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Introduction 

The Apple IIGS was the final model in the Apple II line of personal computers, 

and was released in 1986. It maintained full backward compatibility with the previous 

Apple II, II+, IIe, and IIc computers, while providing considerable upgrades in graphics 

and sound (source of the GS name). These improvements come from an improved 

processor, the WDC 65C816. This is a 16-bit CPU that can emulate the 8-bit 6502 used 

in previous models. In addition, the IIGS provides new, higher-resolution graphics 

modes and multi-channel digital sound capability. The functionality of earlier Apple II 

models is generated by the Mega II, which is basically an Apple-IIe on a chip. 

Our Project Results 

We were able to get a considerable amount of functionality working for the public 

demo. At the end of the semester, we were able to boot into the IIGS System Monitor, 

which is a text input/output interface that allows the user to view memory values and the 

CPU register contents. From the System Monitor, we could also enter the BASIC 

interpreter and enter commands. PRINT statements worked almost all of the time, but 

most other commands were flaky. We also used the emulator to dump some Super Hi-

Res video memory images, and ran them through our graphics system to show the IIGS 

capabilities. 

We are happy that our final product demonstrated the CPU, bus, memories, 

graphics, and keyboard input all working (relatively) nicely together. It would have been 

nice to have some actual games running in real time, but we got very close and cleaned 
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up most of the real bugs. The biggest impediment to achieving the last success was the 

complexity of the disk drive, which we were unable to finish or avoid. Overall, we 

completed a very good portion of the system by the deadline. 

Hardware Architecture 

System Diagram 

 The Apple IIGS is composed of a few major subsystems, which we have decided 

to split up into the design as shown in our architecture diagram. 
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65C816 Processor 

 The CPU in our system is a 16-bit processor with a 24-bit address space. The 

processor operates on a single clock, but performs actions on both the negative and 

positive clock edges. It has a 16-bit address bus and an 8-bit data bus that pulls double-

duty as a bank-enable bus as well. 
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 Internally, the CPU has an 8/16 bit accumulator, two 8/16 bit index registers, a 

stack pointer, and a direct page register. Almost all of these registers can operate in 8-

bit mode to emulate the 6502, operate in a 16-bit native mode, or operate natively in an 

8-bit limited mode. The 65C816 rounds out the 256 opcodes of the 65xx series, and 

adds some new addressing modes as well. 

Memory Bus 

 There is one main bus in our architecture, with all of the components having 

some connection to it. For the most part, the Apple IIGS is completely memory mapped. 

The video buffer, sound pins, keyboard registers, and various memory modules are all 

simply accessed as memory locations. Addresses are usually provided by the processor 

to activate a certain component and read or write data, but the bus can also be 

controlled by the video system through direct memory access. 
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 The physical memory of the IIGS is broken up into several banks, as shown in 

the above memory map. The CPU is a 16-bit processor with a 16-bits address line, so a 

bank system is necessary to address the full 24-bit space. Rather than using bank 

switching as in some other computers, the processor multiplexes the 8-bit data line with 

an additional 8-bit address. Therefore, the data line drives the bank address and the 

address line drives the location within that 64KB bank. This multiplexing occurs during a 

single clock cycle as shown in the simple timing diagram below. 

 

 The Memory Management Unit is primarily used to decode the address on the 

bus and enable the proper memory bank or mapped device. In the original design, it has 

additional duties such as RAM refresh. Since we are using the Block RAM directly on 

the FPGA rather than interfacing with an external chip through a memory controller, 

functionality like this is not necessary for our design. 

