
1

The Fighting Meerkats’

Originally by

Elon Bauer, Joseph Carlos, Alice Tsai

2

Table of Contents …………………………………………………………………………………………… 2

Statement of Use and Contact Information .. 5

Project Description ... 6

What we set out to do .. 6

What we actually achieved .. 6

Development Tools Overview ... 8

Board ... 8

Xilinx Tools .. 8

Operating Systems and Workstations ... 8

Version Control .. 8

Hardware Overview ... 8

CPU ... 9

Overview .. 9

Description .. 9

Timing ... 9

Special CB Instructions .. 10

Architecture ... 10

Decode .. 11

Interrupts .. 11

The ALU .. 12

The DAA Instruction ... 12

Process ... 13

Testing Harness .. 14

CPU Simulation ... 14

Emulator .. 15

Assembled Assembly .. 15

Putting it Together .. 15

Breakpoint Module .. 15

On-Board Debugging .. 16

Final Results ... 16

Video Interface ... 17

Overview ... 17

Description ... 17

Video Module ... 17

Video Converter .. 17

DVI Module ... 18

Process ... 18

Audio Interface .. 19

Overview ... 19

Description ... 19

3

AC’97 codec .. 19

The Audio Registers .. 19

Our Design .. 21

Process ... 22

AC’97 ... 22

Square Waves .. 22

Volume Control ... 22

Memory-mapped Registers ... 23

Sound Functions ... 23

Length ... 23

Frequency ... 23

Frequency Sweep ... 24

Duty Cycle ... 24

Volume Envelope ... 24

Frame Sequencer ... 24

The Initial Flag .. 25

Results .. 25

Cartridge Connector ... 26

Overview ... 26

Description ... 26

Process ... 26

Results .. 28

Timers/DMA ... 29

Overview ... 29

Process ... 29

Results .. 30

Memory and System Integration Strategy .. 31

Overview ... 31

Bootstrap ROM .. 32

Process ... 32

Results .. 32

User Input .. 33

Overview ... 33

Description ... 33

Process ... 33

Link Cable .. 35

Overview ... 35

Description ... 35

Process ... 36

Results .. 37

4

Group Thoughts ... 38

What we wish we had known ... 38

Good/bad decisions ... 38

Good ... 38

Bad ... 38

Advice ... 39

Sources .. 41

Game Boy Documentation ... 41

Emulators .. 42

Special Files .. 42

Other Teams’ Work ... 43

Individual pages .. 44

Joseph Carlos ... 44

What I Did ... 44

Class Impressions .. 44

Some of the things I could think of that I didn’t particularly agree with or enjoy: 44

How Much Time I Spent .. 45

Alice Tsai ... 45

What I did .. 45

Class Impressions .. 46

Things I Did Not Enjoy ... 46

How Much Time I Spent .. 46

Elon Bauer... 46

What I Did ... 46

Class Impressions .. 47

Things I Did Not Enjoy ... 47

How Much Time I Spent .. 47

5

Statement of Use and Contact Information

The members of this team, Joseph Carlos, Elon Bauer, and Alice Tsai, hereby give permission

for anyone to use the code they produced for this project in an academic, educational, or

otherwise non-profit-generating manner as long as the original authors (the members of this

team) are given credit for their work.

If you have questions about the project, you can email us at:

Joseph Carlos: jdcarlos1@gmail.com

Elon Bauer: eob@andrew.cmu.edu

Alice Tsai: alicet@andrew.cmu.edu

The source code can (hopefully) be found at https://github.com/nightslide7/Gameboy.

6

Project Description

What we set out to do

We set out to make a fully functional original Game Boy on an FPGA. The Game Boy supports

any original Game Boy cartridge, grayscale graphics, user input through buttons, four-channel

stereo sound, and a serial link cable for multiplayer capability. There are also other functions

like an IR communication device that were not considered.

What we actually achieved

What we actually created was a mostly functional Game Boy, which supports Tetris with sound,

full control, and a link cable. We created a working CPU, which interfaces correctly with the

GPU, cartridge connector, audio interface, NES controller and link cable. The GPU does not

support sprite manipulations but otherwise works. The cartridge connector should support all

games, but only Tetris works properly. Three of the four audio channels were implemented and

work for all intents and purposes. The NES controller interface is perfect, and the link cable

basically works sometimes. Here is a shot of our working design playing Tetris:

7

And here’s a picture of our elaborated design in Vivado:

8

Development Tools Overview

Board

We used a Xilinx Virtex-5 LX 110T FPGA on a Xilinx development board. The documentation for

the board is equivalent to the documentation for the ML505 development board.

Xilinx Tools

We used Xilinx’s ISE 14.3 IDE to compile and synthesize our code, as well as its built-in CORE

Generator tool for generating block RAM and Chipscope modules. We used ChipScope

extensively to debug the board.

Operating Systems and Workstations

The lab machines given to us had Red Hat Enterprise Linux (RHEL) installed on them. RHEL does

not play nice with Xilinx tools. We lost cable drivers three times during the semester, halting all

development for two members of the group, as they had no backup machines. Do not use Xilinx

tools with RHEL if you know what’s good for you. Joseph luckily ditched these workstations

early on and installed ISE on his own laptop running Windows 7. He found that this operating

system runs the design tools with no problems.

Version Control

We created a Git repository, hosted on GitHub, early on in the project and used it to manage

our code throughout the semester.

Hardware Overview

Our Game Boy’s hardware consists of a custom CPU, a GPU for tile mapping, 8Kb of work RAM,

8Kb of video RAM, a sound chip, a cartridge connector, a link cable driver, a controller interface,

a set of timers, and a block transfer module.

The CPU executes code read in from the cartridge, and sets memory-mapped registers in the

other modules to control them. The modules also present various status registers for the CPU

to access. Four of the modules generate interrupts that cause the CPU to start execution of

interrupt handlers: the GPU, the controller, the timers, and the link cable.

9

CPU

This section will attempt to outline our design as well as call attention to things that were

unclear from existing documentation.

Overview

The Game Boy CPU is an 8-bit Z80/8080 hybrid with some custom functionality added by

Nintendo. There are approximately 48 different instruction groups, such as bit shifting, 8-bit

arithmetic, 16-bit loads, etc.

Description

The most complete document describing the CPU is the Game Boy Programming Manual,

Nintendo’s reference for people making games for the Game Boy. A copy of this can be found

at http://www.romhacking.net/documents/544/. A summary version of this manual with some

additional information, the Game Boy CPU manual, can be found at

http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf. And finally, an HTML version of the CPU

manual called the PAN docs can be found at http://nocash.emubase.de/pandocs.htm.

Timing

Game Boy documentation refers to “machine cycles” and “T cycles.” This was initially confusing.

A T cycle is an actual clock cycle and a machine cycle is 4 T cycles. Machine cycles are just a

shorthand that Nintendo engineers used to calculate timing. For the purposes of a Verilog

Game Boy emulator, machine cycles are irrelevant. When this document refers to a cycle, it

refers to a T cycle.

The original CPU runs at 222 Hz, which is 4.194304 MHz. Our CPU, however, runs at 4.125 MHz

due to the limited clocking functionality of the development board.

Each instruction executes in 4, 8, 12, 16, 20, or 24 cycles. Conditional instructions have a

variable number of cycles (fewer when the condition is not true). The instruction timing is

extremely important and must be preserved in any Game Boy emulation system, hardware or

otherwise. The programmers of the Game Boy expected the cycle values to be constant across

Game Boy systems. Unfortunately the official Game Boy Programmer’s Manual incorrectly

specifies a number of these timings. A list of the correct timings can be found at

http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html.

http://www.romhacking.net/documents/544/
http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf
http://nocash.emubase.de/pandocs.htm
http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html

10

Special CB Instructions

The CPU has support for multi-byte instructions in the form of so-called “CB instructions.”

These are simply instructions prefixed with the byte 0xCB. When 0xCB is read as the next

instruction, the CPU reads the next byte as a CB instruction rather than a normal instruction.

For example, the instruction 0x80 normally corresponds to ADD A, B. However, if the CPU reads

0xCB and then 0x80, the instruction corresponds to RES 0, B (reset bit 0 of register B).

Architecture

The architecture of our CPU deviates as little as possible from the original architecture of the

Z80/8080, at least as far as we could find documentation for it. A good resource on the

hardware design of the Z80 can be found at

http://www.msxarchive.nl/pub/msx/mirrors/msx2.com/zaks/z80prg02.htm.

