual CD-ROM controller has several challenges and

should be avoided is possible. There is a completed project called PSIO which is basically a

piece of hardware that interprets commands sent from the CPU, translates the commands

into actions to read from a ROM loaded into an SD Card or other form of flash memory. Data

is then sent back to into the buffer from where DMA can ship the data to Main Memory.

We tried to get in touch with the person behind this project, but we didnt have much luck.

Instead we had to implement a similar interface ourselves. It should be noted that typical

games for the PSX range from about 50MB to 700MB. This is the standard capacity of a

CD-ROM. Some games go even further with multiple game discs resulting in a game worth

over a gigabyte of data. The Virtex7 has 1GB of SDRAM, and would be able to fit an entire

game locally, but no other board in the class has enough space to hold any reasonable PSX

game. Also, should you want to have a game stored locally in SDRAM, the data still has to

be ferried over to the board before a game can be played, and with such large ROMs, this

doesnt seem like a good solution. Therefore the game ROMs should be stored in some form

of flash memory that can be accessed by the FPGA. The first attempt was via SD Card.

SD Card IP Cores are available; there are a few on OpenCores. There is also an SD Card

interface provided by Altera with Quartus. But, every single option available will require a

soft-processor core to communicate with the card. This is understandable because a typical

SD Card will be formatted in some file system such as NTFS, and having a soft-processor

running embedded Linux would make it easy to read files from an SD Card. However should

41

you want to read raw data from an SD Card, we could not find a single readily available

native interface for SD Cards. Also, a quick search provided no easy way to load raw data

onto an SD Card either, so this option was looking bad.

Round two involved a Raspberry Pi. Despite our efforts to avoid a soft-processor core

and embedded programming, the only viable option to reading from flash memory involved

C code and a separate processor. The Raspberry Pi was an attractive option because it has

several GPIO pins that could be used to interface with the FPGA board. It has 17 GPIO

pins. We used four pins for commands, eight pins for data, and one pin each for FPGA

acknowledge and Raspberry Pi acknowledge. An additional pin was sued to provide a clock

from the FPGA. The Raspberry Pi benchmarks claim to be able to read and write to GPIO

using the native C interface at speeds up to 22 MHz, so we opted for 16.5MHz which is half of

the system clock. We loaded the game ROM onto a flash drive and wrote a simple C program

that would listen to the GPIO pins and serially receive the instructions that would normally

be sent to the Motorola chip. Certain instructions relating to the CD-ROM motor could be

ignored, but their response values still had to be faked, and the interrupts associated with

those instructions still have to be fired to make the CPU think it is working with the real

thing. The CD-ROM interface with the Raspberry Pi has yet to be tested thoroughly, but

should serve as a good starting point should there be a lack of physical memory available on

any given FPGA board.

42

4 Status

43

4.1 What is Done

In the end, we were unable to boot the BIOS. We were able to have a completely working

GPU (stand alone), a working CPU/GTE and memory system, and the controller interface.

Unfortunately, we ran out of time marching through the BIOS on the board with SignalTap.

However, the CPU/GTE does execute commands fine, and is able to read from the BIOS

and read, write and execute from main memory. The BIOS runs fine up to a point where

it differs from the no$psx simulator and fails to draw the Sony logo and start screen. The

GPU works well and is able to draw almost everything the original PSX GPU could. The

controller interface is also solid and able to recognize all button presses correctly using the

original digital controller.

4.2 What Needs to be Done

Quite a bit. As seen above, a variety of components we did not even get a chance

to work on. The core system (CPU/GTE, GPU, Memory, Controller) is largely complete

(though not bug-free). However, the CDROM and MDEC are far from complete and the

sound system was not even attempted. Unfortunately, time and HDMI makes fools of us all.

If you are continuing from where we left off, synthesize the project, upload to the board,

open up no$psx, and start back tracing. We are in the middle of the BIOS and entering an

(invalid?) loop right before the white screen comes on in the BIOS animation. There are

still some synthesis quarks in the GPU to deal with and potentially more features to add to

the CPU before a full successful boot can happen. Simulation will take unbelievably long,

and it is worth the 20+ minutes of simulation to use a logic analyzer.

As stated under the SPIM section of tools, Pong is a good way to test CPU, memory,

and GPU integration. Under team psx/psx/cpu/mips w tb/dat files, you will find a version

of extremely buggy pong that was hacked in under an hour in an attempt to demo the

44

system. Aside from Pong being broken, the GPU also is reading 0s even though the right

commands are being fed. But the file is small enough that it will work in simulation.

45

5 Words of Wisdom

46

5.1 Don’t Take on Two Major Challenges at Once

At the beginning of the semester we had the impression that HDMI would be a quick and

easy project to write an interface for. Little did we know that HDMI constitutes an entire

semester-long project on its own. We spent over a month fighting against the Virtex-7 board

when we could have been making progress on the PSX. This also applies to most features

of evaluation boards because everyone loves soft-core processors. Beware of soft-cores; they

won’t help you in this course.

5.2 Follow a Nice Style Guide

The key to synthesis is good style. It also makes integration a lot less painful. As Mike

will tell you many times over, the 18-240 FSM style (current state assignments register in

always ff, output logic and next state in always comb) will always work and keep you out of

trouble. Watch out for latches inferred.

5.3 Interfacing with the Outside is Not Reliable

When you are on a time crunch, relying on outsiders (*cough* AnalogDevices *cough*)

to respond to your forum post is probably not the way to get things done.

5.4 Selections from our “Stupid Things” Document

• Make sure project paths are not too long when using debug cores in Vivado. It will

error at opt design otherwise.

• Local copies of Vivado run great, but make sure to “sudo” in order to use board

facilities. This goes for any local install of any tools on a Linux lab machine.

47

• If you are using Quartus, don’t create bidirectional logic anywhere but the top module.

Don’t propagate inouts through modules, keep them only at the top.

• When using always ff with asynchronous reset, Quartus will attempt to infer latches

on you unless the whole signal is assigned in more than one place.

For example, this will infer latches:

always_ff @(posedge clk, negedge rst)

if (rst) cop <= 2’b0;

else if (something) cop[0] <= nxt_cop[0];

else cop[1] <= nxt_cop[1];

This will not:

always_ff @(posedge clk, negedge rst)

if (rst) cop <= 2’b0;

else cop <= nxt_cop;

• Synthesis will do dumb things and sometimes writing it a different way will make

it better. The document in the repository has a list of random fixes, such as using

always ff instead of always and moving a nested “else” “if” to just “else if” and using

always comb instead of assign, that make synthesis work like simulation, but for no

clear reason.

48

6 For Future Iterations

49

Use our code. Everything you need to synthesize is under team psx/psx/system. Open

up the system top project with Quartus and you’re good to go. To speed up synthesis

make sure to turn on “Smart Compilation”, utilize all cores, and basically just turn on/off

anything that will shave synthesis time. The repository is a bit messy, but the directory

with the synthesizable project contains the most up to date files. Outside in the other

subdirectories are individual components and (potentially) facilities to test it. Even if you

just use it as a guide for writing your FPGA PlayStation, it’s a lot better than nothing

(which, by the way, unlike the GameBoy or Sega Genesis, there really is nothing).