 It is also important to note the clocking of the Apple IIGS in order to handle 

backward compatibility. The original 6502-based versions run on a 1MHz clock which is 

generated from a base of 14MHz. The 65C816 typically runs on a 2.8MHz clock which 

consumes 5 cycles of the fast clock. However, when it needs to access slow RAM or 

certain I/O on the Mega II side of the system, it stretches to a 1MHz period. The 

different clock periods are shown in the following diagram. PHI0 and PHI1 are clocks of 

the 6502, while PHI2 is the varying clock of the 65C816. PHI2 is only one signal, so the 

waveforms shown represent different possibilities in time (“fast” cycle and “slow” cycle). 
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Graphics Subsystem 

 The Apple IIGS supported all the original video modes (text, lo-res, and hi-res) of 

previous Apple II in addition to new super hi-res graphics modes. Each of these video 

modes has a predefined region in memory where the display data is stored. In previous 

models of the Apple II, the current video mode was controlled by many soft switches. 

The GS added a new soft register, called the new video register, which controlled the 

super hi-res graphics mode. The display soft switches were still used for the emulation 

video modes. On the GS, all of the emulation video mode operations were performed on 

the Mega II, while super hi-res video modes were controlled from the new Video 

Graphics Controller. 

 In text modes, the display data for each line is stored contiguously in memory as 

ASCII values. The display lines themselves are not stored linearly: the 0th, 8th, and 

16th lines are stored in the first 128 bytes, followed by the 1st, 9th, and 17th. This would 

was done to save memory given the technical constraints of the time. The ASCII value 

was then used as input into a font ROM, which would output the corresponding pixel 

values. 

 The super hi-res graphics mode added a true graphical video mode to Apple II 

series, allowing it utilize the graphical features seen in GS/OS. Super hi-res graphics 

mode supported either 640 or 320 column video with 200 rows. The user could create 

up to 16 color palettes, each with 16 12-bit colors. The color palette for each line was 
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then controlled by a scan line control byte, which also determined whether the line had 

320 or 640 columns. In 320 mode, 4 bits were used to represent each pixel which would 

then be used to index into the color palette for that line. In 640 mode, 2 bits were used 

to represent each pixel. Each pixel within a byte was given a separate group of four 

colors within the color palette to choose from. The scan line control byte also 

determined whether color fill mode was enabled. When color fill mode and 320 column 

mode were both enabled, if a pixel had the stored value of 0, the output color would be 

the same as the previous pixel. This decreased the number of colors available, but 

increased the speed at which video data could be generated. 

Audio Subsystem 

 The Apple IIGS supported the one bit sound of previous Apple IIs while also 

adding an advanced Ensoniq 5503 digital synthesizer. One bit sound was controlled by 

either reading or writing to a specified softswitch. The faster this was performed 

determined the frequency of the output sound. One bit sound was mainly used by 

legacy programs. 

The Ensoniq 5503 contained a 64k by 8-bit wavetable and 32 independent 

oscillators, the interface to which was provided by the Sound GLU (general logic unit). 

The 5503 allowed up to 8 audio channels, though the GS used only 2. The GLU 

provided 4 soft registers to the system, a sound control register, data register, address 

low register, and address high register. The sound control register determined whether 

a write/read went to the Ensoniq registers or wavetable, whether wavetable operations 

auto-incremented, and the master volume. 
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Each of the 32 oscillators were controlled by a pointer to the beginning of its 

wavetable, a frequency register, and a size/resolution register. Anywhere from 1-32 

oscillators could be enable at any time. In order to determine the wavetable address, 

the frequency value was accumulated in a 24-bit accumulator at each update to the 

oscillator. Depending on the size and resolution of the wavetable, the value stored in the 

accumulator was selected and concatenated with the wavetable pointer register to form 

a 16 bit address. Sequential oscillators could also be paired so that when one started its 

wavetable, the paired oscillator also started or so that when one oscillator finished its 

wavetable, the paired oscillator started its wavetable.  

The output from the enabled oscillators was time domain multiplexed and sent to 

a DAC. The stereo card of the GS would then demultiplex this stream and output audio 

on the selected channel. 

Input Devices 

 The Apple IIGS used the Apple Desktop Bus (ADB) to maintain all the input 

devices (including the keyboard and mouse). It composed of the ADB GLU, ADB 

microcontroller, and Apple Desktop Bus cables. The ADB microcontroller was primarily 

responsible for interfacing the actual devices and the bus. Keyboard inputs were 

converted to one of 128 ASCII codes and saved in the $C000 register. Whenever the 

$C010 register was accessed by the CPU, the strobe bit in $C000 would be cleared. 

