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Statement of Use and Contact Information 
 

The members of this team, Joseph Carlos, Elon Bauer, and Alice Tsai, hereby give permission 

for anyone to use the code they produced for this project in an academic, educational, or 

otherwise non-profit-generating manner as long as the original authors (the members of this 

team) are given credit for their work. 

 

If you have questions about the project, you can email us at: 

 

Joseph Carlos: jdcarlos1@gmail.com 

Elon Bauer: eob@andrew.cmu.edu 

Alice Tsai: alicet@andrew.cmu.edu 

 

The source code can (hopefully) be found at https://github.com/nightslide7/Gameboy. 
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Project Description 
 

What we set out to do 

We set out to make a fully functional original Game Boy on an FPGA. The Game Boy supports 

any original Game Boy cartridge, grayscale graphics, user input through buttons, four-channel 

stereo sound, and a serial link cable for multiplayer capability. There are also other functions 

like an IR communication device that were not considered. 

 

What we actually achieved 

What we actually created was a mostly functional Game Boy, which supports Tetris with sound, 

full control, and a link cable. We created a working CPU, which interfaces correctly with the 

GPU, cartridge connector, audio interface, NES controller and link cable. The GPU does not 

support sprite manipulations but otherwise works. The cartridge connector should support all 

games, but only Tetris works properly. Three of the four audio channels were implemented and 

work for all intents and purposes. The NES controller interface is perfect, and the link cable 

basically works sometimes. Here is a shot of our working design playing Tetris: 
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And here’s a picture of our elaborated design in Vivado: 
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Development Tools Overview 
 

Board 

We used a Xilinx Virtex-5 LX 110T FPGA on a Xilinx development board. The documentation for 

the board is equivalent to the documentation for the ML505 development board. 

 

Xilinx Tools 

We used Xilinx’s ISE 14.3 IDE to compile and synthesize our code, as well as its built-in CORE 

Generator tool for generating block RAM and Chipscope modules. We used ChipScope 

extensively to debug the board. 

 

Operating Systems and Workstations 

The lab machines given to us had Red Hat Enterprise Linux (RHEL) installed on them. RHEL does 

not play nice with Xilinx tools. We lost cable drivers three times during the semester, halting all 

development for two members of the group, as they had no backup machines. Do not use Xilinx 

tools with RHEL if you know what’s good for you. Joseph luckily ditched these workstations 

early on and installed ISE on his own laptop running Windows 7. He found that this operating 

system runs the design tools with no problems. 

 

Version Control 

We created a Git repository, hosted on GitHub, early on in the project and used it to manage 

our code throughout the semester. 

 

Hardware Overview 

Our Game Boy’s hardware consists of a custom CPU, a GPU for tile mapping, 8Kb of work RAM, 

8Kb of video RAM, a sound chip, a cartridge connector, a link cable driver, a controller interface, 

a set of timers, and a block transfer module. 

 

The CPU executes code read in from the cartridge, and sets memory-mapped registers in the 

other modules to control them. The modules also present various status registers for the CPU 

to access. Four of the modules generate interrupts that cause the CPU to start execution of 

interrupt handlers: the GPU, the controller, the timers, and the link cable. 
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CPU 
 

This section will attempt to outline our design as well as call attention to things that were 

unclear from existing documentation. 

 

Overview 

The Game Boy CPU is an 8-bit Z80/8080 hybrid with some custom functionality added by 

Nintendo. There are approximately 48 different instruction groups, such as bit shifting, 8-bit 

arithmetic, 16-bit loads, etc. 

 

Description 

The most complete document describing the CPU is the Game Boy Programming Manual, 

Nintendo’s reference for people making games for the Game Boy. A copy of this can be found 

at http://www.romhacking.net/documents/544/. A summary version of this manual with some 

additional information, the Game Boy CPU manual, can be found at 

http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf. And finally, an HTML version of the CPU 

manual called the PAN docs can be found at http://nocash.emubase.de/pandocs.htm. 

 

Timing 

Game Boy documentation refers to “machine cycles” and “T cycles.” This was initially confusing. 

A T cycle is an actual clock cycle and a machine cycle is 4 T cycles. Machine cycles are just a 

shorthand that Nintendo engineers used to calculate timing. For the purposes of a Verilog 

Game Boy emulator, machine cycles are irrelevant. When this document refers to a cycle, it 

refers to a T cycle. 

 

The original CPU runs at 222 Hz, which is 4.194304 MHz. Our CPU, however, runs at 4.125 MHz 

due to the limited clocking functionality of the development board. 

 

Each instruction executes in 4, 8, 12, 16, 20, or 24 cycles. Conditional instructions have a 

variable number of cycles (fewer when the condition is not true). The instruction timing is 

extremely important and must be preserved in any Game Boy emulation system, hardware or 

otherwise. The programmers of the Game Boy expected the cycle values to be constant across 

Game Boy systems. Unfortunately the official Game Boy Programmer’s Manual incorrectly 

specifies a number of these timings. A list of the correct timings can be found at 

http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html. 

 

http://www.romhacking.net/documents/544/
http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf
http://nocash.emubase.de/pandocs.htm
http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html
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Special CB Instructions 

The CPU has support for multi-byte instructions in the form of so-called “CB instructions.” 

These are simply instructions prefixed with the byte 0xCB. When 0xCB is read as the next 

instruction, the CPU reads the next byte as a CB instruction rather than a normal instruction. 

For example, the instruction 0x80 normally corresponds to ADD A, B. However, if the CPU reads 

0xCB and then 0x80, the instruction corresponds to RES 0, B (reset bit 0 of register B). 

 

Architecture 

The architecture of our CPU deviates as little as possible from the original architecture of the 

Z80/8080, at least as far as we could find documentation for it. A good resource on the 

hardware design of the Z80 can be found at 

http://www.msxarchive.nl/pub/msx/mirrors/msx2.com/zaks/z80prg02.htm. 

 

Our design is a multi-cycle microcoded non-pipelined in-order design. The basic components 

are the register file, ALU, internal and external data buses, input and output buffers, and the all-

important decode module. 

 

The CPU also includes a block of “high memory” separate from the rest of work RAM. This 

module is implemented as a Verilog array and can be accessed by the CPU even if the GPU or 

DMA module is accessing memory elsewhere on the address and data buses. When the CPU 

reads or writes to this section of memory, it does not output anything on the address or data 

buses, or the read and write enable signals. 

 

The CPU interfaces with the rest of the system through the interrupt register inputs, a single 

signal to disable CPU memory access (needed for DMA transfers), and most importantly the 

shared address and data buses. The CPU assumes that its bus interface to memory is 

asynchronous read, single-cycle write, since every memory component of the Game Boy is an 

SRAM chip. 

 

Below is a diagram of the CPU’s core modules. This diagram does not include all the signals in 

the design, just the control signals from the decode module and a few extra useful labels (such 

as bus labels). The reason for this is that we used this diagram to write microcode, so we 

wanted a simple overview of the system with just the control signals we needed. Be aware that 

there are additional signals in the decode module that simplify some things, such as 

incrementing the PC specifically. 

 

http://www.msxarchive.nl/pub/msx/mirrors/msx2.com/zaks/z80prg02.htm
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Decode 

The decode module of the CPU contains logic that generates control signals for all the hardware 

in the CPU, including the timing logic and interrupt handling control flow. It is essentially a few 

thousand lines of microcode in a giant case statement on the current instruction, then smaller 

case statements - per instruction category - on the cycle number. 

 

Interrupts 

Interrupts are handled by examining the contents of the IF and IE registers on each 0 cycle. If an 

interrupt occurs and is enabled, the CPU resets the IF bit for that interrupt and proceeds to 

handle it. In order to interface with the IF register, external logic is required. This logic needs to 

load the IF with its current contents plus the new interrupt bit of the interrupting module. The 

CPU will then do the right thing with it. 
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The ALU 

The ALU is a basic design with its own set of opcodes, two inputs, and one output. It also 

outputs the result flags as well as taking the current flags as an input. The flags are Zero, 

Negative, Half-carry, and Carry (Z, N, H, C). The flags are set differently for each instruction. For 

example, RLCA (rotate A left through the carry flag) sets Z, N, and H to 0 and sets C to A[7]. 

However, RLC r (rotate register r left through the carry flag) sets N and H to 0 and C to r[7], but 

sets Z to 1 if the result is 0, and Z to 0 otherwise. 