Get all the documentation you can. Our repository contains a lot of what you will need.

Be sure to get the Psy-Q documents (from psxdev.net) and look over them, they have pieces

of information that is quite good and occasionally lacking from the Nocash and Everything

documents (see Acknowledgements). Also, we made a few useful tables and such in the

Appendices.

For the adventurous individual(s) who want to take a stab at the Virtex-7 read the

following carefully. If you want to use HDMI, there are a few steps of configuration that

need to be done before the ADV7511 chip can be used. Configuration of the ADV7511 is

handled over the I2C bus on the VC707. The I2C master is the FPGA chip. Between the

FPGA and the ADV7511, there is a bus switch (PCA9458) that has to be configured first

before the I2C bus will be able to talk to the HDMI chip. If you do not configure this switch

first, none of your I2C commands will be heard. Once you are able to talk to the ADV7511

chip, you need to configure the chip to output HDMI. Guides for configuration can be found

on AnalogDevices’s website, but some information is misleading. First, note that almost

all help will suggest that you use a soft-processor core loaded with Linux and C code to

communicate with the ADV7511. Also, there is one register in particular on the ADV7511

that is responsible for switching the chip between DVI and HDMI modes. We were never

able to set the chip in HDMI mode. Reading back from this register would always indicate

that the chip was in DVI mode, so it may not even be possible to output sound from the

50

VC707. Note that even with the configuration mostly working, we were not able to output

to the display via HDMI. We are not sure why. We believe it was because we didn’t have

the timing right, but there might have been another reason. A second word of caution is

that the Virtex-7 only has 8 readily available GPIO pins located in its XADC port. If you

are planning on using the VC707 for a project that will require several GPIO pins, please

reconsider or do some research on the expansion boards for the Virtex-7.

51

7 Personal Statements

Demo Day, December 6, 2013, 8 AM

52

7.1 Mike Rosen

Even though we were not able to complete the full working system, the project itself was

a rewarding and fun experience. Flowing through the process of conception, design, imple-

mentation and integration is very educational and certainly gave me a better understanding

of how to work in a team building a system you individually would have no hope of com-

pleting (even 3 of us were not able to do it). Helping my teammates debug modules I only

tangentially understood was an interesting experience, and getting help from them was very

useful even though they did not fully understand what I was working on (the PlayStation is

large enough that this was a common occurrence).

In our HDMI attempt, I was responsible for the audio portion. Implementing the SPDIF

protocol was not too difficult. However, due to the I2C complexity of the VC707 board and

AnalogDevices not giving up the timing information we needed, we had to abandon HDMI

and the VC707 all together. Unfortunately, this toolset switch was the biggest factor towards

our inability to finish the project. While the Virtex-7 is a powerful chip, the VC707 is a

terrible board of this class. The lack of GPIO and reasonable audio-video capabilities makes

the board horrible for the typical project in this course. If we were ambitious enough to

complete our HDMI interface, the board might become usable.

In terms of the PSX system, I was responsible for the graphics system, including the

GPU and MDEC. Unfortunately, due to time constraints and lack of documentation on the

hardware, the MDEC was abandoned. The GPU was plenty of work for the semester and

became the only thing we could demo due to integration problems. Building the PSX GPU

was a lot of fun. Due to the lack of documentation, I pretty much just had an “ISA” and

a few vague pieces of information on some of the internals. Beyond that, the design of

the original was completely a mystery, which allowed me a lot of design freedom. Starting

off, I had no idea how to do anything in terms of the graphics functionality. The shading,

rasterization and texture mapping used by the PSX were things I had no previous experience

53

with. Learning how to do these things by talking to friends, other professors and consulting

the internet was great practical experience. Much time was spent pondering how exactly to

implement all the interesting graphics functions the GPU could do. And the results were

worth it. When my simulation produced the same color gradient triangle as the OpenGL

teams, I was very happy. Soon, I was drawing things that looked like they came out of the

original PSX.

However, synthesis proved to be a huge problem of its own. Switching to the Altera

board seemed a good choice at first. The SystemVerilog support and our past experience

with it made it a better choice than the relatively-unknown Virtex-5. Unfortunately, while

the size of the chip is roughly the same in terms of number of logic elements, the constraints

of the board became a major roadblock. To implement VRAM, I needed to use the SRAM

on the board (which at first seemed perfect). I spent a lot of time (2-3 weeks) determining

cool ways to get over the limitation that the SRAM chip was single ported and I needed to

access VRAM for the GPU to draw and the VGA to display the image. However, in the end,

my virtual dual-porting attempted did not work so I had to change my design to block the

GPU when VGA needed to send pixels to the screen. Following that was the issue of board

resources. My first synthesis that actually completed used about 160% of the LEs on the

board. So I had to completely eliminate the parallel pipeline to a width of 1. Another big

problem was timing. The GPU did some rather complex operations and timing of critical

paths become a limiting factor in my design. TimingAnalyzer told me that my synthesized

GPU had a maximum frequency of 4.9 MHz rather than the need 33.3 MHz. Excessive

pipelining fixed this issue, but a more powerful board would not require so much effort to

optimize.

The last week, we spent living in the lab. I spent 31.5 hours in Hamerschlag without

even leaving the building once. The sun became a foreign concept. On the Friday after the

demo (once it was all done), I took a 3 hour nap, and soon after went to sleep for 14 hours

straight, and snoozed for another 3 hours. Just be aware, this is what it takes to do the

54

more complicated projects, especially those never before attempted (not even by anyone on

the Internet...). Listen to Paul (F12; Team Real Time Ray Tracer) and I, a big project in

this class will be your life this semester. And even though we did not get the BIOS

working like we wanted (we were soooo close), it was a very worthwhile experience (not the

lack of sleep; the project!). Now that we’ve opened the door on the PSX, another group

SHOULD be able to complete it (if they are willing and able; but good luck!). Any group

that wants to go on to the N64 (or another more modern system), I recommend to Professor

Nace or any future professor to NOT LET THEM TRY (unless the toolchain changes to let

more complex systems be implementable).

What I would recommend to future groups is the following:

• Tackle only ONE major challenge: For us, HDMI and the PSX were essentially 2

projects in 1 semester and the former ate up too much time that we did not get to

finish the latter.

• Start early: We did and we still did not finish...

• Be careful of complexity: The PSX is certainly a possible project for this course. You

have to be willing to do what we did and then some; and not work on any other major

challenge (HDMI). It is a bunch of simple machines after all. But there are a bunch

more of them than most other projects done in this course and they interact in more

complicated ways.

• Documentation must be thoroughly scraped: While working on this project, we would

sometimes find out something we needed to know weeks ago in some obscure docu-

ments. Knowing everything about your system in the design phase (before code) is

best (though not always possible).

• Pick something fun: If you are not having fun, change projects or drop the course.