 The ADB GLU (General Logic Unit) consisted of the ADB Command/Data 

register (used to keep track of input devices), Keyboard Data register, Modifier Key 

register (records which special keys were pressed), Mouse Data register, ADB Status 

register (keeps mouse and keyboard information). 
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Disk Interface 

 The disk-port connector is compatible with both 3.5-inch and most 5.25-inch 

Apple II disk drives. The actual disk-port interface was maintained by the Integrated 

Woz Machine (IWM), consisting of the mode register, status register, handshake 

register, and the data register. Sixteen soft switches at addresses $C0E0 to $C0EF 

were used to keep track of the stepper motor phases, drive selected, and what types of 

reads and writes were requested. Programs, stored on the disks, actually had to access 

the softswitches in order for the disk drive to keep track of the data on the disk being 

accessed.  

 The Apple IIGS also supported “intelligent drives”, which rather than being 

controlled at the floppy disk track level, were controlled at the block level. A firmware 

interface to this was known as Smartport. Unfortunately, while the firmware and external 

bus for this were well documented, the internals of this operation were not. The 

emulator seemed to get around this by simply detecting when the program jumped to 

the firmware routine.  
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Design Process 

Processor 

Although this processor is considerably more complicated than the 6502 used for 

previous Apple II computers, we were fortunate to find a soft core available from the 

Western Design Center. After going through some formalities with Non-Disclosure 

Agreements and making lots of signatures, we obtained a synthesizable Verilog 

description of the CPU. We made a couple of minor modifications to get it compiling 

successfully, and then worked on the output signals to integrate properly with our bus 

system. Or so we thought. 

It turned out that the core had several more apparent errors. Unfortunately, we 

were not expecting to require debugging the CPU because it was obtained directly from 

the original manufacturer. When we started seeing errors very deep into the project, it 

took us very off guard. For example, the Rotate Right (ROR) instruction gave incorrect 

answers in several cases. A couple of instructions did not set the condition codes when 

they were supposed to, or had timing problems such that they received the condition 

codes from a different instruction. There were major bugs with the JSR instruction in the 

absolute indexed indirect addressing mode. It saved the wrong address on the stack, 

and then jumped to the wrong location. 

It certainly looked like the errors that we found were coming from inside the CPU 

and not from some interaction with our system. We expect that the WDC would have 

informed us if the core was incomplete or untested. Also, there was a previous group 

(the SNES) which used the same core but did not mention any errors in their report. 
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Memory Management Unit 

 The MMU was one of the central modules in the design. The main function was 

to arbitrate the reads and writes among the CPU and the various memory banks in the 

system. To do this, we put enables on all the data outputs of the memories that would 

default to tri-state drivers, like a distributed multiplexor. Based on the MMU address 

decoding and whether the clock signal was high or low, different banks could drive the 

lines for a given 16-bit address. 

Since the boards had over 600KB of Block RAM, we were able to use this for all 

of our needs rather than interfacing with the mounted DRAM or other resources. We 

mainly built 64KB “banks” of RAM for our modules. Four were used for the general 

purpose RAM, two were used for the IIGS board ROMs, and a couple were used by the 

sound, graphics, and other modules. 

 The MMU also had the responsibility of handling soft switches. These are 

memory-mapped registers that either store configuration data or toggle between 

configuration options when they are accessed by the CPU. The IIGS memory space 

between $C000 and $C080 is mostly all composed of these switches. Register-type soft 

switches were simply hooked up to the main data bus and enabled at their respective 

address, so they could capture writes from the CPU and respond to reads with the 

stored value. Toggle-type switches were only connected to the address bus, and would 

flip-flop on a memory access. Both types were connected to internal signals in the MMU 

to configure things like memory shadowing and bank switching. 
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Graphics 

 The Virtex 5 LX has a Chrontel 7301C chip in order to output DVI video. WIth a 

DVI to VGA converter, we are able to output VGA. In order to communicate with the 

Chrontel chip, we adapted Team Dragonforce’s video code. Video was output at 

640x480 pixels. This left a border around the actual display which was colored 

according to the color border soft register. 