Our design is a multi-cycle microcoded non-pipelined in-order design. The basic components

are the register file, ALU, internal and external data buses, input and output buffers, and the all-

important decode module.

The CPU also includes a block of “high memory” separate from the rest of work RAM. This

module is implemented as a Verilog array and can be accessed by the CPU even if the GPU or

DMA module is accessing memory elsewhere on the address and data buses. When the CPU

reads or writes to this section of memory, it does not output anything on the address or data

buses, or the read and write enable signals.

The CPU interfaces with the rest of the system through the interrupt register inputs, a single

signal to disable CPU memory access (needed for DMA transfers), and most importantly the

shared address and data buses. The CPU assumes that its bus interface to memory is

asynchronous read, single-cycle write, since every memory component of the Game Boy is an

SRAM chip.

Below is a diagram of the CPU’s core modules. This diagram does not include all the signals in

the design, just the control signals from the decode module and a few extra useful labels (such

as bus labels). The reason for this is that we used this diagram to write microcode, so we

wanted a simple overview of the system with just the control signals we needed. Be aware that

there are additional signals in the decode module that simplify some things, such as

incrementing the PC specifically.

http://www.msxarchive.nl/pub/msx/mirrors/msx2.com/zaks/z80prg02.htm

11

Decode

The decode module of the CPU contains logic that generates control signals for all the hardware

in the CPU, including the timing logic and interrupt handling control flow. It is essentially a few

thousand lines of microcode in a giant case statement on the current instruction, then smaller

case statements - per instruction category - on the cycle number.

Interrupts

Interrupts are handled by examining the contents of the IF and IE registers on each 0 cycle. If an

interrupt occurs and is enabled, the CPU resets the IF bit for that interrupt and proceeds to

handle it. In order to interface with the IF register, external logic is required. This logic needs to

load the IF with its current contents plus the new interrupt bit of the interrupting module. The

CPU will then do the right thing with it.

12

The ALU

The ALU is a basic design with its own set of opcodes, two inputs, and one output. It also

outputs the result flags as well as taking the current flags as an input. The flags are Zero,

Negative, Half-carry, and Carry (Z, N, H, C). The flags are set differently for each instruction. For

example, RLCA (rotate A left through the carry flag) sets Z, N, and H to 0 and sets C to A[7].

However, RLC r (rotate register r left through the carry flag) sets N and H to 0 and C to r[7], but

sets Z to 1 if the result is 0, and Z to 0 otherwise.

The DAA Instruction

The worst part of the ALU was the DAA instruction, which adjusts the result of a BCD operation

that occurred in A. For example, if A contains 0x19, and then you add 0x19 to A, A will contain

0x32. After a DAA instruction, as long as F hasn’t changed, A will be adjusted to 0x38, the BCD

result of 0x19 + 0x19. We adapted code from the Internet that correctly calculates DAA on

every possible combination of A and the flags. That code is found at

http://forums.nesdev.com/viewtopic.php?t=9088 in a forum post by user DParrott.

Since the DAA instruction has so many edge cases, is essentially magic, and is almost impossible

to implement from scratch, we’re going to include the Verilog description here for anyone in

the future who might want to use it. The signals are labeled with their types above the case.

`ALU_DAA: begin is a case in a switch statement on the ALU opcode. This switch statement is

inside an always @(*) block. During the DAA instruction, alu_data1_in is connected to the

output of A and alu_data_out is connected to the input of A.

output reg [7:0] alu_data_out;

output reg [3:0] alu_flags_out;

input [7:0] alu_data0_in, alu_data1_in;

input [3:0] alu_flags_in;

parameter

 F_Z = 3, F_N = 2, F_H = 1, F_C = 0;

reg [8:0] intermediate_result1, intermediate_result2;

...

`ALU_DAA: begin

 if (~alu_flags_in[F_N]) begin

 if (alu_flags_in[F_H] |

 ((alu_data1_in & 8'h0f) > 8'h9)) begin

 intermediate_result1 = {1'b0, alu_data1_in} + 9'h6;

 end

http://forums.nesdev.com/viewtopic.php?t=9088

13

 else begin

 intermediate_result1 = {1'b0, alu_data1_in};

 end

 if (alu_flags_in[F_C] | (intermediate_result1 > 9'h9f)) begin

 intermediate_result2 = intermediate_result1 + 9'h60;

 end

 else begin

 intermediate_result2 = intermediate_result1;

 end

 end

 else begin

 if (alu_flags_in[F_H]) begin

 intermediate_result1 = {1'b0, (alu_data1_in - 8'h6)};

 end

 else begin

 intermediate_result1 = {1'b0, alu_data1_in};

 end

 if (alu_flags_in[F_C]) begin

 intermediate_result2 = intermediate_result1 - 9'h60;

 end

 else begin

 intermediate_result2 = intermediate_result1;

 end

 end // else: !if(alu_flags_in[F_N])

 alu_data_out = intermediate_result2[7:0];

 alu_flags_out[F_N] = alu_flags_in[F_N];

 alu_flags_out[F_H] = 1'b0;

 alu_flags_out[F_C] = intermediate_result2[8] ? 1'b1 :

 alu_flags_in[F_C];

 alu_flags_out[F_Z] = (intermediate_result2[7:0] == 8'd0) ?

 1'b1 : 1'b0;

end

...

Process

We read the project reports for the previous teams that attempted the Game Boy and noticed

that they both attempted to use a buggy design they found online, failed to do so, and ended

up implementing their own CPU. We decided based on these reports to just implement our

own CPU from the beginning and not waste any time with other peoples’ non-working code.

In order to do this, we planned to have a few phases of CPU development.

1. Design the CPU at a block-diagram level.

14

2. Implement the CPU hardware and test one instruction in simulation.

3. Microcode a few instructions and run a simple program, such as calculating a Fibonacci

number, on the FPGA.

4. Adapt an open-source emulator’s CPU to use in a testing harness.

5. Microcode all the instructions.

6. Write unit tests for all the instructions and test them using the testing harness in simulation.

7. Implement the DMA, timers, and interrupt handling.

8. Use a standard Verilog testbench with compiled Game Boy assembly to test the DMA, timers,

and interrupts in simulation as thoroughly as possible.

9. Run the bootstrap ROM in simulation using modified versions of the GPU scroll registers.

10. Create a breakpoint module using the FPGA’s LCD, switches, and buttons to print register

state, step through instructions, and break on addresses.

11. Integrate the other modules and run the bootstrap and the Tetris ROM on the board.

Most of these phases were simple to complete using standard techniques and strategies

learned in previous courses. The testing harness using the emulator’s CPU was not.

Testing Harness

We decided that we needed some kind of quick way of testing the CPU. We were inspired by

the testbench from 18-447 to create a similar testing harness. The testing harness we wrote for

the CPU involved three major elements: our CPU simulation, assembled assembly files, and a

working emulator’s CPU code hacked to behave in a nice way. These components came

together to create an automated testing harness that, when finished, allowed us to type a

single command with an assembly file as input that compared the correct register values of the

emulator against our register values at the end of the program.

This testing harness was absolutely invaluable throughout the course of the project. It allowed

us to run each test and find the bugs in the tested components in minutes rather than hours. It

also allowed us to reproduce bugs in simulation that we found in synthesis. This allowed us to

see all the CPU’s wires rather than ChipScope’s limited subset. It also allowed us to make

changes to the CPU without having to resynthesize to test.

CPU Simulation

We decided to automate this using batch files on Windows with Xilinx’s ISim tool. The batch

files call the Xilinx tools to compile our design and create a simulation executable. We use the

$memreadh system call to read bytecode from a file into a Verilog memory module connected

to the CPU, then set the CPU’s PC to 0 and let it work it’s magic. When it encounters a HALT

15

instruction, it saves the register values to a file on disk, which we can compare with the correct

values from the emulator’s CPU, which we changed to do the same thing.

Emulator

We used the CPU from DMGBoy, found here: http://code.google.com/p/dmgboy/. We

downloaded the source, imported the relevant files into Visual Studio, and changed the CPU to

write the register values to disk when it encounters a HALT instruction. The emulator code

could only load ROM files, so we output the machine code to a 32 kB file padded at the end

with zeroes.

Assembled Assembly

We acquired a Game Boy assembler from http://gbdk.sourceforge.net/. The instructions for

installing this are found either there, or more succinctly at

http://www.loirak.com/gameboy/gbprog.php. When the assembler (as-gbz80) is invoked with a

-l option, it outputs a list file, which is basically just machine code with comments. We wrote a

Perl script that takes these list files and translates them into actual machine code. We had two

formats for the machine code. The first was the Verilog-readable memory data file consisting of

each byte followed by a newline. The second was the emulator-readable ROM file consisting of

a string of binary data.

