
 
 

 

Team Genesis Final Report 
 

 

 

 

 

 

 

 

 

 

 

 

Alex Etling, Ben Joyce, Kun Li 

18-545 

Fall 2012 

 

 



 
 

Table of Contents 

 

OVERVIEW .......................................................................................................................1 

SEGA GENESIS ................................................................................................................3 

COMPONENT DESCRIPTION ......................................................................................4 

BLOCK DIAGRAM/MEMORY MAP ............................................................................7 

APPROACH .......................................................................................................................9 

PORTING .........................................................................................................................10 

AUDIO ..............................................................................................................................14 

HARDWARE ...................................................................................................................20 

TESTING AND VERIFICATION .................................................................................25 

WORDS OF WISDOM/CONCLUSIONS .....................................................................27 

INDIVIDUAL PAGES.....................................................................................................28 

 

 



1 
 

OVERVIEW 

Our team created a fully functional Sega Genesis console on an FPGA, including 

video, sound, cartridge, and controller interfaces.  Our system looks and plays almost 

exactly like the original console, and is capable of running any game (as far as we tested).  

Two players are supported, and the user can toggle between the cartridge reader and a 

game ROM stored in on-board Flash memory, allowing them to play games they do not 

have a physical copy of. 

The Sega Genesis system is composed of five main components: two CPUs, a 

video processor, and two sound processors.  In additional, there are three main memory 

modules, 64 KB of work RAM, 8 KB of sound RAM, and 64 KB of video RAM, and 

many assorted registers for each chip.  The entire system is built around two busses and 

two memory-mapped address spaces, one each for the two CPUs.  A bus arbiter allows 

either CPU to access a module on the other’s bus by requesting that bus for itself.  The 

system peripherals, including the cartridge and controllers, are also accessed through the 

bus/address space configuration.  A Direct Memory Access (DMA) controller can also 

take control of the bus to enable fast transfer of data from either the game ROM or the 

work RAM to the video processor. 

For hardware, we used a standard 3-button Sega Genesis controller for Player 1 

and a keyboard for Player 2.  Video is output through the DVI port on the board to the 

VGA input of a monitor through a DVI-to-VGA converter.  Audio is played through the 

AC’97 sound driver and output through the Line Out port to standard headphones or 

speakers.  The game cartridge and Player 1 controller are connected to the peripheral I/O 

pins on the FPGA board, while the keyboard is connected through the PS/2 input port. 

 In this paper, we describe the Sega Genesis system as a whole, the internal details 

of each chip, and the hardware peripherals.  We also discuss the challenges we faced to 

get our system working, as well as lessons learned along the way. 
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Figure 1. Final version of the Genesis on Demo Day 
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SEGA GENESIS 

The Sega Genesis, also known as the Sega Mega Drive, was first released in 

Japan in 1988, in the U.S. in 1989, and in Europe in 1990.  It was released 2 years before 

the Super Nintendo Entertainment System, and was the first Sega product to garner any 

sort of support in the United States. It initially dominated the 8-bit NES system, but the 

competition between the Genesis and the SNES would come to define the 16-bit console 

era.  Throughout this period the Genesis was able to keep a majority share of the market 

share in the US, with popular games and catchy slogans like “Genesis does what 

Nintendon’t”.  

 Genesis games were known for many different things.  They were some of the 

first “sponsored” games, with Pat Riley Basketball and Joe Montana Football.  On top of 

this, Sega’s Mortal Kombat was so violent they had to create a Video Game Rating 

Council, the first of its kind.  This would go on as the framework for the general rating 

system of all games. The Genesis also had the first major appearance of Sonic the 

Hedgehog, one of Sega’s most well known characters. 

 The Genesis contained 5 chips to make all of its operations work. The main 

processor chip was the Motorola 68000 (68k) 16-bit processor, which runs at 7.67 MHZ.  

Its coprocessor is the Zilog Z80 8-bit processor, which runs at 3.58 MHZ. The visual 

display is done through a Yamaha YM7101 video processor.  There are 2 sound chips, 

the Yamaha YM2612 and the Texas Instrument SN76489.   

 The main operation of the Genesis works through interaction with the cartridge.  

The cartridge itself is just a ROM with a max of 4 MB of data.  The processor steps 

through cartridge instructions just like a normal CPU, and based on these decides to 

transfer data to or write registers in the other modules.  Input from the controllers allows 

the user to manipulate the game execution flow.   
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COMPONENT DESCRIPTION 

Motorola 68000: 

This is the main CPU of the system.  Its primary task is to read and execute 

instructions from the game ROM, then forward data or write to registers in the Z80, video 

processor, or sound chips.  The 68k has a memory mapped address space with access to 

the game ROM, a 64 KB work RAM, video processor, I/O pins, and the entire Z80 

address space.  It basically functioned as the task manager of the system; it made sure 

that each other processor had the information they needed to operate and executed its 

own instructions, communicated with the peripheral I/O devices, and executed game 

code.   

The 68k is a CISC processor designed by Motorola (now Freescale) and 

introduced in 1979.  It has a 24-bit external address, eight 32-bit general purpose 

registers, and 56 instructions with a minimum size of 16 bits.  The processor uses a R/ ̅  

line, upper and lower data strobes to specify valid bytes on its data line, and a data 

acknowledge line to handshake with any peripheral module.  There are also 3-bits of 

interrupt control, allowing for 6 levels of external interrupts (the Sega Genesis uses 3 of 

these). 