55

7.2 Anita Zhang

My main contributions to the PlayStation project were CPU modification and inte-

gration, the GTE (coprocessor 2), system integration, and testing the complete system. I

looked over all my old status reports to try and figure out why the whole project seemed so

back-loaded and I noticed that it was not until about week seven that we started moving

away from HDMI. In regards to HDMI, which took up a major part of the first semester, I

worked on the video interface, as well as making the software interface “work”.

With regards to time spent, the first half of the semester when we were still working

on HDMI or starting separate components, I recall being in lab on Tuesdays from 6PM

to midnight, and Sundays from 3PM to midnight. This was both HDMI anything and

CPU/GTE research for me. When we started working asynchronously (about week seven) I

recall working mostly on Sundays from 6PM to midnight on GTE research, implementation,

and testing. During midterms not much PlayStation work was done at all. About week

ten I started going to lab more to integrate the CPU and do system testing (it helped

with productivity too). A couple of weeks after, during system integration, lab time spiked

upwards, and from Thanksgiving to Demo Day I was in lab debugging from 12 to 20 hours

a day.

Silly thing about debugging, the day before the demo we were debugging the BIOS

and hit another point where the CPU was not writing the right value into EPC (exception

program counter), compared to the no$psx debugger. At the time we were all so sleep

deprived and did not realize that EPC was just a pointer to where it was supposed to return

in the instruction stream. We spent 2 hours trying to figure out how it got that value written

in because we usually back trace if we are stuck. The silly thing was an hour before that I

told Arnob EPC gets written with an address during exceptions! That week was the most

hellish I have ever experienced. I am pretty sure no one in our group slept more than 3 hours

a day.

56

I had a couple of job interviews during the project and I talked to one of the interviewers

about Team PSX. The interviewer asked me if I regret taking on the PlayStation in favor of

Defender (our “Plan B”), a definitely finish-able project in one semester. I thought about it

and told him no. This is might be the biggest project I have worked on (close competitors

include the 15-410 kernel and 18-447 MIPS) and I am too grateful for working with such

passionate team members. I admit I was doubtful during our first weeks, but by the time we

had to make our “Defender or PlayStation” decision I was not willing to leave PlayStation

just because there was doubt of finishing. And (I may be stealing this from Mike because he

said it first) the lack of detailed documentation in some of the components really opened the

way for individual design. It is nice to have exact details and pre-existing components, but

implementing your own design is the funnest way to go. And there is no point to a project

course if it is not fun! And challenging! For that reason I enjoy pooling a lot of time into

projects. I regret not being to work on more parts of the system since our roles were very

specific. And I am still really disappointed at not being able to load the BIOS and see the

startup animation. That is probably the one thing I will never let go (no matter how much

it is about the journey)!

The combination of this course and 18-341 has made me realize Verilog and its tools are

so unbelievably unpredictable sometimes that I cannot do this for the rest of my life. Take

that as you will.

In terms of class structure, LCD lab was useful for getting us started with the tools,

but the LCD itself was never used after that. Some teams never make it to sound, and some

do not even have sound, so I am in favor of wiping sound lab. 10/10 would keep ChipScope

lab. I wish design review did not take up so much time, but I enjoyed the free nature of the

course.

Past projects reflect this, but future students should not attempt to use the HDMI on

the Virtex-7 until someone has a working hardware interface. AnalogDevices should get

punched for that. Also, taking on more than one heavy load in this course (HDMI and

57

PlayStation, in our case) should be interrupted and stopped by week two. But hopefully we

have left enough information for iteration two of the PlayStation!

58

7.3 Arnob Mallick

I would like to start off by stating that 18-545 Advanced Digital Design has the potential

to be one of the most rewarding undergraduate classes for anyone who should choose to take

it. Even though we didnt complete our project, and barely had anything prepared to demo

on the last day of class, the entire experience as a whole was invaluable. Our team decided

to try to recreate the original PlayStation. Yes, it was a pretty crazy, but when the idea was

put on the table you could immediately tell that all three of us were mentally salivating on

the inside at the thought of such a cool project (well at least I was). I was in charge of a lot

of almost everything that wasnt CPU or GPU. My first task was to get HDMI configured

and working I believe our report documents our struggles with HDMI fairly well. It was

an incredibly frustrating experience, but I suppose it could have been worse had I saved

HDMI for later in the semester. For a console gaming system, or anything remotely game

related that will require GPIO pins and video output directly from the FPGA board, the

Virtex7 is NOT the right choice. I found myself in a hopeless cycle going back and forth

with representatives from AnalogDevices to try and figure out what was going on with their

abominable chip. I spent over a month doing this. During this time I threw together a

controller interface that links all button presses on the controller with LEDs on the board.

Once we finally switched boards I started working on components of the actual PSX.

From this point forward I worked on the memory controller for the CPU and DMA. This

involved interfacing with a few different physical memories on the Altera board and creating

all of the special registers used for memory mapped I/O. By the time I was completely

detached from HDMI and settled using the new board I was able to gradually churn out a

full memory interface. My main challenge for this course from start to finish was figuring out

how to deal with peripherals. Doing things entirely within the FPGA is nice and predictable

in most situations. Once you try to interface with SDRAM, or anything outside of the FPGA

everything is a mystery. Good documentation is often hard to find and although there are

59

often implementations online that are tried and tested, they will still require some degree

of reverse engineering to read their (bad) documentation and configure everything to work

with your board. Once I sorted out all my issues with external chips and such, I cant say

I had any more major hitches. I implemented the memory interface incrementally adding

support for more and more memory related interactions with the CPU. We found several

bugs in the process, but since everything was isolated within the FPGA, I was able to trace

those issues with ease and fix what I had to.

It is hard to say how much time was spent on this project in total. Almost always at

least one member of three was in the 18545 lab. What I can say however is that if a project is

on the same level as the PlayStation, the time spent working on 18545 related things should

overshadow all other courses by some margin. Straight through Thanksgiving to the last

week of the semester I spent between 12 to 20 hours a day working on the PSX. And several

of those days were spent entirely in the 18545 lab locked up in Hammerschlag, especially the

last few days.

As I mentioned earlier the class as a whole is great. I really enjoyed the self-paced

nature of the course. This allowed me to allocate time and work around my other classes as

necessary. However, this freedom should be taken with caution. Being able to move around

time for 18545, doesnt mean you can push the entire project to the end of the semester.

My team took a day to outline general deadlines which was certainly helpful to prevent

nasty cases of procrastination. My impression of the course was also greatly affected by my

teammates. Anita and Mike were awesome people to work with and I cant say we faced

any real group issues. We all held each other accountable for their parts of the project

and we all respected each other enough to try not to fall behind schedule too badly (We

did eventually fall behind schedule really badly, but we were all on the same page at that

point). I could have come out of this class with a mangled friendship and two new mortal

enemies, but Im glad I was able to make a new friend and keep the one I already had.

I think I learned a lot about working on a large project with multiple people. I learned

60

about time management, and how to scale that up to larger groups. I also learned a lot

from the other groups around us. I saw examples of personalities that were destructive, and

situations that were not handled very well. I also saw people working very well together.

Having everyone together in one lab is very useful for that reason. It gave me exposure to

four other micro-communities that each had their own successes and failures.

