
Team Arcade

1942 Final Review
12/9/2012
18-545

Team Arcade
Tyler Huberty, Greg Nazario, Isaac Simha

Table of Contents

Introduction
Platform
System Overview
Main CPU
VGA Controller
Peripherals
Sound Controller
BROM ’ s and BRAM ’ s
Memory Map
Sprite and Tilemap Hardware

Screen
Color
Character Tilemap
Background Tilemap
Sprites
Pixel Rendering
Timing
Foreground pipeline
Background pipeline
Sprite pipeline
Pixel rendering pipeline

Schedule
Methodology
Results
Sources
Appendix
Personal Statements
Acknowledgements

1942 Final Report - 1

Team Arcade

Introduction

Our group built the arcade game 1942 on an FPGA. 1942 is a vertically scrolling
Capcom arcade game from late 1984 set in the Pacific Theater of World War II. The
player’s goal is to shoot down enemy planes and avoid enemy fire. Two players
could play in an alternating cooperative mode. It was a popular game followed by
several sequels.

1942 Final Report - 2

Team Arcade

Platform

We built 1942 on a Xilinx Virtex-5 LX110T FPGA. We did not use a PowerPC core.

System Overview

The 1942 arcade system had the following hardware specifications:

Main CPU Zilog z80 @ 4.0MHz

Audio CPU Zilog z80 @ 3.0MHz

Sound Chip 2x AY-8910 @ 1.5MHz

Display 224 x 256 pixels, 256 colors, raster CRT

Our implementation of the 1942 platform consisted of the Z80 for the main CPU, a
display system, a memory mapping system, and a sound controller linked to the
AC97. We made the decision not to use the second Z80 and two AY8910 sound
chips, which allowed us to record our own upgraded sounds.
The display system was powered by our VGA controller (see “VGA controller”
section) and our sprite and tilemap hardware (see “sprite and tilemap hardware”
section). The behavior of these components was not documented at the cycle level
and as such we sought only to replicate the functionality. A block diagram of the
system follows.

1942 Final Report - 3

Team Arcade

Main CPU

The Zilog z80 is an 8-bit microprocessor. Our project made use of the OpenCore
TV80, a Verilog port of the z80. Our testing included verifying the working and
timing accuracy of this model.

VGA Controller

For our design, we decided to skip the DVI controller entirely and make our own
VGA controller. This was motivated by: our schedule not allowing for learning curve
of Chrontel chip and DVI protocol; and the fact 1942 was an analog system itself.
Building our own VGA controller involved making sure that we were sending the
vertical and horizontal syncs at the right speed in order to make a 640x480
resolution at 60Hz. Therefore, we would be closer to the original hardware of the
arcade machine, which actually uses scanline interrupts to pace many of the in-
game events.

The VGA controller had a couple of counters to keep track of the sync signals and
what row and column are currently being used. The outside interface required the

1942 Final Report - 4

Team Arcade

hardware using the controller to specify a color based on the current row and
column location. The colors was given in 4-bit arrays which then were converted
into analog colors by using the resistor diagram in the below picture.

To test the colors, we created a simple test screen which would output various
colors to test how well the system would work. It tested both row and column
changes, but it did have a few color bleeding issues which seem to be due to certain
changes of colors. A picture of the given test screen can be found below.

1942 Final Report - 5

Team Arcade

1942 Final Report - 6

Team Arcade

Peripherals

Our joystick system was borrowed from the Multi-Williams team. Our improvements
include cleaning up the wiring and documenting the pins. We had no need for most
of the buttons and the 2-player co-op capability. It used a ribbon cable to connect
to the 8-way joystick, 2-play buttons, 2-start buttons, and insert coin button. We
created a custom graphic (see appendix) to use as an overlay on the controls to
both enhance the visual experience and ease the small learning curve.

1942 Final Report - 7

Team Arcade

Sound Controller

Our sound controller intercepted the “sound codes” which the main CPU writes to
the address 0xC800 and used them to decide what sound to play. We used our own
recorded sounds from 1942 and 1943 (1942’s sequel), which we had put onto
BROMs using the ISE Block Memory Generator. Our sound controller adopted Team
Dragonforce’s code to interface with the AC97 and was modified to use our sound
BROMs instead of sounds from flash. It selected which sound BROM to send the
data from to the AC97.

In order to fit all of our recorded sounds, we used two FPGAs, one of which had the
foreground sounds, and one with the background sounds. A simple one-bit signal
interfaced the two boards. This necessity for two boards came from the fact we ran
out of block memory on one board alone. The background music played
simultaneously with the foreground sounds, and its starting and stopping was
triggered by two sound codes. This allows for a more complete audio experience.