 

The DAA Instruction 

The worst part of the ALU was the DAA instruction, which adjusts the result of a BCD operation 

that occurred in A. For example, if A contains 0x19, and then you add 0x19 to A, A will contain 

0x32. After a DAA instruction, as long as F hasn’t changed, A will be adjusted to 0x38, the BCD 

result of 0x19 + 0x19. We adapted code from the Internet that correctly calculates DAA on 

every possible combination of A and the flags. That code is found at 

http://forums.nesdev.com/viewtopic.php?t=9088 in a forum post by user DParrott. 

 

Since the DAA instruction has so many edge cases, is essentially magic, and is almost impossible 

to implement from scratch, we’re going to include the Verilog description here for anyone in 

the future who might want to use it. The signals are labeled with their types above the case. 

`ALU_DAA: begin is a case in a switch statement on the ALU opcode. This switch statement is 

inside an always @(*) block. During the DAA instruction, alu_data1_in is connected to the 

output of A and alu_data_out is connected to the input of A. 

 
output reg [7:0] alu_data_out; 

output reg [3:0] alu_flags_out; 

input [7:0]      alu_data0_in, alu_data1_in; 

input [3:0]      alu_flags_in; 

 

parameter 

   F_Z = 3, F_N = 2, F_H = 1, F_C = 0; 

 

reg [8:0]        intermediate_result1, intermediate_result2; 

 

... 

`ALU_DAA: begin 

   if (~alu_flags_in[F_N]) begin 

      if (alu_flags_in[F_H] | 

          ((alu_data1_in & 8'h0f) > 8'h9)) begin 

         intermediate_result1 = {1'b0, alu_data1_in} + 9'h6; 

      end 

http://forums.nesdev.com/viewtopic.php?t=9088
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      else begin 

         intermediate_result1 = {1'b0, alu_data1_in}; 

      end 

      if (alu_flags_in[F_C] | (intermediate_result1 > 9'h9f)) begin 

         intermediate_result2 = intermediate_result1 + 9'h60; 

      end 

      else begin 

         intermediate_result2 = intermediate_result1; 

      end 

   end 

   else begin 

      if (alu_flags_in[F_H]) begin 

         intermediate_result1 = {1'b0, (alu_data1_in - 8'h6)}; 

      end 

      else begin 

         intermediate_result1 = {1'b0, alu_data1_in}; 

      end 

      if (alu_flags_in[F_C]) begin 

         intermediate_result2 = intermediate_result1 - 9'h60; 

      end 

      else begin 

         intermediate_result2 = intermediate_result1; 

      end 

   end // else: !if(alu_flags_in[F_N]) 

 

   alu_data_out = intermediate_result2[7:0]; 

    

   alu_flags_out[F_N] = alu_flags_in[F_N]; 

   alu_flags_out[F_H] = 1'b0; 

   alu_flags_out[F_C] = intermediate_result2[8] ? 1'b1 : 

                        alu_flags_in[F_C]; 

   alu_flags_out[F_Z] = (intermediate_result2[7:0] == 8'd0) ? 

                        1'b1 : 1'b0; 

end 

... 

 

Process 

We read the project reports for the previous teams that attempted the Game Boy and noticed 

that they both attempted to use a buggy design they found online, failed to do so, and ended 

up implementing their own CPU. We decided based on these reports to just implement our 

own CPU from the beginning and not waste any time with other peoples’ non-working code. 

 

In order to do this, we planned to have a few phases of CPU development. 

 

1. Design the CPU at a block-diagram level. 
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2. Implement the CPU hardware and test one instruction in simulation. 

3. Microcode a few instructions and run a simple program, such as calculating a Fibonacci 

number, on the FPGA. 

4. Adapt an open-source emulator’s CPU to use in a testing harness. 

5. Microcode all the instructions. 

6. Write unit tests for all the instructions and test them using the testing harness in simulation. 

7. Implement the DMA, timers, and interrupt handling. 

8. Use a standard Verilog testbench with compiled Game Boy assembly to test the DMA, timers, 

and interrupts in simulation as thoroughly as possible. 

9. Run the bootstrap ROM in simulation using modified versions of the GPU scroll registers. 

10. Create a breakpoint module using the FPGA’s LCD, switches, and buttons to print register 

state, step through instructions, and break on addresses. 

11. Integrate the other modules and run the bootstrap and the Tetris ROM on the board. 

 

Most of these phases were simple to complete using standard techniques and strategies 

learned in previous courses. The testing harness using the emulator’s CPU was not. 

 

Testing Harness 

We decided that we needed some kind of quick way of testing the CPU. We were inspired by 

the testbench from 18-447 to create a similar testing harness. The testing harness we wrote for 

the CPU involved three major elements: our CPU simulation, assembled assembly files, and a 

working emulator’s CPU code hacked to behave in a nice way. These components came 

together to create an automated testing harness that, when finished, allowed us to type a 

single command with an assembly file as input that compared the correct register values of the 

emulator against our register values at the end of the program. 

 

This testing harness was absolutely invaluable throughout the course of the project. It allowed 

us to run each test and find the bugs in the tested components in minutes rather than hours. It 

also allowed us to reproduce bugs in simulation that we found in synthesis. This allowed us to 

see all the CPU’s wires rather than ChipScope’s limited subset. It also allowed us to make 

changes to the CPU without having to resynthesize to test. 

 

CPU Simulation 

We decided to automate this using batch files on Windows with Xilinx’s ISim tool. The batch 

files call the Xilinx tools to compile our design and create a simulation executable. We use the 

$memreadh system call to read bytecode from a file into a Verilog memory module connected 

to the CPU, then set the CPU’s PC to 0 and let it work it’s magic. When it encounters a HALT 
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instruction, it saves the register values to a file on disk, which we can compare with the correct 

values from the emulator’s CPU, which we changed to do the same thing. 

 

Emulator 

We used the CPU from DMGBoy, found here: http://code.google.com/p/dmgboy/. We 

downloaded the source, imported the relevant files into Visual Studio, and changed the CPU to 

write the register values to disk when it encounters a HALT instruction. The emulator code 

could only load ROM files, so we output the machine code to a 32 kB file padded at the end 

with zeroes. 

 

Assembled Assembly 

We acquired a Game Boy assembler from http://gbdk.sourceforge.net/. The instructions for 

installing this are found either there, or more succinctly at 

http://www.loirak.com/gameboy/gbprog.php. When the assembler (as-gbz80) is invoked with a 

-l option, it outputs a list file, which is basically just machine code with comments. We wrote a 

Perl script that takes these list files and translates them into actual machine code. We had two 

formats for the machine code. The first was the Verilog-readable memory data file consisting of 

each byte followed by a newline. The second was the emulator-readable ROM file consisting of 

a string of binary data. 

 

Putting it Together 

We wrote a batch script that takes the assembly file and some utilities (such as the Perl scripts 

mentioned above, and the tcl file for Xilinx’s compilation tool), copies them into a new directory 

with the same name as the assembly file, compiles the Verilog, assembles the program, runs 

the simulation and emulator, and invokes a Perl script that compares the output files. If 

everything is correct, we’re golden. If not, we can descend into this directory and run the 

simulation executable ourselves and look at the waveform. 

 

Breakpoint Module 

The breakpoint module is a simple module that allows the user to set a breakpoint with the 

switches on the FPGA board. The user selects either the top or bottom bits of the 16-bit address 

with a button, changes the 8 switches to a number, and then presses a button to save that 

number to the corresponding half of the address. The decode module then interprets this and 

stops execution when the PC is equal to the address. At this point the user can step through the 

code or continue using buttons on the board. We found this to be extremely helpful. 

 

http://code.google.com/p/dmgboy/
http://gbdk.sourceforge.net/
http://www.loirak.com/gameboy/gbprog.php
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On-Board Debugging 

Even though the testing harness managed to catch most of our bugs, we still encountered bugs 

while running Tetris and the test ROMs. The process for finding bugs here was to find where the 

code was different from the emulator’s output and trace back using ChipScope and the 

emulator to where exactly the difference began. For example, we had a bug in the JR Z, e (jump 

relative if zero) instruction that caused us to jump to an invalid location in code. We could see 

on the LCD display that the PC was invalid, so we used ChipScope to go further and further back 

in time to the valid JR instruction that caused the jump, and were able to determine why it was 

incorrect. Another problem we had was that we couldn’t get into the Tetris start screen from 

the credits, so we stepped through the emulator code to see where exactly this happened and 

figured out from there why our design wasn’t executing the code in the same way (it turns out 

we weren’t allowing writes to the IF and IE registers correctly). 