Putting it Together

We wrote a batch script that takes the assembly file and some utilities (such as the Perl scripts

mentioned above, and the tcl file for Xilinx’s compilation tool), copies them into a new directory

with the same name as the assembly file, compiles the Verilog, assembles the program, runs

the simulation and emulator, and invokes a Perl script that compares the output files. If

everything is correct, we’re golden. If not, we can descend into this directory and run the

simulation executable ourselves and look at the waveform.

Breakpoint Module

The breakpoint module is a simple module that allows the user to set a breakpoint with the

switches on the FPGA board. The user selects either the top or bottom bits of the 16-bit address

with a button, changes the 8 switches to a number, and then presses a button to save that

number to the corresponding half of the address. The decode module then interprets this and

stops execution when the PC is equal to the address. At this point the user can step through the

code or continue using buttons on the board. We found this to be extremely helpful.

http://code.google.com/p/dmgboy/
http://gbdk.sourceforge.net/
http://www.loirak.com/gameboy/gbprog.php

16

On-Board Debugging

Even though the testing harness managed to catch most of our bugs, we still encountered bugs

while running Tetris and the test ROMs. The process for finding bugs here was to find where the

code was different from the emulator’s output and trace back using ChipScope and the

emulator to where exactly the difference began. For example, we had a bug in the JR Z, e (jump

relative if zero) instruction that caused us to jump to an invalid location in code. We could see

on the LCD display that the PC was invalid, so we used ChipScope to go further and further back

in time to the valid JR instruction that caused the jump, and were able to determine why it was

incorrect. Another problem we had was that we couldn’t get into the Tetris start screen from

the credits, so we stepped through the emulator code to see where exactly this happened and

figured out from there why our design wasn’t executing the code in the same way (it turns out

we weren’t allowing writes to the IF and IE registers correctly).

Final Results

We got Tetris to run on the board with no single-player CPU-related bugs, which indicates that

the CPU is working quite well. At the end of the project, we found some very extensive CPU

tests on the Internet called Blargg’s test ROMs: http://blargg.8bitalley.com/parodius/gb-

tests/cpu_instrs.zip. We managed to get the CPU to pass all of the functional tests found there.

We believe the CPU is essentially correct and complete.

http://blargg.8bitalley.com/parodius/gb-tests/cpu_instrs.zip
http://blargg.8bitalley.com/parodius/gb-tests/cpu_instrs.zip

17

Video Interface

Overview

We adapted Dragonforce (VirtexSquared)’s framebuffer and FPGABoy’s video_module and

video_converter to work with our system. The video interface uses the Chrontel CH7301c video

chip to output the DVI signals to the monitor. The video interface is made up of a controller

FSM, which takes in data input to be written to the video control registers, which controls the

state of the controller, and hence it’s outputs. The VRAM and OAM portions of the memory are

memory mapped inside of the video interface. If the CPU needs to access the VRAM, OAM, or

any of the memory-mapped registers, the address of those requests are mapped to the video

interface which outputs the necessary information.

Description

Video Module

The Video Module contained the memory for the VRAM and OAM, the memory mapped

registers, and the FSM used to control the reading, writing and data output. The functions of

the 10 memory mapped registers in the video module include controlling the display data and

memory accessed, the horizontal and vertical scrolling, the mode of the video controller, the

background and object palettes, as well as the window positions. The Video Module contains

two scanline buffers, which contain the upper and lower bits of each pixel. One line is stored at

a time. First, it is determined whether the background or window tile is displayed, and then the

appropriate pixel data is fetched and stored in the scanline. Next each sprite in the OAM is

checked to see whether or not it intersects with the current line being displayed. If it does, the

sprite data is pulled out and examined to determine the final pixel data in the scanline.

Depending on the color and attributes of the sprite and background pixel data, the correct pixel

data is then masked and written into the scanline buffers. Once the pixel data for a line has

been finalized, it can be outputted to the Video Converter one pixel at a time, reading the

upper bit from one scanline and the lower bit from the other scanline.

Video Converter

The Video Converter generates the horizontal and vertical sync signals, which are then passed

on to the DVI Module. In addition, it takes the pixel data from the video module and stores it in

a framebuffer which stores one Game Boy LCD screen frame at a time. Note that this is not the

frame of the monitor. There are two framebuffers so that as one is reading, the other can be

outputting pixel data to the DVI Module. The pixels are stored as 2-bit data inside the

18

framebuffer and converted to a 24-bit RGB value before being outputted to the DVI Module.

The final main task of the Video Converter is to offset the Game Boy LCD screen frame pixel

data so that it can be centered on the monitor and outputs the color black when the pixel is not

in the area occupied by the frame.

DVI Module

To output pixel data to the monitor, the Chrontel chip’s I2C needs to be set up and horizontal

and vertical sync signals are outputted with the 12-bit data. The DVI Module outputs data on

both edges of the clock so that in one period, the entire 24-bit RGB value will have been sent.

Process

We started with trying to output simple color to the monitor.

To set up the I2C and output DVI signals, we took code from Dragonforce’s framebuffer and

modified it to only do the setting up of the I2C and generate the sync signals. There were some

Xilinx modules (such as IO_DELAY) that were used that required other Xilinx modules to

function and at first, we commented it out. However, after realizing that those modules were

required for proper timing, we added them back in. After reading documentation, we were able

to recreate the required missing modules.

After the initial video was functioning properly, we looked into FPGABoy’s video code. It was

not easy to test FPGABoy’s video code without hooking it up to the CPU since all of its output

depends on input which comes from the instructions read by the CPU so after combining the

DVI code with the GPU code, we hooked it up to the CPU and it failed. Upon simulation, we

found that one of the signals had been hooked up incorrectly. After correcting that, it worked

and the Nintendo logo showed up on the screen. Further testing was done in simulation by

comparing waveforms with what was in the registers in the BGB emulator. These waveforms

assured us that the GPU was functioning correctly. Unfortunately, later on, we found that sprite

reflection and transparency did not work properly. The rest appeared to function correctly

though.

19

Audio Interface

Overview

The audio interface on the Virtex5 uses the AC’97 codec to output PWM audio levels to the

headphone jack. These are literally just “volume” values. The Game Boy has four sound

channels. Channels 1 and 2 are square waves, channel 3 is a waveform player, and channel 4

plays white noise. All audio functions come from memory-mapped registers, which are written

to by the CPU. Functionality includes frequency sweeps, volume envelopes, and length controls.

Description

AC’97 codec

In order to play sounds from the Virtex5, you first need to setup the AC’97 codec. This process

is complicated and not completely understood by anyone other than team Dragonforce aka.

VirtexSquared. The Dragonforce code properly sets up the codec and plays sounds from flash

starting at address 0x0000. In order to program the flash, first you need to generate a .mcs file.

This can be done using the Xilinx “promgen” command on a hex file. The hex file can be

generated from a raw audio file using the “xxd” command. Detailed commands are found in

VirtexSquared’s Makefile. Once you have a .mcs file, in Impact assign a PROM to the device and

select the .mcs file. Select the BPI PROM 28F256P30 and click OK. In the window that pops up,

select the attached flash on the left and change the pull down menu from “automatically load

FPGA with Flash contents <default>” to “automatically load FPGA with currently assigned

bitstream.” Then right click the flash and hit program. It should automatically load the bitfile

onto the FPGA. If this doesn’t work, power cycle the device and try again.

The Audio Registers

The Game Boy uses 18 memory-mapped registers to allow the CPU to communicate with the

sound module. Basically there are five registers per channel and three master control registers.

These registers can be written to at any time while producing sound. They define various

properties of the sound currently being played. The labels in the Pan Docs are of the form NRXY,

where X refers to the sound channel (5 refers to the master control registers) and Y refers to

the sub register of that channel.

Channels 1&2

For the square waves, the registers are as follows:

20

Y=0 is the frequency sweep register (channel 1 only). When the sweep time is not zero, the

sound’s frequency is either increased or decreased by the current frequency right shifted by

“Number of sweep shift.” Note that “Number of sweep shift” is not the number of sweeps that

should be performed. It is simply a value (n) in the function X(t) = X(t-1) +/- X(t-1)/2^n. Note

that the sweep time is implemented using a 128Hz clock

Y=1 is the length and duty cycle register. Of note, the wave pattern duty is the percentage of

time that the wave is low, not what one would expect. The length of the sound is given by the

function (64-t1)*(1/256) seconds, where t1 is bits 5-0 of the Y=1 register. This timing is

implemented using a 256Hz clock.