   

Zilog Z80: 

The Z80 is the coprocessor of the system.  This chip mainly dealt with controlling 

the two sound chips.  In most games, the Z80 looped through a small portion of driver 

code stored in the 8 KB sound RAM and fed data to the sound chips to play music.  It has 

its own memory mapped address that could access either sound chip, the sound RAM, or 

the entire 68k address space through a bank switching mechanism.  Since all elements of 

the system are shared, either processor needs to request the other processor’s bus in order 

to access modules that are not directly addressed in its own address space.  For example, 

the Z80 can access game ROM only by requesting the bus and using the appropriate bank 

to access the ROM portion of the 68k address space.  The Z80 is an 8-bit processor 

designed by Zilog and sold from 1976 onwards. The Z80 dominated the microcomputer 

market from the mid 70’s to the mid 80’s.  Its programming set and registers are very 
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similar to the ones that are found in x86. It uses a dual register set, has 252 different 

opcodes, and 4 opcode prefixes.   

   

Yamaha YM7101: 

This is the video processor (VDP) responsible for translating game data into 

images seen on the screen.  The VDP is capable of rendering two background layers and 

one sprite layer per frame, with adjustable priorities between layers.  Up to 32 

simultaneous colors are available using color palettes stored in a 64x9-bit color RAM.  

This includes 16 colors for sprites and background and 16 for background only.  The 

VDP supports resolutions of 256x192 and 256x224 pixels, 8x8 or 8x16 characters and 

sprites, as well as horizontal, vertical, and partial screen scrolling.  A 64 KB video RAM 

(VRAM) stores pattern data, sprite tables, and other assorted information needed to 

render the scene.  The VDP also has a 40x10-bit vertical scroll RAM and 23 8-bit 

registers.  Finally, a Direct Memory Access (DMA) engine is used to quickly transfer 

data from either the game ROM or work RAM to the VDP.  

 

Yamaha Y2612:  

This is a 6 channel FM synthesizer chip used to produce the main background music 

and sound effects in games.  Each channel uses four “operators” combined in different 

ways to produce notes in different instrument voices.  An adjustable attack-decay-sustain-

release envelope controls the attack and duration of notes. There are also two interval 

timers, a low frequency oscillator, and an undocumented SSG-EG mode.  An optional 8-

bit PCM stream can replace channel 6 to play raw audio data directly from the game 

ROM.  The YM2612 is completely controlled by writing to 213 different 8-bit registers.  

The chip performs internal calculations using sine and power lookup tables to generate 

frequency modulated notes.  The output is 14-bit signed PCM data generated at 53 kHz. 

 

Texas Instrument SN76489: 

This is a Programmable Sound Generator (PSG) capable of producing 3 channels 

of square wave tones and 1 channel of noise.  Like the YM2612, the PSG is controlled by 

writing to different registers to control the frequency and attenuation of each channel.  
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The noise channel is capable of producing either white or periodic noise.  The output of 

this chip is an 11-bit signed value which is summed with the output from the YM2612 to 

produce the final audio data.  The PSG was typically used to produce simple notes, sound 

effects, and noise which the YM2612 may not be capable of synthesizing. 
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BLOCK DIAGRAM / MEMORY MAP 

A block diagram of our implementation of the Sega Genesis is shown below (Fig. 

2).  This configuration is based off of the original Sega Genesis and modified to work 

with various features of the Xilinx FPGA board we are working with.  The 68k is the 

main processor and communicates one at a time with various peripheral processors and 

I/O devices through a memory mapped address space (Fig. 3).  In our implementation, 

the address space is treated as enable lines for reading and writing data to various 

modules.  A top level module containing control logic to mimic the busses and address 

spaces connects all of the pieces together and deals with timing management. 

 

Figure 2. Block diagram of our Sega Genesis implementation.  The 68k is the central communication hub 

for data, commands, and peripheral I/O devices. 

 

The 68k uses a 24-bit memory mapped address space to communicate with the 

peripheral modules, while the Z80 uses a 16-bit address space (Fig. 3).  The 68k can 

access the entirety of the Z80 address space by using the lower 16-bits with the upper 8-

bits set to 0xA0.  Similarly, the Z80 can also access the entire 68k address space through 

a bank switching mechanism and bus arbiter.  This gives each CPU access to any module 

in the system, although only one of them can access a given module at a time.   
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Figure 3. Memory map of Sega Genesis.  Top shows address space of 68k processor, bottom shows address 

space of Z80. 
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APPROACH 

We used the fpgagen project by Gregory Estrade (code.google.com/p/fpgagen/) 

as the starting point for our project.  This is an open source project which took 

OpenCores versions of the 68k and Z80 processors and integrated them with a self-

written video processor and glue logic to create a Sega Genesis system on an Altera DE1 

board.  This project managed to get video mostly working for some games, but with no 

sound or peripheral hardware.  We wanted to port the project from the Altera board to our 

Xilinx board, add sound and hardware peripherals, and fix bugs in the video output to get 

a complete system working. 