To improve the class I would suggest adding to the disclaimer list of the Virtex7. When

we started the semester, we knew that the board was new and that there wasnt much to work

with yet. Now that a few teams have fought that battle against Xilinx, we can better prepare

future teams for the challenges they will face. I think some of the labs at the beginning of

the semester should be restructured. ChipScope (Xilinx) and SignalTapII (Altera) need to

get more attention. There were people in the class, my teammates included, that still didnt

fully understand how to take advantage of the probing tools. We would not have been able

to get the BIOS working at all if we didnt know how to use SignalTap. Also regarding the lab

machines. Those things are some of the most frustrating boxes ever. I had the impression

that they were our machines to use as we wished, but this really isnt true. If we want to

have all the tools on AFS, we have to be on the school network, and to be on the school

network means dealing with all the permissions nonsense. I couldnt transfer directories of

any appreciable size because for some reason it would route through my AFS space first

which I havent bothered to increase in size yet. Which results in a machine with 500GB of

disk space that can really only use a tiny amount at any one time. We need the installation

discs and full access to these machines away from AFS. That way we wont be losing drivers

every other month and all issues we face would be entirely our faults.

We got so close to drawing the PlayStation boot screen. We were literally only a few

hundred, maybe thousand, instructions away from seeing the screen light up. I am looking

forward to another team picking up from where we left off and finishing the PSX. Even with

all the work that has already been done there is still a lot we couldnt finish and it would

certainly put the biggest smile on my face to see our project taken to completion.

61

8 Acknowledgements

62

Thanks Bill Nace for letting us run with our crazy ideas. Feel free to let anyone use our

code and to post our report for future generations.

Thanks to Astav Sacheti and Apple for sponsoring the class and understanding the rigor

of our project. It really helped lift us from our defeated states and put a smile on our faces

after a long struggle. And thanks for the iPods!

Special thanks to Martin Korth (http://nocash.emubase.de), the sole, broke/poor, Ger-

man creator of no$psx and various other console emulators/debuggers under the Nocash

name. May he get many donations so he can continue to better his debugger and not have

a “real” job.

Thanks to Ryan MacDonald for providing us with a working SDRAM interface for the

Altera DE2-115 board.

Thanks to Professor Kayvon Fatahalian for explaining interpolation to us. Without

him, the GPU would not have been possible. Take his classes; he’s awesome.

Thanks to Joshua Walker for compiling some very good information in his “Everything

You Have Always Wanted to Know about the Playstation But Were Afraid to Ask” docu-

ment. It really kickstarted this project and made us think we had a chance (which we did

in the end).

And thanks to the PSXDEV community for answering some critical questions, as well

as providing us with and pointing us to some of the best documentation on the internet!

(http://www.psxdev.net/) Finally, thanks to Sony for making this console; its a really cool

piece of hardware. We hope that you will release all the secrets; we are dying to know.

63

A GPU Tables

The following contains a full list of GP0 and GP1 commands for the GPU.

A.1 GP0 Command List

Table A.1: GP0 Commands

Opcode Command Name Description

0x00 NOP Does nothing (No space in FIFO in PSX, does in ours)

0x01 CLR CACHE Clears Texture Cache

0x02 FILL VRAM Fills a rectangle in VRAM with given color

0x03 NOP (FIFO) Does nothing (but takes up FIFO space)