Y=2 is the volume register. The initial volume and direction of the volume envelope is defined,

as well as a variable called “Number of envelope sweep.” Note that like with the frequency

sweep function, Number of envelope sweep is not the number of sweeps to perform. It is

simply the value n in the function Length of 1 step = n*(1/64) seconds. This length is

implemented using a 64Hz clock.

Y=3 is simply the lower 8 bits of the 11 bit frequency data. The true frequency is given by the

formula F = 131072/(2048-x)Hz where x is the 11 bit frequency data. This was implemented

with a 131072Hz clock.

Y=4 looks simple but was probably the register that caused the most trouble and was hardest to

understand. It defines whether or not to use the length value previously defined, and it

contains the “Initial” bit. The initial bit restarts the sound on that channel when a value of 1 is

written to it. This is REGARDLESS OF THE PREVIOUS VALUE.

Channel 3

This channel plays waveform files stored from address FF30 to address FF3F. It plays them one

byte at a time, most significant four bits first. I believe they are played from address FF3F to

address FF30, but that has not been confirmed. Our waveform playback module is not perfect.

However I will still describe what I know about the registers.

Y=0 is simply an enable flag. If it’s not set, don’t play sound.

Y=1 is the length data. The actual length is given by the formula (256-t1)*(1/256) seconds. This

is implemented with a 256Hz clock.

Y=2 just includes the output level which is an amount to shift right by.

21

Y=3 is the upper 8 bits of the frequency.

Y=4 includes the flag determining whether or not to use the length data, the higher bits of

frequency, and the initial flag. Note again, sound is reset when the initial flag is written with a 1,

REGARDLESS OF THE PREVIOUS VALUE. The frequency of this channel is given by the formula F

= 65536/(2048-x)Hz where x is the frequency data. This is implemented with a 65536Hz clock.

Channel 4

Channel 4 produces white noise of various types. This seems to be mostly used to produce

sounds similar to drum beats to intersperse in Game Boy music. It seems to be non-trivially

difficult, including a polynomial counter, which essentially functions as a random number

generator.

Control Registers

Y=0 is basically a “master volume” register. It has additional flags for outputting a Vin signal to

the cartridge, but this is almost certainly superfluous for most games. The volume values should

be used in conjunction with each channel’s volume in a mixer sort of fashion. However, note

that no other mixing needs to be implemented and the channel’s values can simply be added

together to produce the final mixed sound.

Y=1 is a set of enable flags for the right and left stereo channels for each of the four sound

channels.

Y=2 is a master sound enable flag which stops all sound functionality if not set. Additionally

there are read only flags, which say whether or not a sound is currently playing. We did not

implement these last flags.

Our Design

In our design all of the sound files are located in the sound_src folder. The AC97.v file sets up

the AC’97 codec and “mixes” the audio channels based on their enable signals. The sound

registers are coded in sound_registers.v. Each register is simply a reg variable and each of the

variables that is set inside of the registers is output from the module to make them easier to

access and give them names. In sound_functions.v you will see the waveform player and square

wave player. They have a few similarities, but have mostly different functions. Finally

everything is hooked together in audio_top.v and the sound register values are given to the

22

sound function generators, which use those values to output sound levels to the AC97. The .ucf

file in this folder is specific to sound and no other .ucf files are allowed to clobber it.

Process

AC’97

Starting from lab 2 we realized that we needed to use Dragonforce’s code to set up the AC’97

codec because of the complexity involved in doing it ourselves. When we compiled their code

and programmed our board with the bit file, Dragonforce began to emanate from our speakers.

We weren’t entirely sure why. We later learned how to program the flash. This same process

was also needed later to program the flash with the bootstrap ROM.

Square Waves

The first step we took towards producing Game Boy sound was to use the Dragonforce

SquareWave module to produce a square wave of various frequencies. The tricky part about

that was to get the duty cycle correct. Without a proper 50% duty cycle, the measured

frequency would be slightly off and wouldn’t follow a linear function as would otherwise be

expected. But otherwise it was an easy process. The AC’97 simply outputs unsigned voltage

levels when you assign the slots to a different value. In this way, sound is created by changing

the output level. So to make a square wave, we simply needed to oscillate between a value of 0

and F at a specific frequency. We determined that the best way to control the frequency,

because of the way it was defined in the Pan Docs, was to count cycles of a specific frequency

clock, and only change the output value after a certain number of cycles. By doing this we were

able to use “reverse division” to output whatever frequency we wanted.

Volume Control

Once we got a square wave that could be assigned to a frequency accurate to within 1Hz, we

worked to implement a volume controller. We decided to use the rotary controller on the FPGA

dev board to act like the actual volume knob on the Game Boy. It was simple to implement with

a 7 state FSM. Essentially there is a signal for going “up” and a signal for going “down” and both

are asserted at every tick of the wheel. It seemed to work just fine at first but actually we had a

lot of problems where the volume would start all the way turned down and we would think that

sound wasn’t working because of it. So later I changed it to only go between the values E and 9,

since below 9 the sound wasn’t audible anyway. Since the AC97 outputs 20 bit volume levels,

the 4-bit volume level output by the Game Boy had to be shifted over significantly. As it turns

out a shift of 9 is the minimum where it is audible, but a shift of F or higher made the sound clip.

23

Memory-mapped Registers

The next step we decided to take was to code the audio registers. At first there was some

confusion about how memory-mapped registers actually work, but eventually we determined

that we could just make them reg variables and everything would work out fine. We just used

the CPU’s memory write_enable signal to determine when to load the reg’s with new values,

and used the address to determine which reg to load. Then each of the variables in those

registers would be updated automatically and sent out to the sound function generator, which

in turn sent levels to the AC’97 codec. It was all very simple in the end…

Sound Functions

Once the audio registers were hooked up in such a way that they could be assigned values, we

got to work on the sound functions that would be used to test them. We started with the

waveform generator but worked on the square waves in parallel, which were often easier to

understand. We set the registers to specific test values and filled the waveform registers with a

test waveform. At first we were unclear about the fact that each byte is played most significant

four bits first, and simply played the waveform four bytes at a time from bottom to top. It was

extremely unclear if it was working properly because without the CPU actually changing the

register values in real time, it would never sound like actual music. But we could still test some

functionality.

Length

The first functionality to test was the length function. We set the length register to 0, which

meant that sound should play for ¼ of a second for square waves. This was driven by a 256Hz

clock and the “reverse division” method mentioned earlier. Essential we took the number of

256Hz clock ticks were necessary before reaching the desired length, then counted that many

256Hz clock edges and then stopped output. This method was used for frequency sweeps and

volume envelopes as well, and for anything that required a frequency.

Frequency

After that we made sure that the waveform and square waves played back at the correct

frequency as determined by the audio registers. This was mostly tested using a music tuner

from a smartphone. For the waveform player, the waveform was output to the LEDs and looked

at to see how fast it changed. We had some trouble getting a perfectly accurate clock with

which to generate different frequency signals, but it seemed to work out pretty well.

24

Frequency Sweep

Next came the frequency sweep function for square waves. Essentially this changes the

frequency of the signal by a certain amount at every clock cycle until it either becomes zero or

maxes out to 2048Hz. The sound was already playing at a frequency specified by a variable, so

all we had to do was change the value of that variable over time. One strange thing that was

never properly resolved was that when we added to the frequency, the output frequency

would decrease, and when we subtracted, the output frequency would increase. We decided

that this was strange but probably not incorrect, just flipped. So we flipped the wires and went

on with our lives. The output appears to match the sound test ROM output, so it’s reasonable

to assume that this is at least mostly correct.

Duty Cycle

After that came the duty cycle. This was simply a modification to the frequency function, which

changed the square wave from low to high based on a right or left-shifted version of the

original frequency counter. We believe this is how the Game Boy actually implemented it,

because the possible duty cycles lend themselves perfectly to this. One bit of confusion was

that the Pan Docs specified that the % duty cycle was the percentage of time the signal was

held low, which is backwards from most electrical engineering courses. However again, the

measured output matches the output from the sound test ROM, so presumably it’s correct.

Volume Envelope

The volume envelope function was the last piece of the square waves that needed to be

implemented. Essentially this function just adds or subtracts 1 from the output volume after a

certain number of ticks of a 64Hz clock. There was one really sticky point about the volume

envelope and that was the variable referenced in the Pan Docs as “Number of envelope sweep.”