This design decision was made with respect to historical data from previous 

iterations of this class.  Most groups that attempted a video game console had been 

unable to complete their system in one semester, even when starting off with an open 

source CPU.  Even those who got the system working ended up spending all of their time 

working on the video processor and integration, and either omitted sound or used an open 

source or incomplete implementation.  While technically the game will play without 

sound, anybody who grew up playing these consoles knows that the experience is not 

complete without the classic video game music.  In addition, the Sega Genesis is on the 

upper end in terms of system complexity, and the only comparable system attempted in 

this class, the SNES, had not been completed.  We believe that our design decision gave 

us the best chance to get the system working, while providing sufficient complexity to 

keep us occupied.  We also felt that using open source code is a legitimate practice in a 

real-world setting; we saw no value in reinventing the wheel while there were other novel 

challenges to be faced.  In the following sections, we will go into more details about the 

challenges faced in building off the fpgagen project, as well as our original contributions. 

 

 

  

http://code.google.com/p/fpgagen/
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PORTING 

The porting process required mapping all of the peripheral modules on the Altera 

DE1 board used by the fpgagen project onto functionally equivalent modules on the 

Xilinx XUPV5-LX110T board.  A brief description of each Altera module is listed below 

along with the steps taken to port it over and the associated challenges: 

 

SDRAM: 

The DE1 board used an SDRAM chip to mimic the combined work RAM and 

sound RAM used by both processors on the Sega Genesis.  The closest functional module 

on the Xilinx board was a DDR2 chip.  However, DDR2 is somewhat tricky to access, 

and would require either using a Xilinx Memory Interface Generator IP core with FIFO 

inputs/outputs, or writing and debugging our own controller.  We simplified the problem 

by taking advantage of our FPGA’s high logic cell count and the relatively small amount 

of memory (by today’s standard) required by the Genesis and using a dedicated 72KB 

block RAM as the combined work/sound RAM.  The challenges in porting this memory 

module over were in understanding the SDRAM controller well enough to modify it and 

going from a bidirectional data bus with separate read and write commands to dual port 

data lines with a single R/ ̅ line.  We had to change the control logic, use high 

impedance states, and adjust the timing to get this to work. 

 

SRAM: 

The DE1 board used SRAM as the video RAM accessed by the VDP.  The Xilinx 

board also has an SRAM chip, but it shares address and data lines with the Flash chip we 

also need.  In lieu of arbitrating between the two chips and dealing with any issues that 

might arise such as timing, simultaneous access, or inappropriate data floating on the 

shared lines, we again used a 64KB block RAM module here.  The same challenges 

associated with the SDRAM held true here. 

 

Flash: 

The game ROM was stored on a Flash memory chip on the DE1 board.  The 

Xilinx board also had a Flash chip which we could program using iMPACT, the 
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command line tool xxd, Xilinx’s promgen command, and a Sega Genesis game ROM 

binary.  The issues associated with this chip were matching the new timing constraints for 

reads and dealing with a 16-bit bus vs. an 8-bit bus on the Altera board.  The Flash chip 

on the Xilinx board is also little endian, so we had to flip the read order after debugging 

this in ChipScope. 

 

PLL: 

The DE1 board used a PLL to multiply a 27 MHz clock to get a 54 MHz clock, 

which was then used as a global clock and divided by 7 to get the 68000 processor clock.  

We at first tried using the 27 MHz clock and the PLL on the Xilinx board to the same 

effect, but after instantiating the PLL we found that its minimum output frequency was 

400 Hz, too high for our purposes.  We instead used a 100 MHz clock and divided it 

down by 13 to get the processor clock.  However, this faster global clock caused some 

timing issues on our board, where signals were not propagating to the appropriate 

registers in time before the next clock tick.  This caused an insidious bug where every 

time we would change something in our code, the video output would be completely 

different after synthesizing.  We believed that the VDP itself had errors, leading to a fair 

amount of time spent identifying and tracking down this bug.  We eventually got a Xilinx 

Digital Clock Manager (DCM) primitive working to generate a 54 MHz clock, which was 

able to meet the board timing constraints. 

 

ALTSYNCRAM: 

The DE1 board used a block RAM equivalent to store the color palettes and 

background tables.  This was easily converted into block RAM on the Xilinx board. 

 

VGA: 

The fpgagen project generated VGA data and sent it directly to the VGA port for 

output.  On our Xilinx board, we only had a DVI port available for video output.  Also, 

instead of directly outputting our data to the pins we want, we must first send our data 

through a Chrontel 7301 DVI transmitter device, which can then do some processing on 

the data and output it on the DVI port.  We configured the CH7301 through   C to send 
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analog data through the DVI port.  From the fpgagen project, the video processor outputs 

12 bit color, but since our board supports 24 bit color we mapped the pixel data to 8 bits 

per color instead of 4 by multiplying by 16.  While the fpgagen project pixel data and 

sync signals could be output directly to the VGA pins, we had to first go through a chip 

which requires very specific timing for horizontal sync, vertical sync, and data enable 

signals.  We ran into problems because if the sync signals are not correct, the CH7301 

will not output any data, making it hard to pinpoint the problem.  We were able to get 

output from the Xilinx board by generating these signals by ourselves, but we still need to 

use the sync signals from the fpgagen project to get the video displayed on the screen 

correctly. 

 

Video: 

After getting the DVI controller working properly, we received very garbled 

output from the VDP using games that had previously been tested on the fpgagen project.  

We were able to find an emulator that would let us look at the VRAM and color RAM so 

we could use it to find where ours was incorrect.  This took several weeks and involved 

tracing through every line of the original code.  Once we got the output to look mostly 

correct, there were still many unimplemented or buggy features. 