0x04 NOP Mirror 0x00

0x05 NOP Mirror 0x00

0x06 NOP Mirror 0x00

0x07 NOP Mirror 0x00

0x08 NOP Mirror 0x00

0x09 NOP Mirror 0x00

0x0A NOP Mirror 0x00

0x0B NOP Mirror 0x00

0x0C NOP Mirror 0x00

0x0D NOP Mirror 0x00

0x0E NOP Mirror 0x00

Continued on next page

64

Table A.1 – continued from previous page

Opcode Command Name Description

0x0F NOP Mirror 0x00

0x10 NOP Mirror 0x00

0x11 NOP Mirror 0x00

0x12 NOP Mirror 0x00

0x13 NOP Mirror 0x00

0x14 NOP Mirror 0x00

0x15 NOP Mirror 0x00

0x16 NOP Mirror 0x00

0x17 NOP Mirror 0x00

0x18 NOP Mirror 0x00

0x19 NOP Mirror 0x00

0x1A NOP Mirror 0x00

0x1B NOP Mirror 0x00

0x1C NOP Mirror 0x00

0x1D NOP Mirror 0x00

0x1E NOP Mirror 0x00

0x1F IRQ Sets interrupt request bit

0x20 POLY F3 Monochrome, Opaque 3-sided Polygon

0x21 POLY F3 Mirror 0x20

0x22 POLY F3S Monochrome, Semi-transparent 3-sided Polygon

0x23 POLY F3S Mirror 0x22

0x24 POLY FT3 Textured, Blended, Opaque 3-sided Polygon

0x25 POLY FT3R Textured, Raw, Opaque 3-sided Polygon

Continued on next page

65

Table A.1 – continued from previous page

Opcode Command Name Description

0x26 POLY FT3S Textured, Blended, Semi-

transparent 3-sided Polygon

0x27 POLY FT3RS Textured, Raw, Semi-transparent 3-sided Polygon

0x28 POLY F4 Monochrome, Opaque 4-sided Polygon

0x29 POLY F4 Mirror 0x28

0x2A POLY F4S Monochrome, Semi-transparent 4-sided Polygon

0x2B POLY F4S Mirror 0x2A

0x2C POLY FT4 Textured, Blended, Opaque 4-sided Polygon

0x2D POLY FT4R Textured, Raw, Opaque 4-sided Polygon

0x2E POLY FT4S Textured, Blended, Semi-transparent 4-sided Polygon

0x2F POLY FT4RS Textured, Raw, Semi-transparent 4-sided Polygon

0x30 POLY G3 Gouraud Shaded, Opaque 3-sided Polygon

0x31 POLY G3 Mirror 0x30

0x32 POLY G3S Gouraud Shaded, Semi-

transparent 3-sided Polygon

0x33 POLY G3S Mirror 0x32

0x34 POLY GT3 Gouraud Shaded, Textured, Blended, Opaque 3-sided Polygon

0x35 POLY FT3R Strange Mirror 0x25

0x36 POLY GT3S Gouraud Shaded, Textured, Blended, Semi-

transparent 3-sided Polygon

0x37 POLY FT3RS Strange Mirror 0x27

0x38 POLY G4 Gouraud Shaded, Opaque 4-sided Polygon

0x39 POLY G4 Mirror 0x30

0x3A POLY G4S Gouraud Shaded, Semi-transparent 4-sided Polygon

Continued on next page

66

Table A.1 – continued from previous page

Opcode Command Name Description

0x3B POLY G4S Mirror 0x32

0x3C POLY GT4 Gouraud Shaded, Textured, Blended, Opaque 4-sided Polygon

0x3D POLY FT4R Strange Mirror 0x2D

0x3E POLY GT4S Gouraud Shaded, Textured, Blended, Semi-

transparent 4-sided Polygon

0x3F POLY FT4RS Strange Mirror 0x2F

0x40 LINE F2 Monochrome, Opaque Line

0x41

0x42 LINE F2S Monochrome, Semi-transparent Line

0x43

0x44

0x45

0x46

0x47

0x48 LINE FP Monochrome, Opaque Poly-line

0x49

0x4A LINE FPS Monochrome, Semi-transparent Poly-line

0x4B

0x4C

0x4D

0x4E

0x4F

0x50 LINE G2 Gouraud Shaded, Opaque Line

0x51

Continued on next page

67

Table A.1 – continued from previous page

Opcode Command Name Description

0x52 LINE G2S Gouraud Shaded, Semi-transparent Line

0x53

0x54

0x55

0x56

0x57

0x58 LINE GP Gouraud Shaded, Opaque Poly-line

0x59

0x5A LINE GPS Gouraud Shaded, Semi-transparent Poly-line

0x5B

0x5C

0x5D

0x5E

0x5F

0x60 TILE Monochrome, Opaque, Variable-size Rectangle

0x61

0x62 TILE S Monochrome, Semi-transparent, Variable-size Rectangle

0x63

0x64 SPRT Textured, Blended, Opaque, Variable-size Rectangle

0x65 SPRT R Textured, Raw, Opaque, Variable-size Rectangle

0x66 SPRT S Textured, Blended, Semi-transparent, Variable-size Rectangle

0x67 SPRT RS Textured, Raw, Semi-transparent, Variable-size Rectangle

0x68 TILE 1 Monochrome, Opaque, 1x1 Rectangle

0x69

Continued on next page

68

Table A.1 – continued from previous page

Opcode Command Name Description

0x6A TILE 1S Monochrome, Semi-transparent, 1x1 Rectangle

0x6B

0x6C SPRT 1 Textured, Blended, Opaque, 1x1 Rectangle

0x6D SPRT 1R Textured, Raw, Opaque, 1x1 Rectangle

0x6E SPRT 1S Textured, Blended, Semi-transparent, 1x1 Rectangle

0x6F SPRT 1RS Textured, Raw, Semi-transparent, 1x1 Rectangle

0x70 TILE 8 Monochrome, Opaque, 8x8 Rectangle

0x71

0x72 TILE 8S Monochrome, Semi-transparent, 8x8 Rectangle

0x73

0x74 SPRT 8 Textured, Blended, Opaque, 8x8 Rectangle

0x75 SPRT 8R Textured, Raw, Opaque, 8x8 Rectangle

0x76 SPRT 8S Textured, Blended, Semi-transparent, 8x8 Rectangle

0x77 SPRT 8RS Textured, Raw, Semi-transparent, 8x8 Rectangle

0x78 TILE 16 Monochrome, Opaque, 16x16 Rectangle

0x79

0x7A TILE 16S Monochrome, Semi-transparent, 16x16 Rectangle

0x7B

0x7C SPRT 16 Textured, Blended, Opaque, 16x16 Rectangle

0x7D SPRT 16R Textured, Raw, Opaque, 16x16 Rectangle

0x7E SPRT 16S Textured, Blended, Semi-transparent, 16x16 Rectangle

0x7F SPRT 16RS Textured, Raw, Semi-transparent, 16x16 Rectangle

0x80 CPYRECT V2V Copy pixels from a rectangle in VRAM

to another part of VRAM

Continued on next page

69

Table A.1 – continued from previous page

Opcode Command Name Description

0x81 CPYRECT V2V Mirror 0x80

0x82 CPYRECT V2V Mirror 0x80

0x83 CPYRECT V2V Mirror 0x80

0x84 CPYRECT V2V Mirror 0x80

0x85 CPYRECT V2V Mirror 0x80

0x86 CPYRECT V2V Mirror 0x80

0x87 CPYRECT V2V Mirror 0x80

0x88 CPYRECT V2V Mirror 0x80

0x89 CPYRECT V2V Mirror 0x80

0x8A CPYRECT V2V Mirror 0x80

0x8B CPYRECT V2V Mirror 0x80

0x8C CPYRECT V2V Mirror 0x80

0x8D CPYRECT V2V Mirror 0x80

0x8E CPYRECT V2V Mirror 0x80

0x8F CPYRECT V2V Mirror 0x80

0x90 CPYRECT V2V Mirror 0x80

0x91 CPYRECT V2V Mirror 0x80

0x92 CPYRECT V2V Mirror 0x80

0x93 CPYRECT V2V Mirror 0x80

0x94 CPYRECT V2V Mirror 0x80

0x95 CPYRECT V2V Mirror 0x80

0x96 CPYRECT V2V Mirror 0x80

0x97 CPYRECT V2V Mirror 0x80

0x98 CPYRECT V2V Mirror 0x80

Continued on next page

70

Table A.1 – continued from previous page

Opcode Command Name Description

0x99 CPYRECT V2V Mirror 0x80

0x9A CPYRECT V2V Mirror 0x80

0x9B CPYRECT V2V Mirror 0x80

0x9C CPYRECT V2V Mirror 0x80

0x9D CPYRECT V2V Mirror 0x80

0x9E CPYRECT V2V Mirror 0x80