 

Final Results 

We got Tetris to run on the board with no single-player CPU-related bugs, which indicates that 

the CPU is working quite well. At the end of the project, we found some very extensive CPU 

tests on the Internet called Blargg’s test ROMs: http://blargg.8bitalley.com/parodius/gb-

tests/cpu_instrs.zip. We managed to get the CPU to pass all of the functional tests found there. 

We believe the CPU is essentially correct and complete. 

 

  

http://blargg.8bitalley.com/parodius/gb-tests/cpu_instrs.zip
http://blargg.8bitalley.com/parodius/gb-tests/cpu_instrs.zip
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Video Interface 
 

Overview 

We adapted Dragonforce (VirtexSquared)’s framebuffer and FPGABoy’s video_module and 

video_converter to work with our system. The video interface uses the Chrontel CH7301c video 

chip to output the DVI signals to the monitor. The video interface is made up of a controller 

FSM, which takes in data input to be written to the video control registers, which controls the 

state of the controller, and hence it’s outputs. The VRAM and OAM portions of the memory are 

memory mapped inside of the video interface. If the CPU needs to access the VRAM, OAM, or 

any of the memory-mapped registers, the address of those requests are mapped to the video 

interface which outputs the necessary information. 

 

Description 

 

Video Module 

The Video Module contained the memory for the VRAM and OAM, the memory mapped 

registers, and the FSM used to control the reading, writing and data output. The functions of 

the 10 memory mapped registers in the video module include controlling the display data and 

memory accessed, the horizontal and vertical scrolling, the mode of the video controller, the 

background and object palettes, as well as the window positions. The Video Module contains 

two scanline buffers, which contain the upper and lower bits of each pixel. One line is stored at 

a time. First, it is determined whether the background or window tile is displayed, and then the 

appropriate pixel data is fetched and stored in the scanline. Next each sprite in the OAM is 

checked to see whether or not it intersects with the current line being displayed. If it does, the 

sprite data is pulled out and examined to determine the final pixel data in the scanline. 

Depending on the color and attributes of the sprite and background pixel data, the correct pixel 

data is then masked and written into the scanline buffers. Once the pixel data for a line has 

been finalized, it can be outputted to the Video Converter one pixel at a time, reading the 

upper bit from one scanline and the lower bit from the other scanline. 

 

Video Converter 

The Video Converter generates the horizontal and vertical sync signals, which are then passed 

on to the DVI Module. In addition, it takes the pixel data from the video module and stores it in 

a framebuffer which stores one Game Boy LCD screen frame at a time. Note that this is not the 

frame of the monitor. There are two framebuffers so that as one is reading, the other can be 

outputting pixel data to the DVI Module. The pixels are stored as 2-bit data inside the 
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framebuffer and converted to a 24-bit RGB value before being outputted to the DVI Module. 

The final main task of the Video Converter is to offset the Game Boy LCD screen frame pixel 

data so that it can be centered on the monitor and outputs the color black when the pixel is not 

in the area occupied by the frame. 

 

DVI Module 

To output pixel data to the monitor, the Chrontel chip’s I2C needs to be set up and horizontal 

and vertical sync signals are outputted with the 12-bit data. The DVI Module outputs data on 

both edges of the clock so that in one period, the entire 24-bit RGB value will have been sent. 

 

Process 

We started with trying to output simple color to the monitor. 

To set up the I2C and output DVI signals, we took code from Dragonforce’s framebuffer and 

modified it to only do the setting up of the I2C and generate the sync signals. There were some 

Xilinx modules (such as IO_DELAY) that were used that required other Xilinx modules to 

function and at first, we commented it out. However, after realizing that those modules were 

required for proper timing, we added them back in. After reading documentation, we were able 

to recreate the required missing modules.  

 

After the initial video was functioning properly, we looked into FPGABoy’s video code. It was 

not easy to test FPGABoy’s video code without hooking it up to the CPU since all of its output 

depends on input which comes from the instructions read by the CPU so after combining the 

DVI code with the GPU code, we hooked it up to the CPU and it failed. Upon simulation, we 

found that one of the signals had been hooked up incorrectly. After correcting that, it worked 

and the Nintendo logo showed up on the screen. Further testing was done in simulation by 

comparing waveforms with what was in the registers in the BGB emulator. These waveforms 

assured us that the GPU was functioning correctly. Unfortunately, later on, we found that sprite 

reflection and transparency did not work properly. The rest appeared to function correctly 

though. 
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Audio Interface 
 

Overview 

The audio interface on the Virtex5 uses the AC’97 codec to output PWM audio levels to the 

headphone jack. These are literally just “volume” values. The Game Boy has four sound 

channels. Channels 1 and 2 are square waves, channel 3 is a waveform player, and channel 4 

plays white noise. All audio functions come from memory-mapped registers, which are written 

to by the CPU. Functionality includes frequency sweeps, volume envelopes, and length controls. 

 

Description 

 

AC’97 codec 

In order to play sounds from the Virtex5, you first need to setup the AC’97 codec. This process 

is complicated and not completely understood by anyone other than team Dragonforce aka. 

VirtexSquared. The Dragonforce code properly sets up the codec and plays sounds from flash 

starting at address 0x0000. In order to program the flash, first you need to generate a .mcs file. 

This can be done using the Xilinx “promgen” command on a hex file. The hex file can be 

generated from a raw audio file using the “xxd” command. Detailed commands are found in 

VirtexSquared’s Makefile. Once you have a .mcs file, in Impact assign a PROM to the device and 

select the .mcs file. Select the BPI PROM 28F256P30 and click OK. In the window that pops up, 

select the attached flash on the left and change the pull down menu from “automatically load 

FPGA with Flash contents <default>” to “automatically load FPGA with currently assigned 

bitstream.” Then right click the flash and hit program. It should automatically load the bitfile 

onto the FPGA. If this doesn’t work, power cycle the device and try again. 

 

The Audio Registers 

The Game Boy uses 18 memory-mapped registers to allow the CPU to communicate with the 

sound module. Basically there are five registers per channel and three master control registers. 

These registers can be written to at any time while producing sound. They define various 

properties of the sound currently being played. The labels in the Pan Docs are of the form NRXY, 

where X refers to the sound channel (5 refers to the master control registers) and Y refers to 

the sub register of that channel.  

 

Channels 1&2 

For the square waves, the registers are as follows: 
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Y=0 is the frequency sweep register (channel 1 only). When the sweep time is not zero, the 

sound’s frequency is either increased or decreased by the current frequency right shifted by 

“Number of sweep shift.” Note that “Number of sweep shift” is not the number of sweeps that 

should be performed. It is simply a value (n) in the function X(t) = X(t-1) +/- X(t-1)/2^n. Note 

that the sweep time is implemented using a 128Hz clock 

 

Y=1 is the length and duty cycle register. Of note, the wave pattern duty is the percentage of 

time that the wave is low, not what one would expect. The length of the sound is given by the 

function (64-t1)*(1/256) seconds, where t1 is bits 5-0 of the Y=1 register. This timing is 

implemented using a 256Hz clock. 

 

Y=2 is the volume register. The initial volume and direction of the volume envelope is defined, 

as well as a variable called “Number of envelope sweep.” Note that like with the frequency 

sweep function, Number of envelope sweep is not the number of sweeps to perform. It is 

simply the value n in the function Length of 1 step = n*(1/64) seconds. This length is 

implemented using a 64Hz clock. 

 

Y=3 is simply the lower 8 bits of the 11 bit frequency data. The true frequency is given by the 

formula F = 131072/(2048-x)Hz where x is the 11 bit frequency data. This was implemented 

with a 131072Hz clock. 

 

Y=4 looks simple but was probably the register that caused the most trouble and was hardest to 

understand. It defines whether or not to use the length value previously defined, and it 

contains the “Initial” bit. The initial bit restarts the sound on that channel when a value of 1 is 

written to it. This is REGARDLESS OF THE PREVIOUS VALUE. 

 

Channel 3 

This channel plays waveform files stored from address FF30 to address FF3F. It plays them one 

byte at a time, most significant four bits first. I believe they are played from address FF3F to 

address FF30, but that has not been confirmed. Our waveform playback module is not perfect. 