First, many of the sprites were looking fuzzy.  This problem was because 

whenever we wrote a value to VRAM, that value would immediately appear on the data 

out lines and cause our VDP to read incorrect data.  Xilinx allowed us to change the 

configuration of VRAM so we could write to memory but still hold the data on the output 

lines constant. 

The VDP would sometimes display sprites or backgrounds on the edges of the 

screen when there was supposed to be something else, usually a solid color, there instead.  

This mostly happened when a game scrolled vertically.  This is because there was a mode 

register that was being set in the VDP, but was being ignored.  One of the modes was to 

display a solid background color instead of any sprites or background.  Once we 

implemented the different VDP modes, the problem was fixed.  There was also a register 

that enabled the display, but it was sometimes being set in the middle of a scan line so the 
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display would start in the middle of a screen.  This was fixed by only latching this 

register at the beginning of each line. 

Also, the original VDP did not implement shadows or highlighting, so we were 

able to find in the documentation how to implement that to make the video output look 

more realistic. 
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AUDIO 

 

YM2612: 

The YM2612 is a six-channel FM synthesizer which produces 14-bit signed audio 

output at a rate of 53 kHz.  Each channel is capable of playing a single note in one of 

many different instrument voices.  A channel is composed of four operators, where each 

operator represents a single sine wave that can be modulated in amplitude and frequency 

(Fig. 4).  Operators have an input signal I(t), a phase generator which gives the frequency 

ωc, and an envelope generator which gives the amplitude A(t).  The input signal is either 

the output of another operator, the output of the operator fed back to itself, or nothing. 

 

 

Figure 4. Block diagram of single operator. 

 

If the input signal is from another operator with frequency ωm, the output can be 

given by: 

 

  ( )    ( )    (     ( )    (   )) (1) 

 

Where the input operator is said to modulate the frequency of the carrier 

operator.  Similarly, if the operator uses self-feedback, the output is given by the 

equation: 
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  ( )    ( )    (      ( )) (2) 

  

Where β is a feedback factor.  In the simple case where there is no input, the 

operator is a simple amplitude-modulated sine wave given by: 

 

  ( )    ( )    (   ) (3) 

 

The four operators can be combined using up to 8 different “algorithms” (Fig. 5).  

Each algorithm has designated modulator and carrier (shaded) operators, as shown below.  

The carrier operators are summed together to produce the final output.  The different 

algorithms produce different characteristic voices, as described in the table.   

 

 

Figure 5.  Algorithms used to combine operators in a single channel. 

 

The phase generator (PG) is implemented as a simple counter that increases by a 

set amount on each clock tick (1.28 MHz).  This value determines the frequency of the 

note and is calculated from four parameters: frequency, octave, detune, and multiple.  In a 

single channel, all four operators typically have the same frequency and octave, but can 
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vary in detune and multiple to produce different characteristics of sound.  Channels 3 and 

6 have a special mode, which allows the frequency and octave of each operator to be set 

independently when enabled.  This is used, for example, in Streets of Rage to produce the 

punching sounds. 

The envelope generator (EG) produces an Attack-Decay-Sustain-Release (ADSR) 

envelope to mimic the effects of starting, stopping, and sustaining a note.  Figure 6 

summarizes the four stages.  The y axis represents attenuation, up to a maximum of -96 

dB.  At t = 0, the note is fully attenuated and Key On is triggered.  The EG enters the 

Attack phase, where the attenuation increases exponentially towards the Total Level 

(TL).  The exponential rate is given by the Attack Rate (AR).  Once the attenuation 

reaches TL, the EG moves into the Decay phase, where the attenuation decreases linearly 

at the decay rate D1R.  When it hits the sustain level, it decreases linearly at the sustain 

rate D2R.  During any of the other three phases, Key Off can be triggered, at which point 

the EG immediately goes into the Release stage.  Again, the attenuation declines at a 

linear rate given by the Release Rate (RR), until it reaches full attenuation.  The output of 

the EG thus determines the amplitude of the sine wave at any given time. 

 

 

Figure 6.  Attack-Decay-Sustain-Release envelope. 

 

Finally, the channel calculations are performed according to equations (1)-(3).  

The sine value is calculated from the phase by a lookup table to avoid having to do 
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trigonometric calculations.  In our implementation, as in the original YM2612 chip, the 

LUT values are in the logarithmic scale so that multiplication by the attenuation (which is 

already in logarithmic scale) becomes a simple addition.  Only a quarter of the period is 

stored to preserve space.  Finally, the calculated value is converted from a logarithmic 

attenuation to a linear amplitude using a power LUT. 

The YM2612 is controlled by a wide range of registers, which determine all of the 

parameters of the above calculations, such as algorithm, frequency, attack rate, total 

level, etc.  These registers can be written to by either the 68k or Z80 processor.  The 

processor first writes the 8-bit address of the target register, followed by the 8-bit value 

stored in the register. 