This variable is NOT the number of envelope sweeps to perform. Instead, the Game Boy

performs as many envelope sweeps as it needs to until it either gets to a volume of 0 or a

maximum volume of F. The “Number of envelope sweep” variable is simply a number that

determines the length of time to wait between each step in volume. After that was fixed, the

function worked fine.

Frame Sequencer

The sound functions use a “frame sequencer” which generates various clocks from a 512Hz

timer. We implemented this by just creating a 512Hz clock and then using our clock divider.

Here’s a diagram of the frame sequencer:

25

Step Length Ctr Vol Env Sweep

0 Clock - -

1 - - -

2 Clock - Clock

3 - - -

4 Clock - -

5 - - -

6 Clock - Clock

7 - Clock -

Rate 256 Hz 64 Hz 128 Hz

The Initial Flag

The final and possibly biggest hurdle that we had to overcome to get sound working was the

initial flag specified in the last register of every sound channel. At first we implemented it as a

negatively asserted reset. This worked sometimes but produced sound only a small percentage

of the time and was really only enough to get the ping noise working. Then we tried making it

reset everything only on its positive edge, which was much harder to implement. This worked

better, but was still wrong. Sound wasn’t working properly and we honestly had very little idea

why, but since this flag was so poorly understood, it seemed the likely culprit. Finally we

determined that a sound channel is reset and started over whenever a value of 1 is written to

this flag, regardless of its previous value. Apparently this is how a lot of embedded systems

work, but that was not something that anyone on the team knew. Once this was fixed, sound

worked great.

Results

Channels 1 and 2 work almost perfectly and play Tetris music accurately to the extent that the

human ear can perceive it. According to the sound test ROM, the frequency sweep function

might still be slightly incorrect, but everything else has been tested and appears working.

Channel 3 mostly works. It plays back the waveform from memory, but it doesn’t sound quite

right. It’s a fairly simple module, so it’s very unclear what’s wrong.

Channel 4 was not implemented. This means sounds like drum beats are left out of the final

audio. This is mostly imperceptible unless you know it’s missing, but it does add something

when it’s implemented. It likely wouldn’t be much more work to implement, we just ran out of

time.

26

Cartridge Connector

Overview

The cartridge connector was desoldered from an original Game Boy PCB and hooked up to a

protoboard. Wires were then run from the protoboard into the GPIO pins on the FPGA dev

board. Initial configuration involved only reading from the ROM, but later additions allowed

writing to the SRAM on the cartridge as well.

Description

Every Game Boy cartridge has the same pinout. This includes Vdd, ground, 16 address pins, 8

data pins, a read enable, write enable, and a chip select, as well as a reset and two other pins

that are probably never used. There is no clock that is necessary to read from the cartridge. As

long as it gets power, while reading, the data on the lines will be the data stored in ROM at the

address given by the address lines. When writing, the chip select must be asserted. Writing only

happens for save files.

Process

We ordered a replacement Game Boy Advance cartridge connector from the Internet with the

intention of using that to plug in our games once we got rid of the mechanical stops that

disallow original Game Boy cartridges from being inserted. However it took a very long time to

arrive in the mail, so we decided to remove the connector from the original Game Boy that we

had purchased. This proved to be a splendid idea. The bulk of this connector meant it was easy

to hold on to, as opposed to the Game Boy Advance connector, which was very small. This was

important because of the delicate nature of the solder connections. The cartridge connector

had offset and oddly spaced pins, so it could not be inserted directly into a protoboard. In order

to get around this, it was decided that the best course of action would be to solder wires to

each of the individual 32 pins and then get those wires to the GPIO pins somehow.

The original plan was to take female-female GPIO connector cables and cut them in half and

solder the cut ends to the pins so we could plug directly into the GPIO pins. This might have

been a better idea in some ways because we believe we may have had timing issues due to the

length of our final cables, but there weren’t enough female-female GPIO cables and we didn’t

feel like ordering more. Also the GPIO cables did not have a solid wire inside but rather a

bundle of smaller wires, which is much more difficult to solder properly. It was wise not to

complicate an already difficult soldering job.

27

We decided to solder protoboard wire to each of the pins and plug them into a protoboard

rather than directly into the GPIO pins because of modularity and the ability to probe the

signals this way if we encountered issues. This meant that each of the wires had to fan out to

be almost exactly the same length or the connector wouldn’t sit properly. This was no mean

task. Here are some pictures of the final result:

In order to go from the protoboard to the GPIO pins, we had a few options. One would be to

take a removable header and solder wires to that which would then plug into the protoboard.

28

But Elon was tired of soldering so we went with a ribbon cable to break out the pins into female

connections instead. The shortest ribbon cable we could find was very long, which again might

have contributed to timing issues in the final product. However, the cartridge connector

worked fine for Tetris.

We had to write a simple interface, which sent out the address and received data, but it was

about the simplest interface in the entire design.

Results

The cartridge connector works for Tetris without any problems. Other cartridges don’t work,

and we’re not entirely sure why. We can read their Game Boy logo but it either comes in

corrupted, or comes in correctly but the game is unable to continue. This could be a problem in

any number of modules, but is likely a problem with the length of the wires connecting the

cartridge connector to the board.

29

Timers/DMA

Overview

Both of these modules were implemented with little to no changes from the descriptions in the

Game Boy Programming Manual. The timer registers are:

0xFF04 DIV - upper 8 bits of a counter on a CPU clock, cleared when written to

0xFF05 TIMA - counter that increments based on a frequency selected by TAC, generates an

interrupt on overflow

0xFF06 TMA - value to load into TIMA when TIMA overflows

0xFF07 - timer control, selects the frequency for incrementing TIMA and enables or disables

TIMA

The DMA module is a block transfer module that copies sprite data from the work RAM to

sprite RAM (referred to as OAM in the documentation). It copies 160 bytes from 0x8000-0xDFFF

to 0xFE00-0xFE9F. Whenever the user writes to 0xFF46 (the DMA register), the DMA module

disables the CPU’s ability to read and write from non-CPU-internal memory and begins

transferring data. At this point the CPU should be executing code in high memory, or else it will

read Z’s into the instruction register and promptly begin to destroy everything.

The main reason that CPU instruction timing is important is that the DMA transfer code in most

games relies on instruction timing. This code lives in high memory and consists of writing to the

DMA register then entering a tight loop calculated to take exactly the same number of cycles as

the DMA transfer before exiting the DMA transfer function. If the instruction timings are too

fast, or the DMA transfer is too slow, the CPU will exit high memory while the DMA module is

using the data and address buses. This will lead to random data being put into sprite RAM and

possibly random instructions being executed by the CPU.

Process

The DMA module and timers were both implemented after the CPU had been thoroughly

tested, so testing them was rather simple. We added them to a version of our automated

testbench and ran simple programs on them that relied on timer interrupts and generated DMA

transfers, and examined the waveforms to ensure everything was working properly. Shockingly

and amazingly, the documentation for these modules is accurate and complete, so there were

really no surprises.

30

Results

The DMA module works perfectly, as we can see the Tetris blocks on-screen with no graphical

corruption. The timer module is not exercised by Tetris as far as we know, however it is used by

one of the test ROMs that we ran, and that test passed.

31

Memory and System Integration Strategy

Overview

Most of the memory in our system is related to the GPU (scanline memory, frame buffers) and

is described in that section. The non-GPU-related memory exists in the work RAM and high

memory, which is described in the CPU section.

The work RAM is 8192 bytes in a block RAM.

The components are all connected to the same address and data buses using tristate modules.

When the address bus is within a certain component’s address range, the data bus is routed to

the input of the component or the output of the component is routed to the data bus,

depending on whether the read or write signal is asserted. This applies to memory-mapped

registers as well as the various RAM blocks.

Echo RAM is a special section of RAM that cannot be written to, but produces the same

information as the work RAM when read from. We’re not sure if that’s what the actual Game

Boy does, but that’s how we did it in our system.

The interrupts from each module are routed into the CPU’s IF input. On an interrupt, the IF

register is loaded with that interrupt bit and the other interrupt bits present in IF are preserved.

The CPU handles clearing interrupt bits internally.

Here is the memory map of our implementation, which may or may not differ from the Game

Boy standard:

Address Range Description

0xFFFF IE memory-mapped register

0xFF80-0xFFFE High memory (CPU-internal)

0xFF00-0xFF7F Memory-mapped registers

0xFEA0-0xFEFF Unusable (reading here gives 0x00)

0xFE00-0xFE9F OAM (sprite RAM)

0xE000-0xFDFF Echo RAM (can't write here; reads give same information as 0xC000-DDFF)

0xC000-0xDFFF Internal work RAM

0xA000-0xBFFF Cartridge RAM (writes and reads go to cartridge lines)

0x8000-0x9FFF Video RAM of various flavors

0x0104-0x7FFF Cartridge ROM

0x0000-0x0103 0xFF50 == 1: Cartridge ROM 0xFF50 == 0: Flash ROM with bootstrap code

32

All of the chips in the Game Boy are SRAMs with asynchronous read and single-cycle write.