 Since nearly all GS specific software utilized the super hi-res graphics mode, we 

chose to only implement the 40 column text and super hi-res graphics modes. The 40 

column text mode was needed for the BASIC interpreter, system monitor, and boot up 

screens.  

 While the “Apple IIGS Hardware Reference Manual” did at times insinuate that 

the video controller took control of video memory at times, we did not consider this a 

necessary complication. Instead, we implemented dual-ported RAMs which allowed the 

Video Graphics Controller to read from memory whenever necessary. This also meant 

the VGC could read at a faster clock than the system clock. Our video display buffer 

consisted of two line-buffers; while one line was being generated, the previous line was 

displayed twice. This did not pose a problem since the maximum lines the VGC ever 

generates per frame is 200.  

 For text mode, the ASCII value from memory is combined with the three least 

significant bits of the line currently being generated to index into the font ROM. This 

returns the current pixel line, which is shifted out to the line buffer. To generate our font 

rom, we adapted the KEGS font file to the required format for a Xilinx .coe file.  
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 When generating display data in super hi-res graphics mode, the scan line 

control byte is read, followed by the specified color palette, and then the pixel data. 

Each line being individually specified as 320 or 640 columns did not pose a problem, 

since in 320 mode each pixel was just displayed twice. 

Sound 

 We implemented the GLU and Ensoniq 5503 as specified. Simulation results 

verified that they performed to this specification, but we were never able to test with 

actual GS program sounds since we could not figure out how to dump the wavetable 

values from the KEGS emulator. Rather than time-domain multiplex the oscillator 

output, we planned to sum the individual oscillator samples which would then be sent to 

the AC97 output.  

Disk Drive 

 We emulated the original Disk II specs as closely as we could. The sixteen disk-

port soft switches were implemented along with the data register that would store data 

to be read from or written to the disk. We had no idea how to maintain the track and 

position of the head of the physical disk until we happened across the book 

“Understanding the Apple IIe” and Stephen Edwards’s implementation of the Apple II+. 

We also needed to store the 256KB Apple II Boot ROM at address $C600. The boot 

ROM is run when a disk has been detected and it will load track 0, sector 0 of the disk. 

 Since we did not have a physical disk drive to store games and not enough block 

RAMs on the FPGA, we decided to use parallel NOR flash memory, specifically 32MB 

of BPI PROMs.  
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 We were able to find many different game ROMs for the Apple IIGS online. 

However, the .2mg format is only compatible with emulators. This format was easily 

converted with the help of xxd and promgen to the .mcs format, which could then be 

stored on the board. Another challenge with incorporating the disk drive was the Apple II 

GS’s high degree of compatibility. We decided to stick with playing one game ROM, in 

the 3.5inch disk format as opposed to also supporting multiple disk drives and 5.25inch 

disks. 

 Ultimately, we did not have time to fully load a game from flash memory and work 

out integration with the rest of our system. However, we were able to store data on the 

PROMs and see the correct data being read via ChipScope. 

Keyboard Inputs 

 Instead of emulating the original and outdated input interfaces used in the Apple 

IIGS to communicate with the keyboard and mouse, we have decided to use the PS/2 

controllers already on the Virtex 5 board. The PS/2 controller interface consists of the 

PS/2 clock and PS/2 data inputs as well as two 8-bit data ports for reading and writing 

to and from the attached devices. 

 The expected incoming data for the keyboard and mouse differ per the specs of 

the PS/2 protocol. The scan codes for the keys are not in a form the Apple IIGS system 

understands, so these codes have to be converted into ASCII values. This is 

accomplished through a large lookup ASCII table. This data is then saved at a specified 

memory location ($C000), used specifically for keyboard inputs. 