To build the YM2612 core, we first figured out the physical implementation of 

the above algorithm, including bit widths and timing considerations, by extensively 

reading research presented on the SpritesMind.net forums and the MAME emulator 

source code.  We worked out a sample calculation by hand for a test note using the 

register configuration presented in the Sega Genesis Software Manual, which produces a 

grand piano sound when played.  We used a C program to generate the binary LUTs for 

the sine and power values, and hard coded them into my VHDL file.  We then 

implemented the PG, EG, and channel calculations and simulated them with the test 

registers in Xilinx iSim.  Once this was consistent with our hand calculations, we built a 

basic top module to connect the FM chip with the AC’97 driver code.  Unfortunately, 

playing this note only resulted in a short ‘ping’ sound from the speakers.  At this point, 

we were not sure if there was a problem with my FM module or the AC’97 driver.  

Switching the byte order (in case the AC’97 codec is little endian) produced a longer 

fuzzy note, but it still did not sound correct.  We decided to double check my output 

against the MAME core to see which part of the system was at fault.  We hacked into the 

sound driver code, built a main program around it, and used printf statements to debug 

the output at different stages.  Through this, we managed to fix a few small bugs in my 

code, and eventually saw that our output was basically cycle accurate with the MAME 

core.  To check the expected output of these computations, we wrote the binary data to a 

file and played it back through Audacity.  The result was the expected piano note.  

However, my initial impression was that we were supposed to sample the output every 24 
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cycles.  If we did this, we got the short ‘ping’ sound that we had heard on the board.  By 

slowing everything down by 24 cycles on the FPGA, we were able to re-create the piano 

note.  

We were confused about this apparent discrepancy between the documentation 

and the results of our testing.  We tried to build a FIFO buffer to convert to the slower 48 

kHz sample rate used by the AC’97, but this would inevitably overflow, even if we clear 

out the buffer every time there is silence.  After asking for help on the SpritesMind 

forums, we realized we had made a mistake in my understanding of the clock used by the 

FM chip.  In fact, our calculations should have been performed 24x slower.  With this 

knowledge, we re-routed the test program to the rest of the Genesis system and ran a test 

“song player” game file through the Genesis writing to the YM2612 core to produce 

notes through the AC’97 sound driver.  This managed to produce Beethoven’s “Ode to 

Joy” using a single channel.            

We then moved on to implementing the other five channels.  We had written our 

code with loop unrolling in mind, so we simply changed the parameters of the loops to 

attain the other channels.  However, Xilinx would crash if we tried to synthesize all six 

channels, so we settled for three.  We managed to get some music playing from Gunstar 

Heroes and Sonic Spinball and used this to debug errors in the sound output.  To solve 

the synthesis issue, we checked the Xilinx forums for a solution and found that ISE might 

be running out of memory.  Using the top command in Linux, we found that this was 

indeed the case, but that Xilinx was using up all 16 GB of RAM on the lab machines!  

This was either due to a memory leak or inefficiencies in our code.  We decided to 

modularize the code for a single channel instead of using loop unrolling, and this allowed 

the entire project to synthesize successfully.  We spent the last week checking audio 

output against the original games to identify any remaining errors in our implementation. 

 

SN76489: 

The SN76489, or Programmable Sound Generator (PSG), is a four channel tone 

and noise generator.  There are three channels of tones, or square waves with adjustable 

frequency and magnitude.  There is also a noise channel, which can be toggled between 

white or periodic noise, also with adjustable frequency and magnitude.  Like the 
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YM2612, the PSG is controlled from either CPU by writing different commands to the 

corresponding memory mapped address.  The amplitudes are set by a LUT to form an 11-

bit output which is directly summed with the output from the YM2612.  The noise 

channels are implemented as a linear-feedback shift register.  After implementing the 

YM2612, the PSG was fairly straightforward to implement and integrate to the rest of the 

system.  We used switches to isolate the different channels of sound and confirm that 

everything was working. 

 

AC’97 

We output our audio data through the AC’97 audio driver located on the Xilinx 

board.  We learned how to use this module during Lab 2, and transferred our 

implementation directly to this system.  We sampled the output as 16-bit PCM data at 48 

kHz.  Since the samples were generated at 53 kHz, there was minimal loss of data despite 

the unsynchronized sampling rates.  To obtain the 16-bit data, we shifted our 14-bit 

output left two bits and filled in the lower 2 bits with the sign bit.  
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HARDWARE 

Controller / Interface: 

The controller has 8 buttons on it: up, down, left, right, start, a, b, and c. The pin 

out for the controller is a standard db9 connector.  The signals for the controller are 

multiplexed as shown: 

 

Up Signal = Pin 1 (with Select HIGH or LOW).  

Down Signal = Pin 2 (with Select HIGH or LOW).  

Left Signal = Pin 3 (with Select HIGH).  

Right Signal = Pin 4 (with Select HIGH).  

Power = Pin 5  

Button A Signal = Pin 6 (with Select LOW).   

Button B Signal = Pin 6 (with Select HIGH). 

Select = Pin 7 

Ground = Pin 8   

Button C Signal = Pin 9 (with Select HIGH).   

Start button Signal = Pin 9 (with Select LOW). 

 

 The controllers we used were a combination of team members’ controllers and 

some that happened to be around the lab.  At first we tried to connect the controllers to 

the ps/2 ports using a db9 to ps/2 converter.  This only works for serial db9 connectors 

though, so this did not work for our project.  Instead we used a specialized db9 connector 

board plug in.  Two of these were soldered into a piece of perf board. These were then 

attached to wires to properly transmit the signals sent between the controller and the 

board. The controller connections were tested using a multimeter and test voltages put 

onto the wires.  The voltages used to power the controller can be 3V, which allows the 

controller to interact directly with the pins on the Vertex board.  The wires can then be 

attached to the I/O expansion pins on the board using a ribbon cable.  A picture of the 

connection can be seen below.  