However I will still describe what I know about the registers. 

 

Y=0 is simply an enable flag. If it’s not set, don’t play sound. 

 

Y=1 is the length data. The actual length is given by the formula (256-t1)*(1/256) seconds. This 

is implemented with a 256Hz clock. 

 

Y=2 just includes the output level which is an amount to shift right by. 
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Y=3 is the upper 8 bits of the frequency. 

 

Y=4 includes the flag determining whether or not to use the length data, the higher bits of 

frequency, and the initial flag. Note again, sound is reset when the initial flag is written with a 1, 

REGARDLESS OF THE PREVIOUS VALUE. The frequency of this channel is given by the formula F 

= 65536/(2048-x)Hz where x is the frequency data. This is implemented with a 65536Hz clock. 

 

Channel 4 

Channel 4 produces white noise of various types. This seems to be mostly used to produce 

sounds similar to drum beats to intersperse in Game Boy music. It seems to be non-trivially 

difficult, including a polynomial counter, which essentially functions as a random number 

generator. 

 

Control Registers 

Y=0 is basically a “master volume” register. It has additional flags for outputting a Vin signal to 

the cartridge, but this is almost certainly superfluous for most games. The volume values should 

be used in conjunction with each channel’s volume in a mixer sort of fashion. However, note 

that no other mixing needs to be implemented and the channel’s values can simply be added 

together to produce the final mixed sound. 

 

Y=1 is a set of enable flags for the right and left stereo channels for each of the four sound 

channels. 

 

Y=2 is a master sound enable flag which stops all sound functionality if not set. Additionally 

there are read only flags, which say whether or not a sound is currently playing. We did not 

implement these last flags. 

 

Our Design 

In our design all of the sound files are located in the sound_src folder. The AC97.v file sets up 

the AC’97 codec and “mixes” the audio channels based on their enable signals. The sound 

registers are coded in sound_registers.v. Each register is simply a reg variable and each of the 

variables that is set inside of the registers is output from the module to make them easier to 

access and give them names. In sound_functions.v you will see the waveform player and square 

wave player. They have a few similarities, but have mostly different functions. Finally 

everything is hooked together in audio_top.v and the sound register values are given to the 
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sound function generators, which use those values to output sound levels to the AC97. The .ucf 

file in this folder is specific to sound and no other .ucf files are allowed to clobber it. 

 

Process 

 

AC’97 

Starting from lab 2 we realized that we needed to use Dragonforce’s code to set up the AC’97 

codec because of the complexity involved in doing it ourselves. When we compiled their code 

and programmed our board with the bit file, Dragonforce began to emanate from our speakers. 

We weren’t entirely sure why. We later learned how to program the flash. This same process 

was also needed later to program the flash with the bootstrap ROM. 

 

Square Waves 

The first step we took towards producing Game Boy sound was to use the Dragonforce 

SquareWave module to produce a square wave of various frequencies. The tricky part about 

that was to get the duty cycle correct. Without a proper 50% duty cycle, the measured 

frequency would be slightly off and wouldn’t follow a linear function as would otherwise be 

expected. But otherwise it was an easy process. The AC’97 simply outputs unsigned voltage 

levels when you assign the slots to a different value. In this way, sound is created by changing 

the output level. So to make a square wave, we simply needed to oscillate between a value of 0 

and F at a specific frequency. We determined that the best way to control the frequency, 

because of the way it was defined in the Pan Docs, was to count cycles of a specific frequency 

clock, and only change the output value after a certain number of cycles. By doing this we were 

able to use “reverse division” to output whatever frequency we wanted. 

 

Volume Control 

Once we got a square wave that could be assigned to a frequency accurate to within 1Hz, we 

worked to implement a volume controller. We decided to use the rotary controller on the FPGA 

dev board to act like the actual volume knob on the Game Boy. It was simple to implement with 

a 7 state FSM. Essentially there is a signal for going “up” and a signal for going “down” and both 

are asserted at every tick of the wheel. It seemed to work just fine at first but actually we had a 

lot of problems where the volume would start all the way turned down and we would think that 

sound wasn’t working because of it. So later I changed it to only go between the values E and 9, 

since below 9 the sound wasn’t audible anyway. Since the AC97 outputs 20 bit volume levels, 

the 4-bit volume level output by the Game Boy had to be shifted over significantly. As it turns 

out a shift of 9 is the minimum where it is audible, but a shift of F or higher made the sound clip. 
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Memory-mapped Registers 

The next step we decided to take was to code the audio registers. At first there was some 

confusion about how memory-mapped registers actually work, but eventually we determined 

that we could just make them reg variables and everything would work out fine. We just used 

the CPU’s memory write_enable signal to determine when to load the reg’s with new values, 

and used the address to determine which reg to load. Then each of the variables in those 

registers would be updated automatically and sent out to the sound function generator, which 

in turn sent levels to the AC’97 codec. It was all very simple in the end… 

 

Sound Functions 

Once the audio registers were hooked up in such a way that they could be assigned values, we 

got to work on the sound functions that would be used to test them. We started with the 

waveform generator but worked on the square waves in parallel, which were often easier to 

understand. We set the registers to specific test values and filled the waveform registers with a 

test waveform. At first we were unclear about the fact that each byte is played most significant 

four bits first, and simply played the waveform four bytes at a time from bottom to top. It was 

extremely unclear if it was working properly because without the CPU actually changing the 

register values in real time, it would never sound like actual music. But we could still test some 

functionality. 

 

Length 

The first functionality to test was the length function. We set the length register to 0, which 

meant that sound should play for ¼ of a second for square waves. This was driven by a 256Hz 

clock and the “reverse division” method mentioned earlier. Essential we took the number of 

256Hz clock ticks were necessary before reaching the desired length, then counted that many 

256Hz clock edges and then stopped output. This method was used for frequency sweeps and 

volume envelopes as well, and for anything that required a frequency. 

 

Frequency 

After that we made sure that the waveform and square waves played back at the correct 

frequency as determined by the audio registers. This was mostly tested using a music tuner 

from a smartphone. For the waveform player, the waveform was output to the LEDs and looked 

at to see how fast it changed. We had some trouble getting a perfectly accurate clock with 

which to generate different frequency signals, but it seemed to work out pretty well. 
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Frequency Sweep 

Next came the frequency sweep function for square waves. Essentially this changes the 

frequency of the signal by a certain amount at every clock cycle until it either becomes zero or 

maxes out to 2048Hz. The sound was already playing at a frequency specified by a variable, so 

all we had to do was change the value of that variable over time. One strange thing that was 

never properly resolved was that when we added to the frequency, the output frequency 

would decrease, and when we subtracted, the output frequency would increase. We decided 

that this was strange but probably not incorrect, just flipped. So we flipped the wires and went 

on with our lives. The output appears to match the sound test ROM output, so it’s reasonable 

to assume that this is at least mostly correct. 

 

Duty Cycle 

After that came the duty cycle. This was simply a modification to the frequency function, which 

changed the square wave from low to high based on a right or left-shifted version of the 

original frequency counter. We believe this is how the Game Boy actually implemented it, 

because the possible duty cycles lend themselves perfectly to this. One bit of confusion was 

that the Pan Docs specified that the % duty cycle was the percentage of time the signal was 

held low, which is backwards from most electrical engineering courses. However again, the 

measured output matches the output from the sound test ROM, so presumably it’s correct. 

 

Volume Envelope 

The volume envelope function was the last piece of the square waves that needed to be 

implemented. Essentially this function just adds or subtracts 1 from the output volume after a 

certain number of ticks of a 64Hz clock. There was one really sticky point about the volume 

envelope and that was the variable referenced in the Pan Docs as “Number of envelope sweep.” 

This variable is NOT the number of envelope sweeps to perform. Instead, the Game Boy 

performs as many envelope sweeps as it needs to until it either gets to a volume of 0 or a 

maximum volume of F. The “Number of envelope sweep” variable is simply a number that 

determines the length of time to wait between each step in volume. After that was fixed, the 

function worked fine. 

 

Frame Sequencer 

The sound functions use a “frame sequencer” which generates various clocks from a 512Hz 

timer. We implemented this by just creating a 512Hz clock and then using our clock divider. 