0x9F CPYRECT V2V Mirror 0x80

0xA0 CPYRECT C2V Copy data from a rectangle from

Main Memory to VRAM

0xA1 CPYRECT C2V Mirror 0xA0

0xA2 CPYRECT C2V Mirror 0xA0

0xA3 CPYRECT C2V Mirror 0xA0

0xA4 CPYRECT C2V Mirror 0xA0

0xA5 CPYRECT C2V Mirror 0xA0

0xA6 CPYRECT C2V Mirror 0xA0

0xA7 CPYRECT C2V Mirror 0xA0

0xA8 CPYRECT C2V Mirror 0xA0

0xA9 CPYRECT C2V Mirror 0xA0

0xAA CPYRECT C2V Mirror 0xA0

0xAB CPYRECT C2V Mirror 0xA0

0xAC CPYRECT C2V Mirror 0xA0

0xAD CPYRECT C2V Mirror 0xA0

0xAE CPYRECT C2V Mirror 0xA0

0xAF CPYRECT C2V Mirror 0xA0

Continued on next page

71

Table A.1 – continued from previous page

Opcode Command Name Description

0xB0 CPYRECT C2V Mirror 0xA0

0xB1 CPYRECT C2V Mirror 0xA0

0xB2 CPYRECT C2V Mirror 0xA0

0xB3 CPYRECT C2V Mirror 0xA0

0xB4 CPYRECT C2V Mirror 0xA0

0xB5 CPYRECT C2V Mirror 0xA0

0xB6 CPYRECT C2V Mirror 0xA0

0xB7 CPYRECT C2V Mirror 0xA0

0xB8 CPYRECT C2V Mirror 0xA0

0xB9 CPYRECT C2V Mirror 0xA0

0xBA CPYRECT C2V Mirror 0xA0

0xBB CPYRECT C2V Mirror 0xA0

0xBC CPYRECT C2V Mirror 0xA0

0xBD CPYRECT C2V Mirror 0xA0

0xBE CPYRECT C2V Mirror 0xA0

0xBF CPYRECT C2V Mirror 0xA0

0xC0 CPYRECT V2C Copy pixels from a rectangle

of VRAM to Main Memory

0xC1 CPYRECT V2C Mirror 0xC0

0xC2 CPYRECT V2C Mirror 0xC0

0xC3 CPYRECT V2C Mirror 0xC0

0xC4 CPYRECT V2C Mirror 0xC0

0xC5 CPYRECT V2C Mirror 0xC0

0xC6 CPYRECT V2C Mirror 0xC0

Continued on next page

72

Table A.1 – continued from previous page

Opcode Command Name Description

0xC7 CPYRECT V2C Mirror 0xC0

0xC8 CPYRECT V2C Mirror 0xC0

0xC9 CPYRECT V2C Mirror 0xC0

0xCA CPYRECT V2C Mirror 0xC0

0xCB CPYRECT V2C Mirror 0xC0

0xCC CPYRECT V2C Mirror 0xC0

0xCD CPYRECT V2C Mirror 0xC0

0xCE CPYRECT V2C Mirror 0xC0

0xCF CPYRECT V2C Mirror 0xC0

0xD0 CPYRECT V2C Mirror 0xC0

0xD1 CPYRECT V2C Mirror 0xC0

0xD2 CPYRECT V2C Mirror 0xC0

0xD3 CPYRECT V2C Mirror 0xC0

0xD4 CPYRECT V2C Mirror 0xC0

0xD5 CPYRECT V2C Mirror 0xC0

0xD6 CPYRECT V2C Mirror 0xC0

0xD7 CPYRECT V2C Mirror 0xC0

0xD8 CPYRECT V2C Mirror 0xC0

0xD9 CPYRECT V2C Mirror 0xC0

0xDA CPYRECT V2C Mirror 0xC0

0xDB CPYRECT V2C Mirror 0xC0

0xDC CPYRECT V2C Mirror 0xC0

0xDD CPYRECT V2C Mirror 0xC0

0xDE CPYRECT V2C Mirror 0xC0

Continued on next page

73

Table A.1 – continued from previous page

Opcode Command Name Description

0xDF CPYRECT V2C Mirror 0xC0

0xE0 NOP Mirror 0x00

0xE1 DR MODE Sets various drawing settings

0xE2 DR TWIN Sets the texture window

0xE3 DR AREA TL Sets the drawing area’s top-left corner

0xE4 DR AREA BR Sets the drawing area’s bottom-right corner

0xE5 DR OFFSET Sets the drawing offset

0xE6 DR MASK SET Sets the drawing mask settings

0xE7 NOP Mirror 0x00

0xE8 NOP Mirror 0x00

0xE9 NOP Mirror 0x00

0xEA NOP Mirror 0x00

0xEB NOP Mirror 0x00

0xEC NOP Mirror 0x00

0xED NOP Mirror 0x00

0xEE NOP Mirror 0x00

0xEF NOP Mirror 0x00

0xF0

0xF1

0xF2

0xF3

0xF4

0xF5

0xF6

Continued on next page

74

Table A.1 – continued from previous page

Opcode Command Name Description

0xF7

0xF8

0xF9

0xFA

0xFB

0xFC

0xFD

0xFE

0xFF

A.2 GP1 Command List

Table A.2: GP1 Commands (Top 2 Bits Ignored)

Opcode Command Name Description

0x00 RESET Resets the GPU

0x01 RESET CMD Resets the command FIFO

0x02 ACK IRQ Acknowledge interrupt

0x03 DISP EN Enables display

0x04 DMA DIR Sets DMA direction

0x05 DISP AREA TL Sets the display area’s top-left corner

0x06 DISP HRZ Sets the display area’s horizontal range

0x07 DISP VTR Sets the display area’s vertical range

0x08 DISP MODE Sets various display settings

Continued on next page

75

Table A.2 – continued from previous page

Opcode Command Name Description

0x09 TX DIS Disables textures

0x0A NOP

0x0B NOP

0x0C NOP

0x0D NOP

0x0E NOP

0x0F NOP

0x10 GET INFO Gets GPU information based on argument

0x11 GET INFO Mirror 0x10

0x12 GET INFO Mirror 0x10

0x13 GET INFO Mirror 0x10

0x14 GET INFO Mirror 0x10

0x15 GET INFO Mirror 0x10

0x16 GET INFO Mirror 0x10

0x17 GET INFO Mirror 0x10

0x18 GET INFO Mirror 0x10

0x19 GET INFO Mirror 0x10

0x1A GET INFO Mirror 0x10

0x1B GET INFO Mirror 0x10

0x1C GET INFO Mirror 0x10

0x1D GET INFO Mirror 0x10

0x1E GET INFO Mirror 0x10

0x1F GET INFO Mirror 0x10

0x20 TX DIS ANC Defunct texture disable command

Continued on next page

76

Table A.2 – continued from previous page

Opcode Command Name Description

0x21 NOP

0x22 NOP

0x23 NOP

0x24 NOP

0x25 NOP

0x26 NOP

0x27 NOP

0x28 NOP

0x29 NOP

0x2A NOP

0x2B NOP

0x2C NOP

0x2D NOP

0x2E NOP

0x2F NOP

0x30 NOP

0x31 NOP

0x32 NOP

0x33 NOP

0x34 NOP

0x35 NOP

0x36 NOP

0x37 NOP

0x38 NOP

Continued on next page

77

Table A.2 – continued from previous page

Opcode Command Name Description

0x39 NOP

0x3A NOP

0x3B NOP

0x3C NOP

0x3D NOP

0x3E NOP

0x3F NOP

78

B CDROM Memory Map

B.1 CDROM Memory Map

Port 0 1 2 3
Address R W R W R W R W
1F801800 Status Register
1F801801 Response Cmd Response Response Response AudioVol
1F801802 Data Param Data IntEnable Data AudioVol Data AudioVol
1F801803 IntEnable Request IntFlag IntFlag IntEnable AudioVol IntFlag ApplyVol

79

C Hardware Registers

Expansion Region 1
1F000000h 80000h Expansion Region (default 512 Kbytes, max 8 MBytes)
1F000000h 100h Expansion ROM Header (IDs and Entrypoints)

Scratchpad
1F800000h 400h Scratchpad (1K Fast RAM) (Data Cache mapped to fixed address)

Memory Control 1
1F801000h 4 Expansion 1 Base Address (usually 1F000000h)
1F801004h 4 Expansion 2 Base Address (usually 1F802000h)
1F801008h 4 Expansion 1 Delay/Size (usually 0013243Fh; 512Kbytes 8bit-bus)
1F80100Ch 4 Expansion 3 Delay/Size (usually 00003022h; 1 byte)
1F801010h 4 BIOS ROM Delay/Size (usually 0013243Fh; 512Kbytes 8bit-bus)
1F801014h 4 SPU_DELAY Delay/Size (usually 200931E1h)
1F801018h 4 CDROM_DELAY Delay/Size (usually 00020843h or 00020943h)
1F80101Ch 4 Expansion 2 Delay/Size (usually 00070777h; 128-bytes 8bit-bus)
1F801020h 4 COM_DELAY / COMMON_DELAY (00031125h or 0000132Ch or 00001325h)