 Unfortunately when we came down towards the end of the project we realized that 

only 1 of the controllers fit on the board (We had 48 pins to work with, 32 single ended 
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and 16 double ended.  The cartridge reader needed 40 of them. This left 8 pins, with a 

controller needing 7, after power and ground were taken out).  So we could only attach 

one of the original Sega Genesis Controllers.  This left game play a bit lacking, because 

some of the best games are played as a combo or against an opponent (See Streets of 

Rage, Gunstar Heroes, and Mortal Kombat).  To fix this mess, we initially just made the 

buttons on the board the second controller.  This was a poor fix, as it left the second 

player at a significant disadvantage.  To fix this, we finally decided to attach a keyboard 

as a second controller.   

 

 

Figure 7. Sega Genesis controller breakout board. 

 

Keyboard / Interface: 

 There are 2 ps/2 connectors on the Virtex 5 board; one for the mouse and one for 

the keyboard.   So the keyboard is initialized when you attach it to the board.  The 

interface to interact with the keyboard is very simple and can be seen in the picture 

below: 
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Figure 8. Timing diagram for keyboard input. 

 

 The basic idea is that the board should weight for the keyboard to initialize 

interactions. The keyboard communicates on two single bit lines, so the data will be sent 

serially.  Both the clock and the data line are held high when no data is being sent. When 

you press a key on the keyboard, both the clock and the data line will go low. The clock 

will proceed to go low 10 more times. The first 8 times will be the keyboard sending the 

data bits.  The next bit will be the odd parity bit.  The final bit will be the stop bit, and it 

will always be high. The keyboard then will wait a certain period of time before it sends 

its next byte, so that the board has a chance to send a NAK (It did not get the data 

correctly).   

 The actual data that the keyboard is sending is very simplistic.  For the most part, 

with a few exceptions, a key is represented by a single byte value (This is called the make 

code). When a key is pressed, that byte value is sent. The keyboard will then take one of 

two paths: If the key continues to be held down, the make code is sent again and again, 

but if the key is let go the break code is sent.  The break code means that the key you 

pressed has been let go.  The break key is normally just the make key proceeded by the 

byte 0xF0.   

 Based on this information, the keyboard works as a very good second controller. 

We mapped the keys Z, X, C, ENT, UP, DOWN, LEFT, RIGHT on the keyboard to the 

A, B, C, START, UP, DOWN, LEFT, and RIGHT on the Genesis controller.  

 

Cartridge / Interface: 

 The cartridge is a 64 pin ROM with at most 4 Mbytes of memory.  The 64 pins are 

divided into a front 32 and a back 32 (b pins and a pins).  The pins correspond to the 
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following: 

Table 1.  Sega Genesis cartridge pinout. 

Pin In/out Signal  Pin In/out Signal 

-------------------------------------- 

A1    -  gnd    B1    - ? 

A2    -  +5v   B2    i   !H_RESET 

A3    o  a8   B3    -   ? 

A4    o  a11   B4    o   a9 

A5    o  a7   B5    o   a10 

A6    o  a12   B6    o   a18 

A7    o  a6   B7    o   a19 

A8    o  a13   B8    o   a20 

A9    o  a5   B9    o   a21 

A10   o  a14   B10   o  a22 

A11   o  a4   B11   o  a23 

A12   o  a15   B12   o  VIDEO 

A13   o  a3   B13   o  VSYNC 

A14   o  a16   B14   o  HSYNC 

A15   o  a2   B15   o  HS_CLK 

A16   o  a17   B16   o  !C_OE 

A17   o  a1   B17   o  !C_CE 

A18   -  gnd   B18   o  !AS 

A19   io d7   B19   o  CLK 

A20   io d0   B20   i  !DTACK 

A21   io d8   B21   o  ? 

A22   io d6   B22   io  d15 

A23   io d1   B23   io  d14 

A24   io  d9   B24   io  d13 

A25   io  d5   B25   io  d12 

A26   io  d2   B26   o  !LO_MEM 

A27   io  d10   B27   o  !RESET 
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A28   io  d4   B28   o  !LDSW 

A29   io  d3   B29   o  !UDSW 

A30   io  d11   B30   i  !S_RESET 

A31   -  +5   B31   o  ? 

A32   -  gnd   B32   i  !CART_IN 

  

 We were not able to find a Sega Genesis cartridge reader on the web and were 

unable to desolder the one found on the board.  So instead we ordered a 33x2 pin 

cartridge reader that we use to read the cartridges.  We then took the cartridge reader and 

soldered it into a piece of perfboard.  Then, using the same process used in the 

controllers, we attached wires to each of the pins.  We then spent a very laborious couple 

of hours testing the pinouts and making sure that all of the connections were good.  This 

was, once again, done using a multimeter and some test voltages.   From here we were 

able to connect the wires to a bigger bread board that allows us to position all of the 

address and data lines right next to each other in ascending order.  This allows for easy 

connection between the address and the singled ended IO expansion pins, and between 

the data and the double-ended IO expansion pins.  Some of the specialty signals seen 

above also had to be configured to power and ground in order to read the data properly.  