Here’s a diagram of the frame sequencer: 
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Step   Length Ctr  Vol Env     Sweep 

--------------------------------------- 

0      Clock       -           - 

1      -           -           - 

2      Clock       -           Clock 

3      -           -           - 

4      Clock       -           - 

5      -           -           - 

6      Clock       -           Clock 

7      -           Clock       - 

--------------------------------------- 

Rate   256 Hz      64 Hz       128 Hz 
 

The Initial Flag 

The final and possibly biggest hurdle that we had to overcome to get sound working was the 

initial flag specified in the last register of every sound channel. At first we implemented it as a 

negatively asserted reset. This worked sometimes but produced sound only a small percentage 

of the time and was really only enough to get the ping noise working. Then we tried making it 

reset everything only on its positive edge, which was much harder to implement. This worked 

better, but was still wrong. Sound wasn’t working properly and we honestly had very little idea 

why, but since this flag was so poorly understood, it seemed the likely culprit. Finally we 

determined that a sound channel is reset and started over whenever a value of 1 is written to 

this flag, regardless of its previous value. Apparently this is how a lot of embedded systems 

work, but that was not something that anyone on the team knew. Once this was fixed, sound 

worked great. 

 

Results 

Channels 1 and 2 work almost perfectly and play Tetris music accurately to the extent that the 

human ear can perceive it. According to the sound test ROM, the frequency sweep function 

might still be slightly incorrect, but everything else has been tested and appears working. 

Channel 3 mostly works. It plays back the waveform from memory, but it doesn’t sound quite 

right. It’s a fairly simple module, so it’s very unclear what’s wrong. 

Channel 4 was not implemented. This means sounds like drum beats are left out of the final 

audio. This is mostly imperceptible unless you know it’s missing, but it does add something 

when it’s implemented. It likely wouldn’t be much more work to implement, we just ran out of 

time. 
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Cartridge Connector 
 

Overview 

The cartridge connector was desoldered from an original Game Boy PCB and hooked up to a 

protoboard. Wires were then run from the protoboard into the GPIO pins on the FPGA dev 

board. Initial configuration involved only reading from the ROM, but later additions allowed 

writing to the SRAM on the cartridge as well. 

 

Description 

Every Game Boy cartridge has the same pinout. This includes Vdd, ground, 16 address pins, 8 

data pins, a read enable, write enable, and a chip select, as well as a reset and two other pins 

that are probably never used. There is no clock that is necessary to read from the cartridge. As 

long as it gets power, while reading, the data on the lines will be the data stored in ROM at the 

address given by the address lines. When writing, the chip select must be asserted. Writing only 

happens for save files. 

 

Process 

We ordered a replacement Game Boy Advance cartridge connector from the Internet with the 

intention of using that to plug in our games once we got rid of the mechanical stops that 

disallow original Game Boy cartridges from being inserted. However it took a very long time to 

arrive in the mail, so we decided to remove the connector from the original Game Boy that we 

had purchased. This proved to be a splendid idea. The bulk of this connector meant it was easy 

to hold on to, as opposed to the Game Boy Advance connector, which was very small. This was 

important because of the delicate nature of the solder connections. The cartridge connector 

had offset and oddly spaced pins, so it could not be inserted directly into a protoboard. In order 

to get around this, it was decided that the best course of action would be to solder wires to 

each of the individual 32 pins and then get those wires to the GPIO pins somehow. 

 

The original plan was to take female-female GPIO connector cables and cut them in half and 

solder the cut ends to the pins so we could plug directly into the GPIO pins. This might have 

been a better idea in some ways because we believe we may have had timing issues due to the 

length of our final cables, but there weren’t enough female-female GPIO cables and we didn’t 

feel like ordering more. Also the GPIO cables did not have a solid wire inside but rather a 

bundle of smaller wires, which is much more difficult to solder properly. It was wise not to 

complicate an already difficult soldering job. 

 



27 

We decided to solder protoboard wire to each of the pins and plug them into a protoboard 

rather than directly into the GPIO pins because of modularity and the ability to probe the 

signals this way if we encountered issues. This meant that each of the wires had to fan out to 

be almost exactly the same length or the connector wouldn’t sit properly. This was no mean 

task. Here are some pictures of the final result: 

 

 
 

 
 

In order to go from the protoboard to the GPIO pins, we had a few options. One would be to 

take a removable header and solder wires to that which would then plug into the protoboard. 



28 

But Elon was tired of soldering so we went with a ribbon cable to break out the pins into female 

connections instead. The shortest ribbon cable we could find was very long, which again might 

have contributed to timing issues in the final product. However, the cartridge connector 

worked fine for Tetris. 

 

We had to write a simple interface, which sent out the address and received data, but it was 

about the simplest interface in the entire design. 

 

Results 

The cartridge connector works for Tetris without any problems. Other cartridges don’t work, 

and we’re not entirely sure why. We can read their Game Boy logo but it either comes in 

corrupted, or comes in correctly but the game is unable to continue. This could be a problem in 

any number of modules, but is likely a problem with the length of the wires connecting the 

cartridge connector to the board. 
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Timers/DMA 
 

Overview 

Both of these modules were implemented with little to no changes from the descriptions in the 

Game Boy Programming Manual. The timer registers are: 

 

0xFF04 DIV - upper 8 bits of a counter on a CPU clock, cleared when written to 

0xFF05 TIMA - counter that increments based on a frequency selected by TAC, generates an 

interrupt on overflow 

0xFF06 TMA - value to load into TIMA when TIMA overflows 

0xFF07 - timer control, selects the frequency for incrementing TIMA and enables or disables 

TIMA 

 

The DMA module is a block transfer module that copies sprite data from the work RAM to 

sprite RAM (referred to as OAM in the documentation). It copies 160 bytes from 0x8000-0xDFFF 

to 0xFE00-0xFE9F. Whenever the user writes to 0xFF46 (the DMA register), the DMA module 

disables the CPU’s ability to read and write from non-CPU-internal memory and begins 

transferring data. At this point the CPU should be executing code in high memory, or else it will 

read Z’s into the instruction register and promptly begin to destroy everything. 

 

The main reason that CPU instruction timing is important is that the DMA transfer code in most 

games relies on instruction timing. This code lives in high memory and consists of writing to the 

DMA register then entering a tight loop calculated to take exactly the same number of cycles as 

the DMA transfer before exiting the DMA transfer function. If the instruction timings are too 

fast, or the DMA transfer is too slow, the CPU will exit high memory while the DMA module is 

using the data and address buses. This will lead to random data being put into sprite RAM and 

possibly random instructions being executed by the CPU. 

 

Process 

The DMA module and timers were both implemented after the CPU had been thoroughly 

tested, so testing them was rather simple. We added them to a version of our automated 

testbench and ran simple programs on them that relied on timer interrupts and generated DMA 

transfers, and examined the waveforms to ensure everything was working properly. Shockingly 

and amazingly, the documentation for these modules is accurate and complete, so there were 

really no surprises. 
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Results 

The DMA module works perfectly, as we can see the Tetris blocks on-screen with no graphical 

corruption. The timer module is not exercised by Tetris as far as we know, however it is used by 

one of the test ROMs that we ran, and that test passed. 

 

  



31 

Memory and System Integration Strategy 
 

Overview 

Most of the memory in our system is related to the GPU (scanline memory, frame buffers) and 

is described in that section. The non-GPU-related memory exists in the work RAM and high 

memory, which is described in the CPU section. 

 

The work RAM is 8192 bytes in a block RAM. 

 

The components are all connected to the same address and data buses using tristate modules. 

When the address bus is within a certain component’s address range, the data bus is routed to 

the input of the component or the output of the component is routed to the data bus, 

depending on whether the read or write signal is asserted. This applies to memory-mapped 

registers as well as the various RAM blocks. 

 

Echo RAM is a special section of RAM that cannot be written to, but produces the same 

information as the work RAM when read from. We’re not sure if that’s what the actual Game 

Boy does, but that’s how we did it in our system. 

 

The interrupts from each module are routed into the CPU’s IF input. On an interrupt, the IF 

register is loaded with that interrupt bit and the other interrupt bits present in IF are preserved. 

The CPU handles clearing interrupt bits internally. 