Therefore the CPU was designed to interface with such a memory block. However, our memory

modules are mostly Xilinx-generated block RAMs. These block RAMs are single-cycle read and

write. In order to allow these RAMs to interface with our system using asynchronous reads, we

simply input a much faster (8 times faster) clock to the block RAMs than the CPU.

Bootstrap ROM

The one special component of the high-level system integration is the bootstrap ROM. The

bootstrap ROM was found online at

http://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM, adapted to our assembler syntax,

assembled, and converted to a Xilinx flash file before being loaded onto the flash chip on the

FPGA board.

Initially, the bootstrap ROM stands in for addresses 0x0000-0x0103, which are normally in the

cartridge ROM space. On reset, the system begins executing the bootstrap ROM, which clears

VRAM to white (zeroes) and loads the Nintendo logo from the cartridge. If the Nintendo logo

and an additional checksum do not match what the bootstrap expects, it halts execution. If

these things do check out, the bootstrap ROM includes an instruction that writes a 1 to a

special memory-mapped register, 0xFF50. When this happens, the bootstrap ROM is disabled

and the addresses 0x0000-0x103 are mapped back to the cartridge. The system then begins

executing the game code.

Process

We basically had no well-defined process for integration. We just started hooking things

together in the top module and didn’t bother to do any real design. Surprisingly, this strategy

yielded results. We had a few bugs, as one might expect with this strategy, but not really

enough to cause real problems. We were also able to find most of our bugs in the integration

logic by just looking at the code.

Our first step was to run the bootstrap ROM with just the CPU to see if it got to the address

0x0100, and then we added and debugged the sound module so that we could hear a ping

noise. Some time after that, we added the GPU to the design so we could see the Nintendo logo

scroll. After that, we started adding everything else.

Results

The integration worked pretty well. We really should have gone with a more consistent design

for it, however.

http://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM

33

User Input

Overview

In order to get button data to the CPU, we used an NES controller hooked up to GPIO pins and

an FSM to poll the button data using the NES protocol.

Description

The NES controller has 5 pins of value. One is Vdd, one is ground, and the rest are strobe, data,

and clock. The interface is a 17 state FSM that polls the controller for all of its button data.

Every 60Hz the Game Boy sends a strobe to the controller, which sets off the FSM. The FSM

sends a clock signal to the controller, and on every positive clock edge, the controller sends

back the status of one of it’s buttons, in order, giving A, B, Select, Start, Up, Down, Left, and

Right. Note, the buttons are asserted LOW. This is important because if all buttons are asserted,

most Game Boy games reset, so it will look like nothing is happening.

Process

It wasn’t hard to set up the controller. We found a timing diagram:

The protocol is obviously simple and was not hard to implement. We simply send a strobe every

60Hz, as determined by a clock divider, and then send out an approximately 3MHz clock by

using a 6Mhz clock as our state clock. On every positive edge of this clock we send, we expect a

new button value to be on the line. The frequency of this clock took some tuning to get right,

but simply outputting the received button values to the LEDs was enough to show whether or

not it was working properly. Then we simply needed to hook up those wires to the CPU

memory-mapped register, which required an extra control signal because the Game Boy is a

little ridiculous sometimes, but that wasn’t too hard either. Basically the CPU selects either

34

direction keys or buttons to be output on its 4 data slots in the memory-mapped register

(address FF00) and then it’s up to the game designer to poll the controller properly. Usually

they will poll it a bunch of times in a row to take care of any debouncing issues that might occur.

35

Link Cable

Overview

The link cable is a 6-pin serial interface. It has two data lines, a shared (!) clock line, ground, 5V

VDD, and an unused pin. A Game Boy writes data bits onto its data out line (the other Game

Boy’s data in) on the falling edge of whichever clock is selected by the system. The other Game

Boy reads data on the rising edge of the clock. The clock itself is generated by one of the Game

Boys. The other Game Boy uses the clock, which is output over the clock line.

Description

First, here’s a timing diagram of the link cable’s data transfer protocol:

SCK is the shared clock, SOUT is the data out line, SIN is the data in line, and SB is the shift

register.

The programmer’s interface to the link cable consists of two memory-mapped registers.

0xFF01 SB - The shift register containing data to send or data received.

0xFF02 SC - The serial transfer control register.

SC[0] selects whether the transfer is using the internal clock or other Game Boy’s clock. This bit

is asserted low. SC[7] is a 1 when a serial transfer is in progress. The user can write a 1 here to

initiate an outbound transfer or check the bit to see if an inbound transfer is occurring. The

other bits of SC are unused. When a serial transfer completes, an interrupt is generated

(whenever SC[7] goes from high to low).

36

SB is shifted out to the left.

Our design uses the CPU’s clock, running at 4.125 MHz, to run an FSM that detects whether the

selected clock is high or low and outputs an edge signal whenever it goes from low to high or

high to low. This edge detector is used in conjunction with a 3-bit counter to output the shift

register on the falling edge of the selected clock, then read the incoming data and shift the shift

register on the rising edge.

Additionally, the FSM and counter generate an interrupt when the transfer is complete (on the

final falling edge).

Process

The link cable was the last thing we implemented. We began work on the link cable at 11 PM

the night before the public demo and finished around 6 AM. We tested it by writing a simple

testbench and a couple corner cases that we could think of. We simulated it for a while then

just hooked it up to the board and tested it with a real Game Boy.

We also verified the timing of the transfers by attaching an oscilloscope to an actual Game

Boy’s link cable:

37

The green signal is the clock and the yellow signal is the data.

Results

We were able to connect the Game Boys and get multiplayer Tetris mostly working. We

discovered that there was some graphical corruption, some synchronization issues, and some

packets were getting dropped, but it was possible to play something resembling a two-player

game of Tetris using our design and a real Game Boy.

38

Group Thoughts

What we wish we had known

We wish we’d known that the Virtex7 is a terrible board for this class. We struggled for a while

trying to get it working but it really wasn’t worth it. Other than that we knew most of what we

needed because two other teams implemented the Game Boy in the past.

Good/bad decisions

Good

1. The best decision that two of our members made was to start working immediately. There is

no reason and no reward (except pain) for procrastinating in this class. The third member of our

team discovered this at the end of September at which point a whole month had already been

wasted.

2. Another good decision we made was to ditch the Virtex-7 board and use the Virtex-5. We

made this decision early on and avoided wasting time trying to get an HDMI driver written in

Verilog.

3. We used Git. Version control is absolutely necessary for a project of this scale, and even

more so when working on a team.

4. Not attempting the Game Boy Advance was obviously a fantastic decision in hindsight. It’s so

much better to attempt a project that might be slightly less difficult and actually have a working

project at the end of the semester than to attempt something way over your head and have

nothing to show for all your hard work in the end.

Bad

1. The worst decision we made was to go with a project that required us to implement our own

CPU. Implementing a CPU is an especially difficult task, simply because CPUs have so much

functionality. With 48 separate instructions, an interrupt procedure, 27 ALU operations, and

around 3500 lines of code, there will inevitably be bugs. In our case, we got it working. But also

in our case, we got it 100% working only 9 hours before the in-lab demo. We were able to get

the CPU to run because we had access to two amazingly well written emulators, the Game Boy

documentation is very complete, and we started with the knowledge from the past Game Boy

teams. And because we were very, very lucky.

39

2. Another terrible decision we made was to keep Red Hat Enterprise Linux on the workstations

even after we had difficulty getting ISE to install and run. We should have immediately ditched

RHEL for a more stable (Xilinx-wise, at least) solution such as Windows 7. This cost us at least a

few days of work just trying to get the code onto the board when the drivers failed.

3. Not reusing previous team’s code earlier. While the best thing you can do for your project

and yourself is to write all of the code in your project from scratch, giving you the greatest

possible understanding of its internal structure, at some point it’s necessary to realize that you

can’t do it all in the amount of time you have. At that point you should steal as much code from

other sources as possible. And do this early so that you have a chance of actually understanding

it enough to integrate it into your design.