Finally, as with the controllers, the cartridge reader can be powered by 3V, so it can be 

attached to the IO pins safely. A picture of the cartridge reader is shown below.  

 

 

Figure 9. Sega Genesis cartridge breakout board.  
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TESTING AND VERIFICATION   

FPGA Board 

We used several tools in order to debug each stage of the system.  These included 

ChipScope, Xilinx iSim, and printf debugging for C programs.  The details of our 

debugging issues are described above in the appropriate sections.  In general, the 

approach we took was to first understand the component fully by reading the available 

documentation on it, reviewing any source code that had already been written, doing 

hand calculations if necessary, simulating the system or running it with ChipScope, and 

comparing our expected results to what we obtained from simulations or ChipScope.  If 

needed, we would isolate a specific part of the system and generate a test bench to test it 

under specific conditions.  The Debugging textbook for this class was useful for getting 

us in the proper mindset for debugging. 

 

Hardware: 

 Our first tip for testing hardware is to find suitable software parallel to test 

against.  For example, in order to test the cartridge reader, we had to read its output and 

compare it to the output gotten from ROM’s floating around the internet.  After a lot of 

trouble trying to verify that the ROM themselves had the correct info, this is a very useful 

source to basically emulate what you are doing in hardware so that you have a “correct” 

source to compare against.  This “correct” source is paramount when trying to test 

hardware, because there are so many things that can go wrong that you cannot just say 

that it seems like it should be working and then move on.   

 The main problem we found with debugging hardware was that there are a lot of 

little things that can go wrong that you would not think to check.  If you are using solder, 

there is a possibility that a completely working and connected solder could break halfway 

through the process if it is handled or set down wrong.  On top of this, if you are dealing 

with a large amount of wires, it is paramount to make sure that all the wires are in the 

correct place when you are starting to debug.  This should be the first source of error that 

you check, because it is so easy for these wires to get out of place.  To test both of these 

issues it is critical to have the typical Electrical Engineering resources (i.e. a multimeter, 
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a current source, wires, and probes).  These tools and knowing how to use them are 

paramount to being able to debug the critical hardware errors you will face.   

 Finally, the major bug you are looking at is making sure that the firmware, the 

hardware software interaction, is set up correctly.  It is just making sure that the wires 

you think are connecting to a certain area on the board are really connect there.  If all else 

fails in debugging, this is where you should turn.  
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WORDS OF WISDOM  / CONCLUSIONS 

 First, as a nod to documentation problems, documentation is paramount to being 

able to design and finish your project. But just because you find a document that says a 

piece of hardware works a certain way, it does not mean that it actually works that way.  

Make sure that you verify all sources you are using to save conflicted ideas of how a 

certain part of your project works.   

 If you are thinking about using actual hardware, don’t! But in all seriousness, 

before you take the steps to use hardware make sure you are aware of the extra stress it 

can cause you as well as it unpredictability.  If you are aware upfront how much of a bear 

it might be to implement, it will better help you schedule your time and allow for extra 

implementation time. 

 The labs that are done in class are very useful.  The help you learn the basics of 

sound, debugging with ChipScope, and how to interact with the board.  Do not take these 

labs lightly or think that they do not matter.  If you spend time initially setting up and 

learning these basics, they will help push what you are able to accomplish and make you 

more confident in attempting more challenging projects (i.e. full sound implementation 

seen in our project).  

 An entire semester to work on your project seems like an eternity the first week, 

but you’ll be surprised at how quickly it ends.  Consider the amount of time you will need 

to get comfortable with the tools, understand the system you are trying to build, 

implement it, debug it, and put everything together.  Things tend to take longer than you 

think they will, and other classes and real life sometimes get in the way at the worst 

possible times.  Keep a manageable schedule, stick to it as best as possible, and have a 

backup plan if it looks like things are falling behind near the end of the semester.  But 

above all, pick a project that you are passionate about and want to see through to the end!  

More than anything, this will determine your success, enjoyment, and how much you 

learn from this class.     
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INDIVIDUAL PAGES 

Alex Etling: 

 For the Sega Genesis Project I spent the majority of my time on the externals of 

the system.  This included the cartridge reader, the controllers, and, during the last week, 

attaching and writing the controller for a keyboard.  I also did some work with the 

Programmable Sound Generator, but ultimately it was Kun who implemented it.  

 My time broke down into a few different phases of the work.  I spent the first two 

weeks doing general research on the project, figuring out which role I would take and 

trying to figure out what parts I would need to implement the hardware.  This got 

stretched out to two weeks as I constantly kept thinking of more parts that I would need 

to implement the project. Around the middle of the fourth week I had all of the parts I 

needed and could finally start implementing the parts that were required. 

 I started with the cartridge reader initially.  It took a long amount of time to learn 

how to solder what I needed to (I had only soldered once in my life before this project), 

plan out how I wanted to solder the pieces together and then actually do the soldering.  

This process took a little over a week to solder both the cartridge interface, but also the 

controller interface. I then had to test all of my solders with a mutlimeter and proceed to 

fix anything that might have gone wrong.  Finally, I could start to wire up the two 

interfaces on a large breadboard.  This, along with some ribbon cable, allowed me to 

connect the 40 pins I needed to for the cartridge reader to the board. I was then, over the 

next 3.5 weeks, able to write a program that allowed me to interact and debug the 

cartridge reader.  There were three main errors I had to confront in this area. The first was 

the difference between internet ROMs and the cartridge memory itself.  The second was 

dealing with small wiring errors when trying to work and move over 150 wires.  The 

third was small soldering errors that cropped up throughout the process.  I was originally 

supposed to finish all of my hardware work by the end of the 8
th

 week.  This deadline 

ended up getting pushed back for to the week before Thanksgiving, when I finally 

finished all of the hardware. 