Sound Sound code from Main CPU

Fire 0x04

Flip 0x06

Explosion 0x02

Take-off 0x0D

Retry 0x12

Insert coin/power-up 0x07

Background music Start (0x11), Stop (0x10)

1942 Final Report - 8

Team Arcade

BROM’s and BRAM’s

We chose to use the FPGA’s block memory to hold 1942’s RAM and ROM data. The
ROM data was programmed onto the ROMs when the board was programmed, so
that no setup needed to be done (loading flash data into BROM’s, etc.) at the
beginning, and we were able to avoid using Flash memory.

Our system used 11 BROM’s, in addition to 7 BROM’s with our recorded sounds.
Each BROM was a single-port ROM generated from the ISE Block Memory Generator.
They were divided up so that each BROM does not need to be read more than once
at a time, so that they could use single-port.

1942 Final Report - 9

Team Arcade

BROM’s

Name Purpose Word Size
(bits)

Depth (#
addressab
le
locations)

Memory
Range
(hex)

Resources
Used

maincpu 1942 main
cpu game
ROM

8 32768 00000 -
07FFF

8 x 36K
BRAMs

maincpu
bank1

1942 main
cpu game
ROM

8 16384 10000 -
13FFF

4 x 36K
BRAMs

maincpu
bank2

1942 main
cpu game
ROM

8 8192 14000 -
15FFF

2 x 36K
BRAMs

maincpu
bank3

1942 main
cpu game
ROM

8 16384 18000 -
1BFFF

4 x 36K
BRAMs

gfx1 character
tile object
data

8 8192 00000 -
01FFF

2 x 36K
BRAMs

gfx2_1 background
tile object
data 1/3

8 16384 00000 -
03FFF

4 x 36K
BRAMs

gfx2_2 background
tile object
data 2/3

8 16384 04000 -
07FFF

4 x 36K
BRAMs

gfx2_3 background
tile object
data 3/3

8 16384 08000 -
0BFFF

4 x 36K
BRAMs

gfx3_1 sprite
object data
1/2

8 16384 00000 -
07FFF

4 x 36K
BRAMs

gfx3_2 sprite
object data

8 32768 08000 -
0FFFF

8 x 36K
BRAMs

1942 Final Report - 10

Team Arcade

2/2

palette Computed
from red,
green, blue,
tile, and
sprite
ROM’s and
used
instead

16 1536 00000 -
00BFF

1 x 36K
BRAM

There were 4 BRAM’s in our system. The BRAM for maincpu used Single-Port BRAM,
while the BRAM’s for fgvideo, bgvideo, and sprites used True Dual-Port. The layout
of a true dual-port BRAM on the Virtex 5 is shown below. The design reason for the
dual-ports was to eliminate the requirement for arbitration logic when both the main
cpu and video hardware may have been making read/write requests
simultaneously. Likely, the original 1942 system did not use dual-port RAM’s, but
this simplifies our design, while leveraging the power provided by the Virtex-5.

1942 Final Report - 11

Team Arcade

1942 Final Report - 12

Team Arcade

BRAM’s

Name Purpose Ports Wor
d
Size
(bits
)

Depth (#
address
able
location
s)

Memory
Range
(hex)

Resource
s Used

maincpu main cpu
RAM

Single-
Port

8 4096 E000 - EFFF 1 x 36K
BRAM

fgvideo foreground
tilemap RAM

True
Dual-Port

8 2048 D000 - D7FF 1 x 18K
BRAM

bgvideo background
tilemap RAM

True
Dual-Port

8 1024 D800 -
DBFF

1 x 18K
BRAM

sprite sprite RAM True
Dual-Port

8 128 CC00 - CC7F 1 x 18K
BRAM

Memory Map

Our memory map module mapped addresses from the CPU to the appropriate
BRAM/BROM. It took an address from the CPU, a bank_switch signal, and outputted
the appropriate data. See the BROM and BRAM tables above for the memory
ranges of the CPU BRAM’s and BROM’s. The memory mapping module was also
responsible for memory mapped IO to the peripherals. The interface to the cpu was
like any other memory interface, but the memory module also interfaces with a
number of external pins and memories through their respective interfaces in a read-
only fashion (i.e. peripherals and ROM’s). It also sent the sound codes from the
main CPU to the Sound Controller, which played sounds using the AC97.