 

Here is the memory map of our implementation, which may or may not differ from the Game 

Boy standard: 

 

Address Range Description 

0xFFFF IE memory-mapped register 

0xFF80-0xFFFE High memory (CPU-internal) 

0xFF00-0xFF7F Memory-mapped registers 

0xFEA0-0xFEFF Unusable (reading here gives 0x00) 

0xFE00-0xFE9F OAM (sprite RAM) 

0xE000-0xFDFF Echo RAM (can't write here; reads give same information as 0xC000-DDFF) 

0xC000-0xDFFF Internal work RAM 

0xA000-0xBFFF Cartridge RAM (writes and reads go to cartridge lines) 

0x8000-0x9FFF Video RAM of various flavors 

0x0104-0x7FFF Cartridge ROM 

0x0000-0x0103 0xFF50 == 1: Cartridge ROM 0xFF50 == 0: Flash ROM with bootstrap code 
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All of the chips in the Game Boy are SRAMs with asynchronous read and single-cycle write. 

Therefore the CPU was designed to interface with such a memory block. However, our memory 

modules are mostly Xilinx-generated block RAMs. These block RAMs are single-cycle read and 

write. In order to allow these RAMs to interface with our system using asynchronous reads, we 

simply input a much faster (8 times faster) clock to the block RAMs than the CPU. 

Bootstrap ROM 

The one special component of the high-level system integration is the bootstrap ROM. The 

bootstrap ROM was found online at 

http://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM, adapted to our assembler syntax, 

assembled, and converted to a Xilinx flash file before being loaded onto the flash chip on the 

FPGA board. 

 

Initially, the bootstrap ROM stands in for addresses 0x0000-0x0103, which are normally in the 

cartridge ROM space. On reset, the system begins executing the bootstrap ROM, which clears 

VRAM to white (zeroes) and loads the Nintendo logo from the cartridge. If the Nintendo logo 

and an additional checksum do not match what the bootstrap expects, it halts execution. If 

these things do check out, the bootstrap ROM includes an instruction that writes a 1 to a 

special memory-mapped register, 0xFF50. When this happens, the bootstrap ROM is disabled 

and the addresses 0x0000-0x103 are mapped back to the cartridge. The system then begins 

executing the game code. 

 

Process 

We basically had no well-defined process for integration. We just started hooking things 

together in the top module and didn’t bother to do any real design. Surprisingly, this strategy 

yielded results. We had a few bugs, as one might expect with this strategy, but not really 

enough to cause real problems. We were also able to find most of our bugs in the integration 

logic by just looking at the code. 

 

Our first step was to run the bootstrap ROM with just the CPU to see if it got to the address 

0x0100, and then we added and debugged the sound module so that we could hear a ping 

noise. Some time after that, we added the GPU to the design so we could see the Nintendo logo 

scroll. After that, we started adding everything else. 

 

Results 

The integration worked pretty well. We really should have gone with a more consistent design 

for it, however.  

http://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM
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User Input 
 

Overview 

In order to get button data to the CPU, we used an NES controller hooked up to GPIO pins and 

an FSM to poll the button data using the NES protocol. 

 

Description 

The NES controller has 5 pins of value. One is Vdd, one is ground, and the rest are strobe, data, 

and clock. The interface is a 17 state FSM that polls the controller for all of its button data. 

Every 60Hz the Game Boy sends a strobe to the controller, which sets off the FSM. The FSM 

sends a clock signal to the controller, and on every positive clock edge, the controller sends 

back the status of one of it’s buttons, in order, giving A, B, Select, Start, Up, Down, Left, and 

Right. Note, the buttons are asserted LOW. This is important because if all buttons are asserted, 

most Game Boy games reset, so it will look like nothing is happening. 

 

Process 

It wasn’t hard to set up the controller. We found a timing diagram: 

 

 
The protocol is obviously simple and was not hard to implement. We simply send a strobe every 

60Hz, as determined by a clock divider, and then send out an approximately 3MHz clock by 

using a 6Mhz clock as our state clock. On every positive edge of this clock we send, we expect a 

new button value to be on the line. The frequency of this clock took some tuning to get right, 

but simply outputting the received button values to the LEDs was enough to show whether or 

not it was working properly. Then we simply needed to hook up those wires to the CPU 

memory-mapped register, which required an extra control signal because the Game Boy is a 

little ridiculous sometimes, but that wasn’t too hard either. Basically the CPU selects either 
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direction keys or buttons to be output on its 4 data slots in the memory-mapped register 

(address FF00) and then it’s up to the game designer to poll the controller properly. Usually 

they will poll it a bunch of times in a row to take care of any debouncing issues that might occur. 
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Link Cable 
 

Overview 

The link cable is a 6-pin serial interface. It has two data lines, a shared (!) clock line, ground, 5V 

VDD, and an unused pin. A Game Boy writes data bits onto its data out line (the other Game 

Boy’s data in) on the falling edge of whichever clock is selected by the system. The other Game 

Boy reads data on the rising edge of the clock. The clock itself is generated by one of the Game 

Boys. The other Game Boy uses the clock, which is output over the clock line. 

 

Description 

First, here’s a timing diagram of the link cable’s data transfer protocol: 

 

 
 

SCK is the shared clock, SOUT is the data out line, SIN is the data in line, and SB is the shift 

register. 

 

The programmer’s interface to the link cable consists of two memory-mapped registers. 

 

0xFF01 SB - The shift register containing data to send or data received. 

0xFF02 SC - The serial transfer control register. 

 

SC[0] selects whether the transfer is using the internal clock or other Game Boy’s clock. This bit 

is asserted low. SC[7] is a 1 when a serial transfer is in progress. The user can write a 1 here to 

initiate an outbound transfer or check the bit to see if an inbound transfer is occurring. The 

other bits of SC are unused. When a serial transfer completes, an interrupt is generated 

(whenever SC[7] goes from high to low). 
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SB is shifted out to the left. 

 

Our design uses the CPU’s clock, running at 4.125 MHz, to run an FSM that detects whether the 

selected clock is high or low and outputs an edge signal whenever it goes from low to high or 

high to low. This edge detector is used in conjunction with a 3-bit counter to output the shift 

register on the falling edge of the selected clock, then read the incoming data and shift the shift 

register on the rising edge. 

 

Additionally, the FSM and counter generate an interrupt when the transfer is complete (on the 

final falling edge). 

 

Process 

The link cable was the last thing we implemented. We began work on the link cable at 11 PM 

the night before the public demo and finished around 6 AM. We tested it by writing a simple 

testbench and a couple corner cases that we could think of. We simulated it for a while then 

just hooked it up to the board and tested it with a real Game Boy. 

 

We also verified the timing of the transfers by attaching an oscilloscope to an actual Game 

Boy’s link cable: 
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The green signal is the clock and the yellow signal is the data. 

 

Results 

We were able to connect the Game Boys and get multiplayer Tetris mostly working. We 

discovered that there was some graphical corruption, some synchronization issues, and some 

packets were getting dropped, but it was possible to play something resembling a two-player 

game of Tetris using our design and a real Game Boy. 
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Group Thoughts 
 

What we wish we had known 

We wish we’d known that the Virtex7 is a terrible board for this class. We struggled for a while 

trying to get it working but it really wasn’t worth it. Other than that we knew most of what we 

needed because two other teams implemented the Game Boy in the past. 

 

Good/bad decisions 

 

Good 

1. The best decision that two of our members made was to start working immediately. There is 

no reason and no reward (except pain) for procrastinating in this class. The third member of our 

team discovered this at the end of September at which point a whole month had already been 

wasted.  

 

2. Another good decision we made was to ditch the Virtex-7 board and use the Virtex-5. We 

made this decision early on and avoided wasting time trying to get an HDMI driver written in 

Verilog. 

 

3. We used Git. Version control is absolutely necessary for a project of this scale, and even 

more so when working on a team. 

 

4. Not attempting the Game Boy Advance was obviously a fantastic decision in hindsight. It’s so 

much better to attempt a project that might be slightly less difficult and actually have a working 

project at the end of the semester than to attempt something way over your head and have 

nothing to show for all your hard work in the end. 

 

Bad 

1. The worst decision we made was to go with a project that required us to implement our own 

CPU. Implementing a CPU is an especially difficult task, simply because CPUs have so much 

functionality. With 48 separate instructions, an interrupt procedure, 27 ALU operations, and 

around 3500 lines of code, there will inevitably be bugs. In our case, we got it working. But also 

in our case, we got it 100% working only 9 hours before the in-lab demo. We were able to get 

the CPU to run because we had access to two amazingly well written emulators, the Game Boy 

documentation is very complete, and we started with the knowledge from the past Game Boy 

teams. And because we were very, very lucky. 
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2. Another terrible decision we made was to keep Red Hat Enterprise Linux on the workstations 

even after we had difficulty getting ISE to install and run. We should have immediately ditched 

RHEL for a more stable (Xilinx-wise, at least) solution such as Windows 7. This cost us at least a 

few days of work just trying to get the code onto the board when the drivers failed. 