Peripheral I/O Ports
1F801040h 1/4 JOY_DATA Joypad/Memory Card Data (R/W)
1F801044h 4 JOY_STAT Joypad/Memory Card Status (R)
1F801048h 2 JOY_MODE Joypad/Memory Card Mode (R/W)
1F80104Ah 2 JOY_CTRL Joypad/Memory Card Control (R/W)
1F80104Eh 2 JOY_BAUD Joypad/Memory Card Baudrate (R/W)
1F801050h 1/4 SIO_DATA Serial Port Data (R/W)
1F801054h 4 SIO_STAT Serial Port Status (R)
1F801058h 2 SIO_MODE Serial Port Mode (R/W)
1F80105Ah 2 SIO_CTRL Serial Port Control (R/W)
1F80105Ch 2 SIO_MISC Serial Port Internal Register (R/W)
1F80105Eh 2 SIO_BAUD Serial Port Baudrate (R/W)

Memory Control 2
1F801060h 4/2 RAM_SIZE (usually 00000B88h; 2MB RAM mirrored in first 8MB)

Interrupt Control
1F801070h 2 I_STAT - Interrupt status register
1F801074h 2 I_MASK - Interrupt mask register

DMA Registers
1F80108xh DMA0 channel 0 - MDECin
1F80109xh DMA1 channel 1 - MDECout
1F8010Axh DMA2 channel 2 - GPU (lists + image data)
1F8010Bxh DMA3 channel 3 - CDROM
1F8010Cxh DMA4 channel 4 - SPU
1F8010Dxh DMA5 channel 5 - PIO (=Expansion Port?)
1F8010Exh DMA6 channel 6 - OTC (reverse clear OT) (GPU related)
1F8010F0h DPCR - DMA Control register
1F8010F4h DICR - DMA Interrupt register
1F8010F8h unknown
1F8010FCh unknown

80

1F801801h.R.x 1 CD Response Fifo (R) (usually with Index1)
1F801802h.R.x 1/2 CD Data Fifo - 8bit/16bit (R) (usually with Index0..1)
1F801803h.R.0 1 CD Interrupt Enable Register (R)
1F801803h.R.1 1 CD Interrupt Flag Register (R/W)
1F801803h.R.2 1 CD Interrupt Enable Register (R) (Mirror)
1F801803h.R.3 1 CD Interrupt Flag Register (R/W) (Mirror)
1F801801h.W.0 1 CD Command Register (W)
1F801802h.W.0 1 CD Parameter Fifo (W)
1F801803h.W.0 1 CD Request Register (W)
1F801801h.W.1 1 Unknown/unused
1F801802h.W.1 1 CD Interrupt Enable Register (W)
1F801803h.W.1 1 CD Interrupt Flag Register (R/W)
1F801801h.W.2 1 Unknown/unused
1F801802h.W.2 1 CD Audio Volume for Left-CD-Out to Left-SPU-Input (W)
1F801803h.W.2 1 CD Audio Volume for Left-CD-Out to Right-SPU-Input (W)
1F801801h.W.3 1 CD Audio Volume for Right-CD-Out to Right-SPU-Input (W)
1F801802h.W.3 1 CD Audio Volume for Right-CD-Out to Left-SPU-Input (W)
1F801803h.W.3 1 CD Audio Volume Apply Changes (by writing bit5=1)

GPU Registers
1F801810h.Write 4 GP0 Send GP0 Commands/Packets (Rendering and VRAM Access)
1F801814h.Write 4 GP1 Send GP1 Commands (Display Control)
1F801810h.Read 4 GPUREAD Read responses to GP0(C0h) and GP1(10h) commands
1F801814h.Read 4 GPUSTAT Read GPU Status Register

MDEC Registers
1F801820h.Write 4 MDEC Command/Parameter Register (W)
1F801820h.Read 4 MDEC Data/Response Register (R)
1F801824h.Write 4 MDEC Control/Reset Register (W)
1F801824h.Read 4 MDEC Status Register (R)

SPU Voice 0..23 Registers
1F801C00h+N*10h 4 Voice 0..23 Volume Left/Right
1F801C04h+N*10h 2 Voice 0..23 ADPCM Sample Rate
1F801C06h+N*10h 2 Voice 0..23 ADPCM Start Address
1F801C08h+N*10h 4 Voice 0..23 ADSR Attack/Decay/Sustain/Release
1F801C0Ch+N*10h 2 Voice 0..23 ADSR Current Volume
1F801C0Eh+N*10h 2 Voice 0..23 ADPCM Repeat Address

Timers (aka Root counters)
1F80110xh Timer 0 Dotclock
1F80111xh Timer 1 Horizontal Retrace
1F80112xh Timer 2 1/8 system clock

CDROM Registers (Address.Read/Write.Index)
1F801800h.x.x 1 CD Index/Status Register (Bit0-1 R/W, Bit2-7 Read Only)

81

SPU Reverb Configuration Area
1F801DC0h 2 dAPF1 Reverb APF Offset 1
1F801DC2h 2 dAPF2 Reverb APF Offset 2
1F801DC4h 2 vIIR Reverb Reflection Volume 1
1F801DC6h 2 vCOMB1 Reverb Comb Volume 1
1F801DC8h 2 vCOMB2 Reverb Comb Volume 2
1F801DCAh 2 vCOMB3 Reverb Comb Volume 3
1F801DCCh 2 vCOMB4 Reverb Comb Volume 4
1F801DCEh 2 vWALL Reverb Reflection Volume 2
1F801DD0h 2 vAPF1 Reverb APF Volume 1
1F801DD2h 2 vAPF2 Reverb APF Volume 2
1F801DD4h 4 mSAME Reverb Same Side Reflection Address 1 Left/Right
1F801DD8h 4 mCOMB1 Reverb Comb Address 1 Left/Right
1F801DDCh 4 mCOMB2 Reverb Comb Address 2 Left/Right
1F801DE0h 4 dSAME Reverb Same Side Reflection Address 2 Left/Right
1F801DE4h 4 mDIFF Reverb Different Side Reflection Address 1 Left/Right
1F801DE8h 4 mCOMB3 Reverb Comb Address 3 Left/Right
1F801DECh 4 mCOMB4 Reverb Comb Address 4 Left/Right
1F801DF0h 4 dDIFF Reverb Different Side Reflection Address 2 Left/Right
1F801DF4h 4 mAPF1 Reverb APF Address 1 Left/Right
1F801DF8h 4 mAPF2 Reverb APF Address 2 Left/Right
1F801DFCh 4 vIN Reverb Input Volume Left/Right