For the mouse, data is sent periodically and serially in a similar manner. However 

data is sent in packages of three bytes: a status byte consisting of button clicks and 
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directions of mouse movement, a byte consisting of X movement, and a byte consisting 

of Y movement information. This data has to be then converted and saved at specific 

memory locations in order for the Apple IIGS to interpret. We did not, however, have 

time to integrate the mouse components into our system. 

The PS2 controllers for the keyboard and mouse only use the bus to write the 

respective information to the expected memory locations. 

Testing Process 

 Most of our high-level verification was based on the official Apple IIGS 

documentation, such as the Hardware Reference and Firmware Reference manuals. 

We designed our modules based on these specifications and then verified that the 

visible behavior was consistent. Most of our project was tested in simulation and then 

examined in ChipScope on the board. 

CPU and MMU 

 In terms of testing the main operation of the system in simulation, our reference 

emulator was incredibly useful. We used the open-source KEGS emulator, which was 

written in easily modifiable C code. The most effective test, once the basic functionality 

was working, was to print the emulator printf() output and Verilog $display() output into 

exactly the same format. These files could then be compared in a program like vimdiff to 

see where our implementation was going off track. The outputs included information like 

the program counter, accumulator, and other registers, so it was easy to see when there 

was an incorrect branch or the wrong data was getting loaded. From that point, we 
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could load up the simulation in the DVE waveform viewer and see the details of what 

might be going wrong. In some cases, the emulator was actually doing more than we 

wanted to implement, so we had to edit its source to simplify it down to our level. This 

process actually became very efficient, and should have been used earlier in the 

semester. 

Video 

 In order to validate that video worked as specified, we generated ROMs out of 

the memory dumps from the specific video memory regions in the emulator. The video 

hardware output could then be compared against the emulator output to debug any 

video issues. Since doing this on the board was a very time consuming process given 

the synthesis times, we eventually made a script to create an image from the verilog 

simulation. 

Synthesis Issues 

 At some point our simulation results became pretty clean, and we made the jump 

to the board. That transition was not quite as simple as we hoped. We were able to view 

the bus waveforms in ChipScope and compare them to the DVE waveforms, but we 

were experiencing some seemingly random errors. Registers didn’t end up with proper 

values for their input functions, and sometimes there was no data at all going on the bus 

lines. We are still not sure about the exact cause of these problems, but it looks like it 

helped to use the proper clock buffers and DCMs from the Xilinx Coregen. Home-

brewed clock dividers and uncontrolled fanout may be unreliable and manifest in 

unexpected places. 
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Advice 

● Be careful with clock signals in synthesis. 
● Try to get some integrated modules on the board as soon as possible. 
● The semester is shorter than you think. 
● Getting things to work on the board always takes longer than expected. 
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Individual Pages 

Willis Chang 

Of course I hoped we could have accomplished what we set out to do--mainly to 

play Apple IIGS games with the system’s enhanced graphics and sound. Even still, I am 

content with what we have done. On demo day, we were able to demonstrate the Apple 

IIGS running both the System Monitor and a Basic Interpreter (though with extremely 

limited functionality). Various high resolution images from sample game ROMs were 

also displayed to showcase Apple IIGS graphics. 

I was primarily responsible for figuring out how to interface the peripherals. This 

included both working with the PS/2 interface with keyboard and mouse and Disk II. 

This entailed working with the NOR flash memory (BPI PROMs) as well. 

Though we had weekly Sunday meetings to push forward on the project, they did 

not prove particularly effective. It wasn’t until about two weeks before demo day that we 

committed ourselves fully to the project and blocks of Verilog code were realized and 

integrated on the board. At that point each of us spent at least 12hrs a day in the lab. 

Aside from time constraints, we were often held back by the lack of documentation. 

Unlike the Apple IIe, documentation for the Apple IIGS were much harder to locate. It 

also did not help that the Apple IIGS was vastly more complicated than the Apple IIe. 