Advice

1. USE CHIPSCOPE TO DEBUG ON THE BOARD. This is the most important component of the

class. We were initially afraid of ChipScope. This is misguided. It is the best thing on the planet

for debugging your design after it’s been synthesized. It is basically the simulation waveform

viewer but for synthesized designs. Learn it and use it. IT IS AMAZING (and kind of terrible) BUT

MOSTLY AMAZING.

2. Start immediately. Put in at least 12 hours a week in the first half of the semester. By the

second half of the course, you won’t need to self-motivate. Your non-working project will be

motivation enough. Your reward for procrastinating is pain and perhaps a failed project, so

don’t do it. You will never have enough time. However painful it is to start coding at week 3, it is

much more painful to be unable to sleep because you’re coding 24/7 at week 10.

3. Do not implement a CPU from scratch unless you know exactly what you are getting into. It is

not easy, and if you’ve taken 18-447, the sort-of-MIPS core you implement there is nothing

compared to implementing a fully working design. It is possible to do if your CPU is really simple

and you have loads of documentation, really good emulators, and a way of testing your design

in simulation that is at least as good as what we had. If you are thinking about doing this, read

the CPU process section above and let the ridiculous amount of work you will be doing sink in.

It’s possible, but painful.

4. Plan everything. Design everything. We didn’t think about how we were going to integrate,

and it kind of bit us in the ass. It could have been worse.

40

5. Use simulation as much as possible. Changing your code and simulating it is usually a one-

minute process. Changing your code and synthesizing is a 25-minute process. When we got to

the bootstrap ROM, which takes a few seconds at 4,125,000 cycles per second, simulation

stopped being a viable system-level testing option, but we could still debug our components in

simulation on directed test cases.

5. Focus. Don’t waste time on something that isn’t going to work. Obviously it’s hard to know

what things are going to work or not beforehand, but it’s possible to avoid certain pitfalls. We

knew from reading previous reports not to use the OpenCores Game Boy CPU, so we avoided

that trap.

6. Make your top-level pins have the same names as the .ucf file and rename them internally.

You will save yourself a lot of trouble later. Also use emacs Verilog-autos to connect all your

modules and follow a consistent naming convention. Seriously.

7. Do not use RHEL and Xilinx tools. Xilinx tools work best (as of the time of writing) on a

Windows 7 system. However much you hate Windows, just get Windows and be thankful you

can actually load programs onto the board.

8. Xilinx sucks. Sorry. You can’t really avoid them unless you “borrow” one of the 18-240 Altera

boards, and they don’t have very much block RAM.

41

Sources

This section contains a list of useful documents and links we found throughout our adventure,

sorted by section and in decreasing order of usefulness.

Game Boy Documentation

1. The Game Boy Programming Manual. This is the document released to Game Boy developers

by Nintendo. It is the most complete reference for the Game Boy, much more so than the PAN

docs/GBCPUman. It’s kind of disorganized, but don’t let that throw you. Everything you could

possibly need to emulate the Game Boy is in here.

http://www.romhacking.net/documents/544/

2. The “Game Boy CPU manual.” This is a PDF version of the PAN docs and is slightly less

technical than the programming manual. It essentially summarizes the content of the

programming manual. Good for a quick info lookup, but for real implementation reference

information consult 1. http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf

3. PAN Docs. The HTML version of 2. http,//nocash.emubase.de/pandocs.htm

4. Meatfighter. This is a copy of the Pan Docs, but I like the way it looks a lot better. Although

the links don’t work so you should probably use the Pan Docs link above.

http://meatfighter.com/gameboy/TheNintendoGameboy.pdf

5. Game Boy opcode list. Contains the correct instruction timings and short descriptions for all

the opcodes. Useful for translating machine code into assembly on-the-fly as well.

http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html

6. Z80 architecture overview. Useful for understanding the hardware of the CPU.

http://www.msxarchive.nl/pub/msx/mirrors/msx2.com/zaks/z80prg02.htm

7. Loirak’s Game Boy programming tutorials. The page here is a great quick-start for GBDK, a

good Game Boy compiler/assembler. http://www.loirak.com/gameboy/gbprog.php

8. Gbdev Wiki sound hardware. In general this wiki is extremely useful, but the sound page

especially offers a different view than the Pan Docs on how sound is meant to function.

http://gbdev.gg8.se/wiki/articles/Gameboy_sound_hardware

http://www.romhacking.net/documents/544/
http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf
http://nocash.emubase.de/pandocs.htm
http://meatfighter.com/gameboy/TheNintendoGameboy.pdf
http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html
http://www.msxarchive.nl/pub/msx/mirrors/msx2.com/zaks/z80prg02.htm
http://www.loirak.com/gameboy/gbprog.php
http://gbdev.gg8.se/wiki/articles/Gameboy_sound_hardware

42

9. Memory Map. This is the best memory map I could find. Remember that ROM is actually in

the cartridge. http://gameboy.mongenel.com/dmg/asmmemmap.html

10. Gbdev Memory Map. Another page from the Gbdev wiki. This one talks about the cartridge

header, which will be important if you ever get to bank switching, or attempt the Game Boy

Color. http://gbdev.gg8.se/wiki/articles/Memory_Map

11. Arduino-based Gameboy Cart Reader. This doc was useful as this person is basically doing

the same thing to the cartridge as we were trying to do. It lays out fairly well how to dump the

ROM. http://www.insidegadgets.com/2011/03/19/gbcartread-arduino-based-gameboy-cart-

reader-–-part-1-read-the-rom/

12. Sound text file. Proceed with extreme caution. This document is useful as yet another look

at sound, but is obviously very sketchy. http://www.devrs.com/gb/files/hosted/GBSOUND.txt

Emulators

1. BGB. This is a great emulator with a debugger and RAM viewer. The debugger can do all the

neat debugger things you might want, including breakpoints and watches on memory locations.

Without this emulator, we would not have completed our project. http://bgb.bircd.org/

2. DMGBoy. This is another great emulator. It doesn’t have a debugger, but the source code is

extremely well written. This was an invaluable resource, as we could read the source code to

figure out certain behaviors that weren’t clear to us. It is also the basis for the automatic

testbench. http://code.google.com/p/dmgboy/

Special Files

1. Blargg’s instruction test ROMs. These are directed tests for the CPU. They require a working

graphics system, but they helped immensely in debugging the CPU. They even print out the

opcodes of incorrect instructions when they fail. http://blargg.8bitalley.com/parodius/gb-

tests/cpu_instrs.zip

2. Bootstrap ROM. This thing is just awesome.

http://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM

3. Sound test ROM. Run this in an emulator to test your sound functionality. I’d suggest BGB

although it might be slightly incorrect. Be sure to default your waveform RAM to something

http://gameboy.mongenel.com/dmg/asmmemmap.html
http://gbdev.gg8.se/wiki/articles/Memory_Map
http://www.insidegadgets.com/2011/03/19/gbcartread-arduino-based-gameboy-cart-reader-%D0-part-1-read-the-rom/
http://www.insidegadgets.com/2011/03/19/gbcartread-arduino-based-gameboy-cart-reader-%D0-part-1-read-the-rom/
http://www.devrs.com/gb/files/hosted/GBSOUND.txt
http://bgb.bircd.org/
http://code.google.com/p/dmgboy/
http://blargg.8bitalley.com/parodius/gb-tests/cpu_instrs.zip
http://blargg.8bitalley.com/parodius/gb-tests/cpu_instrs.zip
http://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM

43

useful and set the waveform RAM areas of memory to the same thing in BGB before testing

channel 3.

http://www.romnation.net/srv/roms/14092/gb/Sound-Test-PD.html

Other Teams’ Work

1. The FPGABoy project. This was a project at MIT that was basically exactly the same as ours,

except in the beginning of the course we didn’t know how legit it was. Our doubts were mostly

based on the fact that the code in their Git repository is inconsistent from the code in their final

lab report. Apparently, the code in the document was super legit. This is where we completely

copied the GPU code from. However the code in the actual repo is nonfunctional.

https://github.com/trun/fpgaboy

2. Team Dragonforce (AKA VirtexSquared). This was an old 18-545 team that did an ARM SoC.

We used their AC97 and DVI drivers. https://github.com/teamdragonforce

http://www.romnation.net/srv/roms/14092/gb/Sound-Test-PD.html
https://github.com/trun/fpgaboy
https://github.com/teamdragonforce

44

Individual pages

Joseph Carlos

What I Did

I was solely responsible for implementing the CPU, DMA module, timers, and ChipScope

interface. I worked on getting most of the system integration done and worked with Elon on

the Link Cable controller. I also spent some time during the semester helping to debug sound

and doing the labs.