 

3. Not reusing previous team’s code earlier. While the best thing you can do for your project 

and yourself is to write all of the code in your project from scratch, giving you the greatest 

possible understanding of its internal structure, at some point it’s necessary to realize that you 

can’t do it all in the amount of time you have. At that point you should steal as much code from 

other sources as possible. And do this early so that you have a chance of actually understanding 

it enough to integrate it into your design. 

 

Advice 

1. USE CHIPSCOPE TO DEBUG ON THE BOARD. This is the most important component of the 

class. We were initially afraid of ChipScope. This is misguided. It is the best thing on the planet 

for debugging your design after it’s been synthesized. It is basically the simulation waveform 

viewer but for synthesized designs. Learn it and use it. IT IS AMAZING (and kind of terrible) BUT 

MOSTLY AMAZING. 

 

2. Start immediately. Put in at least 12 hours a week in the first half of the semester. By the 

second half of the course, you won’t need to self-motivate. Your non-working project will be 

motivation enough. Your reward for procrastinating is pain and perhaps a failed project, so 

don’t do it. You will never have enough time. However painful it is to start coding at week 3, it is 

much more painful to be unable to sleep because you’re coding 24/7 at week 10.  

 

3. Do not implement a CPU from scratch unless you know exactly what you are getting into. It is 

not easy, and if you’ve taken 18-447, the sort-of-MIPS core you implement there is nothing 

compared to implementing a fully working design. It is possible to do if your CPU is really simple 

and you have loads of documentation, really good emulators, and a way of testing your design 

in simulation that is at least as good as what we had. If you are thinking about doing this, read 

the CPU process section above and let the ridiculous amount of work you will be doing sink in. 

It’s possible, but painful. 

 

4. Plan everything. Design everything. We didn’t think about how we were going to integrate, 

and it kind of bit us in the ass. It could have been worse. 

 



40 

5. Use simulation as much as possible. Changing your code and simulating it is usually a one-

minute process. Changing your code and synthesizing is a 25-minute process. When we got to 

the bootstrap ROM, which takes a few seconds at 4,125,000 cycles per second, simulation 

stopped being a viable system-level testing option, but we could still debug our components in 

simulation on directed test cases. 

 

5. Focus. Don’t waste time on something that isn’t going to work. Obviously it’s hard to know 

what things are going to work or not beforehand, but it’s possible to avoid certain pitfalls. We 

knew from reading previous reports not to use the OpenCores Game Boy CPU, so we avoided 

that trap. 

 

6. Make your top-level pins have the same names as the .ucf file and rename them internally. 

You will save yourself a lot of trouble later. Also use emacs Verilog-autos to connect all your 

modules and follow a consistent naming convention. Seriously. 

 

7. Do not use RHEL and Xilinx tools. Xilinx tools work best (as of the time of writing) on a 

Windows 7 system. However much you hate Windows, just get Windows and be thankful you 

can actually load programs onto the board. 

 

8. Xilinx sucks. Sorry. You can’t really avoid them unless you “borrow” one of the 18-240 Altera 

boards, and they don’t have very much block RAM. 
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Sources 
 

This section contains a list of useful documents and links we found throughout our adventure, 

sorted by section and in decreasing order of usefulness. 

 

Game Boy Documentation 

1. The Game Boy Programming Manual. This is the document released to Game Boy developers 

by Nintendo. It is the most complete reference for the Game Boy, much more so than the PAN 

docs/GBCPUman. It’s kind of disorganized, but don’t let that throw you. Everything you could 

possibly need to emulate the Game Boy is in here. 

http://www.romhacking.net/documents/544/ 

 

2. The “Game Boy CPU manual.” This is a PDF version of the PAN docs and is slightly less 

technical than the programming manual. It essentially summarizes the content of the 

programming manual. Good for a quick info lookup, but for real implementation reference 

information consult 1. http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf 

 

3. PAN Docs. The HTML version of 2. http,//nocash.emubase.de/pandocs.htm 

 

4. Meatfighter. This is a copy of the Pan Docs, but I like the way it looks a lot better. Although 

the links don’t work so you should probably use the Pan Docs link above. 

http://meatfighter.com/gameboy/TheNintendoGameboy.pdf 

 

5. Game Boy opcode list. Contains the correct instruction timings and short descriptions for all 

the opcodes. Useful for translating machine code into assembly on-the-fly as well. 

http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html 

 

6. Z80 architecture overview. Useful for understanding the hardware of the CPU. 

http://www.msxarchive.nl/pub/msx/mirrors/msx2.com/zaks/z80prg02.htm 

 

7. Loirak’s Game Boy programming tutorials. The page here is a great quick-start for GBDK, a 

good Game Boy compiler/assembler. http://www.loirak.com/gameboy/gbprog.php 

 

8. Gbdev Wiki sound hardware. In general this wiki is extremely useful, but the sound page 

especially offers a different view than the Pan Docs on how sound is meant to function. 

http://gbdev.gg8.se/wiki/articles/Gameboy_sound_hardware  

 

http://www.romhacking.net/documents/544/
http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf
http://nocash.emubase.de/pandocs.htm
http://meatfighter.com/gameboy/TheNintendoGameboy.pdf
http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html
http://www.msxarchive.nl/pub/msx/mirrors/msx2.com/zaks/z80prg02.htm
http://www.loirak.com/gameboy/gbprog.php
http://gbdev.gg8.se/wiki/articles/Gameboy_sound_hardware
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9. Memory Map. This is the best memory map I could find. Remember that ROM is actually in 

the cartridge. http://gameboy.mongenel.com/dmg/asmmemmap.html 

 

10. Gbdev Memory Map. Another page from the Gbdev wiki. This one talks about the cartridge 

header, which will be important if you ever get to bank switching, or attempt the Game Boy 

Color. http://gbdev.gg8.se/wiki/articles/Memory_Map 

 

11. Arduino-based Gameboy Cart Reader. This doc was useful as this person is basically doing 

the same thing to the cartridge as we were trying to do. It lays out fairly well how to dump the 

ROM. http://www.insidegadgets.com/2011/03/19/gbcartread-arduino-based-gameboy-cart-

reader-–-part-1-read-the-rom/ 

 

12. Sound text file. Proceed with extreme caution. This document is useful as yet another look 

at sound, but is obviously very sketchy. http://www.devrs.com/gb/files/hosted/GBSOUND.txt 

 

Emulators 

1. BGB. This is a great emulator with a debugger and RAM viewer. The debugger can do all the 

neat debugger things you might want, including breakpoints and watches on memory locations. 

Without this emulator, we would not have completed our project. http://bgb.bircd.org/ 

 

2. DMGBoy. This is another great emulator. It doesn’t have a debugger, but the source code is 

extremely well written. This was an invaluable resource, as we could read the source code to 

figure out certain behaviors that weren’t clear to us. It is also the basis for the automatic 

testbench. http://code.google.com/p/dmgboy/ 

 

Special Files 

1. Blargg’s instruction test ROMs. These are directed tests for the CPU. They require a working 

graphics system, but they helped immensely in debugging the CPU. They even print out the 

opcodes of incorrect instructions when they fail. http://blargg.8bitalley.com/parodius/gb-

tests/cpu_instrs.zip 

 

2. Bootstrap ROM. This thing is just awesome. 

http://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM 

 

3. Sound test ROM. Run this in an emulator to test your sound functionality. I’d suggest BGB 

although it might be slightly incorrect. Be sure to default your waveform RAM to something 

http://gameboy.mongenel.com/dmg/asmmemmap.html
http://gbdev.gg8.se/wiki/articles/Memory_Map
http://www.insidegadgets.com/2011/03/19/gbcartread-arduino-based-gameboy-cart-reader-%D0-part-1-read-the-rom/
http://www.insidegadgets.com/2011/03/19/gbcartread-arduino-based-gameboy-cart-reader-%D0-part-1-read-the-rom/
http://www.devrs.com/gb/files/hosted/GBSOUND.txt
http://bgb.bircd.org/
http://code.google.com/p/dmgboy/
http://blargg.8bitalley.com/parodius/gb-tests/cpu_instrs.zip
http://blargg.8bitalley.com/parodius/gb-tests/cpu_instrs.zip
http://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM
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useful and set the waveform RAM areas of memory to the same thing in BGB before testing 

channel 3. 