SPU Control Registers
1F801D80h 4 Main Volume Left/Right
1F801D84h 4 Reverb Output Volume Left/Right
1F801D88h 4 Voice 0..23 Key ON (Start Attack/Decay/Sustain)
1F801D8Ch 4 Voice 0..23 Key OFF (Start Release)
1F801D90h 4 Voice 0..23 Channel FM (pitch lfo) mode
1F801D94h 4 Voice 0..23 Channel Noise mode
1F801D98h 4 Voice 0..23 Channel Reverb mode
1F801D9Ch 4 Voice 0..23 Channel ON/OFF (status)
1F801DA0h 2 Unknown? (R) or (W)
1F801DA2h 2 Sound RAM Reverb Work Area Start Address
1F801DA4h 2 Sound RAM IRQ Address
1F801DA6h 2 Sound RAM Data Transfer Address
1F801DA8h 2 Sound RAM Data Transfer Fifo
1F801DAAh 2 SPU Control Register (SPUCNT)
1F801DACh 2 Sound RAM Data Transfer Control
1F801DAEh 2 SPU Status Register (SPUSTAT)
1F801DB0h 4 CD Volume Left/Right
1F801DB4h 4 Extern Volume Left/Right
1F801DB8h 4 Current Main Volume Left/Right
1F801DBCh 4 Unknown? (R/W)

82

SPU Internal Registers
1F801E00h+N*04h 4 Voice 0..23 Current Volume Left/Right
1F801E60h 20h Unknown? (R/W)
1F801E80h 180h Unknown? (Read: FFh-filled) (Unused or Write only?)

Expansion Region 2 (default 128 bytes, max 8 KBytes)
1F802000h 80h Expansion Region (8bit data bus, crashes on 16bit access?)

Expansion Region 2 - Dual Serial Port (for TTY Debug Terminal)
1F802020h/1st DUART Mode Register 1.A (R/W)
1F802020h/2nd DUART Mode Register 2.A (R/W)
1F802021h/Read DUART Status Register A (R)
1F802021h/Write DUART Clock Select Register A (W)
1F802022h/Read DUART Toggle Baud Rate Generator Test Mode (Read=Strobe)
1F802022h/Write DUART Command Register A (W)
1F802023h/Read DUART Rx Holding Register A (FIFO) (R)
1F802023h/Write DUART Tx Holding Register A (W)
1F802024h/Read DUART Input Port Change Register (R)
1F802024h/Write DUART Aux. Control Register (W)
1F802025h/Read DUART Interrupt Status Register (R)
1F802025h/Write DUART Interrupt Mask Register (W)
1F802026h/Read DUART Counter/Timer Current Value, Upper/Bit15-8 (R)
1F802026h/Write DUART Counter/Timer Reload Value, Upper/Bit15-8 (W)
1F802027h/Read DUART Counter/Timer Current Value, Lower/Bit7-0 (R)
1F802027h/Write DUART Counter/Timer Reload Value, Lower/Bit7-0 (W)
1F802028h/1st DUART Mode Register 1.B (R/W)
1F802028h/2nd DUART Mode Register 2.B (R/W)
1F802029h/Read DUART Status Register B (R)
1F802029h/Write DUART Clock Select Register B (W)
1F80202Ah/Read DUART Toggle 1X/16X Test Mode (Read=Strobe)
1F80202Ah/Write DUART Command Register B (W)
1F80202Bh/Read DUART Rx Holding Register B (FIFO) (R)
1F80202Bh/Write DUART Tx Holding Register B (W)
1F80202Ch/None DUART Reserved Register (neither R nor W)
1F80202Dh/Read DUART Input Port (R)
1F80202Dh/Write DUART Output Port Configuration Register (W)
1F80202Eh/Read DUART Start Counter Command (Read=Strobe)
1F80202Eh/Write DUART Set Output Port Bits Command (Set means Out=LOW)
1F80202Fh/Read DUART Stop Counter Command (Read=Strobe)
1F80202Fh/Write DUART Reset Output Port Bits Command (Reset means Out=HIGH)

83

Expansion Region 2 - Int/Dip/Post
1F802030h Secondary IRQ10 Flags
1F802040h "Dip switches"
1F802041h POST (external 7 segment display to indicate BIOS boot status)
1F802070h POST2 (similar to POST, but PS2 BIOS uses this address)

Expansion Region 2 - Nocash Emulation Expansion
1F802060h Emu-Expansion ID1 "E" (R)
1F802061h Emu-Expansion ID2 "X" (R)
1F802062h Emu-Expansion ID3 "P" (R)
1F802063h Emu-Expansion Version (01h) (R)
1F802064h Emu-Expansion Enable1 "O" (R/W)
1F802065h Emu-Expansion Enable2 "N" (R/W)
1F802066h Emu-Expansion Halt (R)
1F802067h Emu-Expansion Turbo Mode Flags (R/W)

Expansion Region 3 (default 1 byte, max 2 MBytes)
1FA00000h - Not used by BIOS or any PSX games
1FA00000h - POST3 (similar to POST, but PS2 BIOS uses this address)

BIOS Region (default 512 Kbytes, max 4 MBytes)
1FC00000h 80000h BIOS ROM (512Kbytes) (Reset Entrypoint at BFC00000h)

Memory Control 3 (Cache Control)
FFFE0130h 4 Cache Control

84

D The Fence

Figure D.1: Front of the Fence

They texted me at 3 AM. I ignored them. -Anita

Figure D.2: Back of the Fence

85

	Contents
	1 Overview
	1.0.1 Schedule

	2 Tools & Platform
	2.1 Xilinx
	2.1.1 Virtex-7 FPGA VC707 Evaluation Board
	2.1.2 Vivado Design Suite

	2.2 Altera
	2.2.1 DE2-115
	2.2.2 Quartus

	2.3 Miscellaneous
	2.3.1 No$PSX Debug Emulator
	2.3.2 Synopsys VCS
	2.3.3 SPIM MIPS Simulator
	2.3.4 Python

	3 Components
	3.1 System
	3.2 CPU
	3.2.1 MIPS
	3.2.2 GTE
	3.2.3 CPU Modifications

	3.3 GPU
	3.3.1 Overview
	3.3.2 Interpolation
	3.3.3 Testing

	3.4 MDEC
	3.5 Video
	3.5.1 Adventures with HDMI
	3.5.2 VRAM and Display

	3.6 Memory
	3.6.1 BIOS
	3.6.2 Scratch Pad
	3.6.3 Main Memory
	3.6.4 Hardware Registers
	3.6.5 Memory Controller & Address Interpreter

	3.7 DMA
	3.7.1 Mode 0
	3.7.2 Mode 1
	3.7.3 Mode 2

	3.8 Controllers
	3.9 Game Data

	4 Status
	4.1 What is Done
	4.2 What Needs to be Done

	5 Words of Wisdom
	5.1 Don't Take on Two Major Challenges at Once
	5.2 Follow a Nice Style Guide
	5.3 Interfacing with the Outside is Not Reliable
	5.4 Selections from our ``Stupid Things" Document

	6 For Future Iterations
	7 Personal Statements
	7.1 Mike Rosen
	7.2 Anita Zhang
	7.3 Arnob Mallick

	8 Acknowledgements
	A GPU Tables
	A.1 GP0 Command List
	A.2 GP1 Command List

	B CDROM Memory Map
	B.1 CDROM Memory Map

	C Hardware Registers
	D The Fence