I actually do believe this was a worthwhile experience and only wished I allotted 

more time for the project. This might have happened had I not been taking three other 

project courses. 
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Brian Osbun 

I originally worked with the Western Design Center to transfer the soft-core RTL 

model. They were very responsive to our project, but required some e-mail reminders to 

keep the transaction going. Once we received that IP, I mostly worked on getting the 

CPU integrated as well as the MMU and bus protocol. I probably underestimated the 

amount of work necessary for this, given that we had a CPU provided and only a couple 

of chips working together. The worst part was the long simulation times just to reach the 

point where bugs occurred, and most of them were impossible to diagnose at the 

ChipScope level. 

As basically all the groups from past years have said, this capstone is one of the 

most time-consuming things to do at CMU. For myself, balancing two graduate ECE 

classes on top of this one led to a lot of priority conflicts with getting stuff done. When I 

got to a point where I could devote full-time effort to the course, it really became a lot 

more fun as well as becoming more effective. So I would suggest that if you have an 

awesome project, try to make it the centerpiece of your semester rather than just 

another workload. 

I don’t think we had any major group problems during the semester. All members 

contributed to their parts of the project, kept up communication, and put in hours when 

necessary, especially during the final week before Demo. We simply ran out of time to 

fully complete the massive complexity of the Apple IIGS. As a group, we probably 

should have pushed harder early in the semester to get some confidence and have 

concrete checkpoints. Still, we got most of the modules integrated and running in 



23 

demonstration. I was really impressed how everything came together fairly well right at 

the end. 

Robert Walzer 

 I spent the majority of my time working on the output functionality, sound and 

video.  This was initially a slow process, as it took significantly longer than expected to 

get a proper interface to the board’s onboard video hardware. Once I had this working, I 

was able to start on the actual video generation. While the GS’s spotty documentation 

certainly slowed me down in this area, I eventually found that if you read the 

documentation repeatedly, it starts to make sense.  

 Once I finished the video generation hardware, I was able to move much quicker 

through the sound hardware. While this was initially even more unclear than video due 

to Ensoniq’s deliberately non-existent documentation, the lessons I learned writing the 

video hardware were very helpful in this (i.e. read the GS hardware reference manual 

over and over again). Once I finished as much sound and video as I could, I spent the 

remainder of my time until the demo working on the emulated floppy interface. 

 Although I was disappointed that the majority of the components I wrote did not 

get used during our final demo, I was still impressed with how far we got given the 

complexity of the GS. While we planned our project from the beginning of the semester, 

I don’t think any of us truly appreciated the complexity of the GS, so our planning did not 

reflect that complexity.  

I think our group dynamics played a big role in us getting anything working by the 

final demo. While members of other groups were getting audibly annoyed with each 
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other in the final weeks when things didn’t work out as planned, we all were able to 

keep pushing forward despite nothing really working on the board at that point. 
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Some Resources 

Official IIGS Manuals: http://www.apple-iigs.info/doc/dociigs.htm 

65C816 ISA: http://www.westerndesigncenter.com/wdc/datasheets/Programmanual.pdf 

Kent’s Emulated GS: http://www.emaculation.com/doku.php/kegs 

RESET information: http://www.macgui.com/usenet/?group=2&id=6463 

2MG Info: http://apple2.org.za/gswv/a2zine/Docs/DiskImage_2MG_Info.txt 

BPI PROM: http://www.spansion.com/Support/Datasheets/S29GL-P_00.pdf 

PS/2: http://www.eecg.toronto.edu/~jayar/ece241_08F/AudioVideoCores/ps2/ps2.html 

 

http://www.apple-iigs.info/doc/dociigs.htm
http://www.westerndesigncenter.com/wdc/datasheets/Programmanual.pdf
http://www.emaculation.com/doku.php/kegs
http://www.macgui.com/usenet/?group=2&id=6463
http://apple2.org.za/gswv/a2zine/Docs/DiskImage_2MG_Info.txt
http://www.spansion.com/Support/Datasheets/S29GL-P_00.pdf
http://www.eecg.toronto.edu/~jayar/ece241_08F/AudioVideoCores/ps2/ps2.html