http://www.romnation.net/srv/roms/14092/gb/Sound-Test-PD.html 

 

Other Teams’ Work 

1. The FPGABoy project. This was a project at MIT that was basically exactly the same as ours, 

except in the beginning of the course we didn’t know how legit it was. Our doubts were mostly 

based on the fact that the code in their Git repository is inconsistent from the code in their final 

lab report. Apparently, the code in the document was super legit. This is where we completely 

copied the GPU code from. However the code in the actual repo is nonfunctional. 

https://github.com/trun/fpgaboy 

 

2. Team Dragonforce (AKA VirtexSquared). This was an old 18-545 team that did an ARM SoC. 

We used their AC97 and DVI drivers. https://github.com/teamdragonforce 

  

http://www.romnation.net/srv/roms/14092/gb/Sound-Test-PD.html
https://github.com/trun/fpgaboy
https://github.com/teamdragonforce
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Individual pages 
 

Joseph Carlos 

 

What I Did 

I was solely responsible for implementing the CPU, DMA module, timers, and ChipScope 

interface. I worked on getting most of the system integration done and worked with Elon on 

the Link Cable controller. I also spent some time during the semester helping to debug sound 

and doing the labs. 

 

Class Impressions 

I can say that in this class, I took a few empty Verilog files and wrestled them into a working 

Game Boy CPU. That required a lot of patience, planning, luck, and crazy ideas, but I found it to 

be really fun. 

 

I enjoyed the chance to sit in lab with some very smart, motivated, and at times equally crazy 

classmates doing pretty wild things with Verilog. 

 

One of the most rewarding parts of the class was the ability (and necessity) to plan ahead of 

time for problems, and to develop my own schedule and testing apparatus. Doing this well 

allowed me to complete my parts of the design in time for the demo and was a very cool 

experience. 

 

Some of the things I could think of that I didn’t particularly agree with or enjoy: 

1. The labs were either really easy (lab 1, lab 3) or had no guidance at all (lab 2), or both (lab 3). 

I understand the idea is for us to interact with the outside world (of Xilinx) on our own. 

However, in my opinion at least, giving us a lab that says, “get some selectable sound playing on 

the board, good luck” is not really the right way to approach this. 

 

2. RHEL + Xilinx = some people’s own personal hell. Xilinx alone is bad enough. 

 

3. The VC707 board is just not suited to the class. Sorry for beating a dead horse - err… FPGA. 

 

4. The oscilloscopes in lab are hilariously terrible. We realize most people don’t use them, so 

one or two good ones would suffice. Unfortunately the ones in the other labs are locked to the 

benches, so we couldn’t borrow any. 
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5. The lab is not well stocked with things like parallel cable crimpers and connectors, headers, 

SMA connectors, whiteboards, etc. 

 

Despite the things mentioned above, I thought this was a really good class. There was a good 

emphasis on process, which was actually very helpful, and it was generally a lot of fun. 

 

How Much Time I Spent 

I spent somewhere between 150-200 hours on the class, maybe more. I didn’t log my hours so 

that is a very rough estimate. 

 

Alice Tsai 

 

What I did 

My role was solely the GPU and DVI portion. I read a lot of documentation in order to debug 

the DVI. Since we got the iic_init and sync_gen from Dragonforce’s code, I needed to 

understand their original framebuffer to see how they used it in order to hook it up so that it 

would work for our purposes. Elon also looked into their code to try and help me out with the 

debugging as well. Dragonforce used some of Xilinx’s built-in models so I had to familiarize 

myself with those to make modules that could be used to adapt their code to our system. And 

in the end, it was reading the documentation on how I2C is initialized that fixed my last bug with 

the DVI portion. 

 

With regards to the GPU portion, I first read through the video portion of some very helpful 

PAN docs. Next I read through all FPGABoy’s video code because once again, it is not a good 

idea to simply stick someone else’s code into your own design without knowing what it is doing. 

Also, initially, I was supposed to change something in their design that would have a big impact 

on the Video Module’s FSM. And any time one needs to change something in a FSM, I think 

they need to thoroughly understand what is going on in the FSM itself. Unfortunately, that time 

was wasted because we were short on time and an executive decision was made to not make 

that change after all. But on the positive side, I got to know the innards of the GPU portion 

pretty well. I did not know how to use CoreGen to make the VRAM and OAM block rams but 

luckily Elon already familiarized himself with that tool and created the block rams for me to use. 

Elon helped me with hooking the GPU to the CPU as well. My last main contribution was 

debugging why video did not work after everything was hooked up. Through simulation, I found 

the culprit: an incorrectly connected wire. Once that was changed, the next time we tried, it 

worked! 
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After integration, we found that we couldn’t get farther than the Nintendo Logo so I simulated 

the GPU on the side and confirmed that it worked as expected. Then I tried to help with the 

debugging of the CPU but wasn’t able to contribute any findings of bugs, not for lack of effort. 

 

I worked on the poster for our public demo but because I took too long, Elon made a nice 

poster that we ended up using instead. I ended up finishing it in time for our demo but felt that 

it would be weird to have two posters so just kept my poster rolled up. 

 

Overall, I learned how helpful documentation can be. But at the same time, I learned (from 

Joseph) that at some point, one has to stop reading documentation and just start coding and 

from there, when you encounter problems, go back to the documentation. 

 

Class Impressions 

Overall, this was a great course. It was helpful in providing my first experience with a team 

project that did not involve much “hand-holding.” I think I learned a lot of how to go look online 

for information. It was also really cool to work on an actual complete project that did 

something, rather than just an exercise that demonstrates ability to code something in Verilog. 

 

Things I Did Not Enjoy 

I wish that I had spent more time more wisely. It ended up causing a lot of stress and friction for 
my team so if there was one thing I’d change, it would be spending more time earlier. 
 

How Much Time I Spent 

I logged most of my hours and they came to a total of > 160 hours. I only started logging them 

partway through the semester though so for the earlier part, I only counted class time. 

 

Elon Bauer 

 

What I Did 

I was solely responsible for sound, the cartridge connector, and the NES controller interface. 

Basically anything that required soldering, wiring, drilling, or dremelling was my turf, since I was 

the only one who had taken 18-320. I also helped Joe with the link cable the night before the 

final demo, I helped catch the last two bugs in the CPU, and I hooked up the GPU to the CPU 

and helped figure out why DVI wasn’t working. Joe and I traded off being team leaders. For 

things like labs, presentations, and general deadlines, I usually had to remind the others that 
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they were happening. But Joe was good about generally keeping us on track and reminding us 

to have goals and stick to them.  

 

Class Impressions 

This class was a lot of fun. I would think that regardless of whether or not our final project 

worked. It was great having a well-defined goal to shoot for and knowing exactly what we had 

to implement it and when to implement it by, but also having complete freedom about how we 

went about implementing it. And while this class basically killed any free time I could have 

possibly had and pulled me into lab with a force not unlike that in Star Wars, it all seemed 

worth in it the end. That part might have had something to do with the free iPad… 

 

I liked the fact that the instructors didn’t butt into the projects too much. We were mostly left 

to our own devices, which means we can either succeed or fail and it will be completely our 

own doing. 

 

I’m not sure what to say about the labs. They were useful in a way, but having to do write-ups 

about them really detracted from time that could have been spent working on our project. I 

think the labs would be a lot more useful if we didn’t have to do write-ups for them. If we fall 

on our faces because we didn’t actually do the labs, then that’s our own fault and we’ll fail the 

final project anyway. So I guess going even more hands-off is what I’m suggesting. 

 

Things I Did Not Enjoy 

I didn’t like struggling with the tools. It would have been nice if we didn’t have to waste time 

not coding while struggling with the tools. Also I would have liked more hardware like GPIO 

wires and breakout pins to have been in lab. Better oscilloscopes would be nice too. 

 

How Much Time I Spent 

My total time spent on the project was probably close to 200 hours, plus or minus 50. For the 

first two weeks I probably spent about 4 hours outside of class on average. For the next 9 or so I 

probably averaged about 2 hours a day, and in the final crunch weeks I averaged a little more. 
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