Class Impressions

I can say that in this class, I took a few empty Verilog files and wrestled them into a working

Game Boy CPU. That required a lot of patience, planning, luck, and crazy ideas, but I found it to

be really fun.

I enjoyed the chance to sit in lab with some very smart, motivated, and at times equally crazy

classmates doing pretty wild things with Verilog.

One of the most rewarding parts of the class was the ability (and necessity) to plan ahead of

time for problems, and to develop my own schedule and testing apparatus. Doing this well

allowed me to complete my parts of the design in time for the demo and was a very cool

experience.

Some of the things I could think of that I didn’t particularly agree with or enjoy:

1. The labs were either really easy (lab 1, lab 3) or had no guidance at all (lab 2), or both (lab 3).

I understand the idea is for us to interact with the outside world (of Xilinx) on our own.

However, in my opinion at least, giving us a lab that says, “get some selectable sound playing on

the board, good luck” is not really the right way to approach this.

2. RHEL + Xilinx = some people’s own personal hell. Xilinx alone is bad enough.

3. The VC707 board is just not suited to the class. Sorry for beating a dead horse - err… FPGA.

4. The oscilloscopes in lab are hilariously terrible. We realize most people don’t use them, so

one or two good ones would suffice. Unfortunately the ones in the other labs are locked to the

benches, so we couldn’t borrow any.

45

5. The lab is not well stocked with things like parallel cable crimpers and connectors, headers,

SMA connectors, whiteboards, etc.

Despite the things mentioned above, I thought this was a really good class. There was a good

emphasis on process, which was actually very helpful, and it was generally a lot of fun.

How Much Time I Spent

I spent somewhere between 150-200 hours on the class, maybe more. I didn’t log my hours so

that is a very rough estimate.

Alice Tsai

What I did

My role was solely the GPU and DVI portion. I read a lot of documentation in order to debug

the DVI. Since we got the iic_init and sync_gen from Dragonforce’s code, I needed to

understand their original framebuffer to see how they used it in order to hook it up so that it

would work for our purposes. Elon also looked into their code to try and help me out with the

debugging as well. Dragonforce used some of Xilinx’s built-in models so I had to familiarize

myself with those to make modules that could be used to adapt their code to our system. And

in the end, it was reading the documentation on how I2C is initialized that fixed my last bug with

the DVI portion.

With regards to the GPU portion, I first read through the video portion of some very helpful

PAN docs. Next I read through all FPGABoy’s video code because once again, it is not a good

idea to simply stick someone else’s code into your own design without knowing what it is doing.

Also, initially, I was supposed to change something in their design that would have a big impact

on the Video Module’s FSM. And any time one needs to change something in a FSM, I think

they need to thoroughly understand what is going on in the FSM itself. Unfortunately, that time

was wasted because we were short on time and an executive decision was made to not make

that change after all. But on the positive side, I got to know the innards of the GPU portion

pretty well. I did not know how to use CoreGen to make the VRAM and OAM block rams but

luckily Elon already familiarized himself with that tool and created the block rams for me to use.

Elon helped me with hooking the GPU to the CPU as well. My last main contribution was

debugging why video did not work after everything was hooked up. Through simulation, I found

the culprit: an incorrectly connected wire. Once that was changed, the next time we tried, it

worked!

46

After integration, we found that we couldn’t get farther than the Nintendo Logo so I simulated

the GPU on the side and confirmed that it worked as expected. Then I tried to help with the

debugging of the CPU but wasn’t able to contribute any findings of bugs, not for lack of effort.

I worked on the poster for our public demo but because I took too long, Elon made a nice

poster that we ended up using instead. I ended up finishing it in time for our demo but felt that

it would be weird to have two posters so just kept my poster rolled up.

Overall, I learned how helpful documentation can be. But at the same time, I learned (from

Joseph) that at some point, one has to stop reading documentation and just start coding and

from there, when you encounter problems, go back to the documentation.

Class Impressions

Overall, this was a great course. It was helpful in providing my first experience with a team

project that did not involve much “hand-holding.” I think I learned a lot of how to go look online

for information. It was also really cool to work on an actual complete project that did

something, rather than just an exercise that demonstrates ability to code something in Verilog.

Things I Did Not Enjoy

I wish that I had spent more time more wisely. It ended up causing a lot of stress and friction for
my team so if there was one thing I’d change, it would be spending more time earlier.

How Much Time I Spent

I logged most of my hours and they came to a total of > 160 hours. I only started logging them

partway through the semester though so for the earlier part, I only counted class time.

Elon Bauer

What I Did

I was solely responsible for sound, the cartridge connector, and the NES controller interface.

Basically anything that required soldering, wiring, drilling, or dremelling was my turf, since I was

the only one who had taken 18-320. I also helped Joe with the link cable the night before the

final demo, I helped catch the last two bugs in the CPU, and I hooked up the GPU to the CPU

and helped figure out why DVI wasn’t working. Joe and I traded off being team leaders. For

things like labs, presentations, and general deadlines, I usually had to remind the others that

47

they were happening. But Joe was good about generally keeping us on track and reminding us

to have goals and stick to them.

Class Impressions

This class was a lot of fun. I would think that regardless of whether or not our final project

worked. It was great having a well-defined goal to shoot for and knowing exactly what we had

to implement it and when to implement it by, but also having complete freedom about how we

went about implementing it. And while this class basically killed any free time I could have

possibly had and pulled me into lab with a force not unlike that in Star Wars, it all seemed

worth in it the end. That part might have had something to do with the free iPad…

I liked the fact that the instructors didn’t butt into the projects too much. We were mostly left

to our own devices, which means we can either succeed or fail and it will be completely our

own doing.

I’m not sure what to say about the labs. They were useful in a way, but having to do write-ups

about them really detracted from time that could have been spent working on our project. I

think the labs would be a lot more useful if we didn’t have to do write-ups for them. If we fall

on our faces because we didn’t actually do the labs, then that’s our own fault and we’ll fail the

final project anyway. So I guess going even more hands-off is what I’m suggesting.

Things I Did Not Enjoy

I didn’t like struggling with the tools. It would have been nice if we didn’t have to waste time

not coding while struggling with the tools. Also I would have liked more hardware like GPIO

wires and breakout pins to have been in lab. Better oscilloscopes would be nice too.

How Much Time I Spent

My total time spent on the project was probably close to 200 hours, plus or minus 50. For the

first two weeks I probably spent about 4 hours outside of class on average. For the next 9 or so I

probably averaged about 2 hours a day, and in the final crunch weeks I averaged a little more.

	Statement of Use and Contact Information
	Project Description
	What we set out to do
	What we actually achieved

	Development Tools Overview
	Board
	Xilinx Tools
	Operating Systems and Workstations
	Version Control
	Hardware Overview

	CPU
	Overview
	Description
	Timing
	Special CB Instructions
	Architecture
	Decode
	Interrupts
	The ALU
	The DAA Instruction

	Process
	Testing Harness
	CPU Simulation
	Emulator
	Assembled Assembly
	Putting it Together
	Breakpoint Module
	On-Board Debugging

	Final Results

	Video Interface
	Overview
	Description
	Video Module
	Video Converter
	DVI Module

	Process

	Audio Interface
	Overview
	Description
	AC’97 codec
	The Audio Registers
	Channels 1&2
	Channel 3
	Channel 4
	Control Registers

	Our Design

	Process
	AC’97
	Square Waves
	Volume Control
	Memory-mapped Registers
	Sound Functions
	Length
	Frequency
	Frequency Sweep
	Duty Cycle
	Volume Envelope
	Frame Sequencer
	The Initial Flag

	Results

	Cartridge Connector
	Overview
	Description
	Process
	Results

	Timers/DMA
	Overview
	Process
	Results

	Memory and System Integration Strategy
	Overview
	Bootstrap ROM

	Process
	Results

	User Input
	Overview
	Description
	Process

	Link Cable
	Overview
	Description
	Process
	Results

	Group Thoughts
	What we wish we had known
	Good/bad decisions
	Good
	Bad
	Advice

	Sources
	Game Boy Documentation
	Emulators
	Special Files
	Other Teams’ Work

	Individual pages
	Joseph Carlos
	What I Did
	Class Impressions
	Some of the things I could think of that I didn’t particularly agree with or enjoy:
	How Much Time I Spent

	Alice Tsai
	What I did
	Class Impressions
	Things I Did Not Enjoy
	How Much Time I Spent

	Elon Bauer
	What I Did
	Class Impressions
	Things I Did Not Enjoy
	How Much Time I Spent