 I spent the next couple of weeks doing some in-depth research into the PSG, and 

gathering enough documentation that I could start it the week after Thanksgiving.  When 

I finally got back to school and started working on it though, I was charged with the task 
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integrating all of my hardware into the final project and adding a keyboard interface the 

last week and half.  This took up a good amount of time the last week, and that is why 

Kun ended up implementing the PSG in the end.  At the end of the project all of my 

externals were attached and working.  I was really proud of the fact that I had put so 

much work into building these externals form scratch and they were functioning just as 

expected in the end.  I can look back and really appreciate all of the hard work I put in 

because of the final project we were able to present on demo day.   

 As far as time spent on the class, I probably averaged about 10 hours a week 

outside of classwork working on our project.  This bumped up significantly the last two 

weeks, where I probably spent somewhere between 40-50 hours in the last two weeks 

working to finish my part.  I think that the class was a lot of work, but that it really paid 

off in the end, when all of our disparate parts came together.   
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Ben Joyce 

 

  For this project, I mainly worked on getting the VDP to work and video output.  

After we finally got the video output to look mostly correct, I worked on fixing some 

additional display bugs.  Here is what I did and how much time I spent: 

 

Getting video output to display on monitor – 25 hrs 

 Changing video output from current VDP to display from our board – 6 hrs 

Debugging VDP so video output was readable – 50 hrs 

Fixing minor display bugs – 40 hrs 

 

 This project is probably the biggest project I’ve done so far, so it was a little 

intimidating at first and I think I got off to a slow start.  I was expecting to be able to just 

use the open source VDP that we obtained and plug it into our design and then go work 

on other parts of the design, like sound.  When it didn’t work the first time, it was 

daunting to have thousands of lines of VHDL code to debug (especially because I was 

more comfortable with verilog).  I had to understand the whole design to be able to see 

what was wrong instead of using it like a black box.  This meant looking through tons of 

unofficial documents written by Sega enthusiasts who often contradicted each other and 

by the end I felt that I probably should have just written a new VDP myself.  Once the 

major bugs were fixed and the games looked correct, fixing minor video bugs, like 

adding highlights and shadows or fixing vertical scrolling issues, was more approachable 

and it was easier to see the instant gratification in my work, which was a nice break from 

the earlier parts of the project. 

 Overall, I think this project was a fun experience and I definitely learned a lot 

about designing a full system.  While the work sometimes seemed tedious after spending 

8 hours buried in code, I definitely gained a lot of new skills and knowledge.  At first the 

project seemed too big to handle, but once I got into it, and once I learned that debugging 

consists of more than waiting fifteen minutes for my code to synthesize and staring at 

chipscope looking for what went wrong, it was rewarding to see the progress I could 

make after an afternoon in the lab and kind of relaxing. 
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 As for the parts of the class that did not have to do directly with our project, I 

thought they were helpful with our success.  I’m not usually one to enjoy reading books 

for class, but the assigned texts were interesting and definitely helpful with our project.  

While sometimes the project got overwhelming, I think it was an overall rewarding 

experience and I learned a lot that I couldn’t have learned in a different class. 
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Kun Li 

 

For this project, I was primarily responsible for porting the memory modules from 

the Altera-based fpgagen project to our Xilinx board and for developing the sound chips 

and interfacing them to the rest of the system.  I also helped debug issues we were having 

with clock stability and video output bugs.   

During the beginning of the semester, I spent roughly 10 hours a week 

researching the Sega Genesis, tracing through the fpgagen code, and implementing 

changes to make it compatible with the Xilinx board.  This bumped up to about 16 hours 

a week towards mid-semester while we debugged critical sections of the DVI controller 

and a major stability bug.  

For the last five weeks of the semester, I spent over 40 hours a week researching 

the YM2612 FM sound chip, working out its implementation, simulating, debugging, and 

interfacing it to the rest of the system.  After gaining experience with this sound chip, it 

was fairly straightforward to implement the PSG, which I did in 3 days during the final 

week.  One thing I am very pleased with is the quality of the sound emulation.  I tried to 

match the original hardware implementation as closely as possible based on the available 

literature.  I also double checked our output closely against the original for several test 

games, especially Sonic the Hedgehog and Streets of Rage, which allowed me to detect 

several discrepancies and correct them.  Some of this may have gone unnoticed, since it 

is more difficult for the casual user to notice bugs in the sound than in the video.  

However, it was very personally rewarding to create this chip accurately from scratch, as 

it was something that had never been done before in HDL.    

Ultimately, I believe that our team had a very successful project.  We had a lot of 

fun playing our system and seeing other people play it as well.  We also added a 

significant contribution to the open-source emulation community, to the point that people 

were asking for a board to be made from our system.  Finally, we learned a lot about 

system integration, project management, and RTL design.  I am very proud of our team 

for doing a great job cloning the Sega Genesis in all its glory, and will always remember 

this project fondly.     

 