Sprite and Tilemap Hardware

The pixel generation hardware consisted of sprites, tilemaps, color lookup tables,
and color palettes. These together were used to reduce the memory bandwidth
requirements in the arcade hardware, while providing decent graphics. Because of
this memory constraint, 1942 did not have a framebuffer. Pixel colors were
generated in near real-time with the CRT pixel gun position and fed directly to the
VGA controller. MAME did not faithfully replicate this hardware, but provided the
same end result. As such, our implementation of this hardware was in part our own

1942 Final Report - 13

Team Arcade

design and like MAME achieves the same result. Our design drew a compromise
between the extra speed and bandwidth we could achieve on the FPGA and
attempted to be faithful to the original hardware’s implementation.

Screen

The screen is 224x256 pixels. It was made up of a 32x32 grid of 8x8 foreground
tiles overlaid on a 16x32 grid of 16x16 background tiles. Therefore, the background
tile grid was not always completely visible and allowed for the seamless vertical
scrolling effect. Sprites were overlaid on top of these tilemaps, not restricted to a
grid granularity. The two tilemaps--the foreground or character tilemap and the
background tilemap were RAM’s that the main CPU writes to. There was also a
sprite RAM for holding the sprites on the screen.

There were 256 scanlines, each ended with an HSYNC. The timing for these
scanlines were important for both the VGA controller and providing the timing
interrupts to the main cpu to control game speed. The main cpu was interrupted on
VSYNC (end of sending all scanlines for a given frame).

As seen in this diagram, the resolution of the game was such that it did not fill the
lowest resolution available on our monitor. Doubling the resolution of the game
couldn’t easily be done because of the skewed aspect ratios.

1942 Final Report - 14

Team Arcade

Color

The VGA controller accepted three 4-bit colors (rgb red, green, and blue values). A
palette provided the appropriate 12-bit value to the VGA controller, with the desired
color being the index into this palette table. This reduced the number of bits
required for specifying a color for objects, but restricted the available colors that
could be displayed on the CRT. The palette is 1536 entries effectively. It was built
using color lookup tables and color ROM’s. It was built as follows.

1. Characters (foreground tiles) had 16 available unique colors. There was a
color lookup table of 256 entries of 4-bits each that indexes into the color
ROM’s (entries 128-143). The resulting 256 entries of 12-bits were stored in
the palette.

2. Background tiles had 64 unique colors available. There was a color lookup
table of 256 entries of 4-bits each plus a 2-bit palette selector register that
indexed into the color ROM’s (entries 0-64). The resulting 1024 entries of 12-
bits were stored in the palette.

3. Sprites had 16 unique available colors. There was a color lookup table of 256
entries of 4-bits each that indexed into the color ROM’s (entries 64-79). The
resulting 256 entries of 12-bits each were stored in the palette.

The complete palette can be seen below (generated using MAME). Notice the
distinct regions of the palette (the largest being the background palette).

In the real 1942 system, the concept of a palette was really an abstraction built on
the aforementioned color ROM’s and color lookup tables. Our design decision was
to implement this indirection once offline and generate the complete palette as I
described and stick it in a large BROM. The Virtex-5 was more than capable of this
and it simplifies our design (i.e. removed requirement for the color ROM’s and color
lookup table ROM’s).

1942 Final Report - 15

Team Arcade

Character Tilemap

The character tilemap contained 32x32 2-byte tiles. One byte of each tile was the
index into the foreground tile ROM, which contained the color offsets for each of the
64 pixels of the 8x8 tile. Foreground tiles were 8x8. The other byte in the tilemap
contained the colorbase into the palette. Therefore, the colors used by the pixels of
the tile could be controlled by the colorbase provided in this tilemap RAM.

The palette index was computed as the tile colorbase + tile pixel color offset.
Pictured are the foreground tiles from 1942.

1942 Final Report - 16

Team Arcade

Background Tilemap

The background tilemap contained 16x32 2-byte tiles. One byte of each tile was
the index into the background tile ROM, which contained the color offsets of each of
the 256 pixels of the 16x16 tile. Background tiles are 16x16. The other byte in the
tilemap contained the colorbase into the palette. Therefore, the colors used by the
pixels of the tile could be controlled by the colorbase provided in this tilemap RAM.
Also encoded in these 2 bytes was an x and y flip bit to allow for more variations of
the tile with minimal storage overhead.

Pictured here are two complete renderings of the 1942 background tilemap.
The pixel color offsets read from ROM obviously do not change, but the color
can still be changed in RAM by altering the colorbase value. This is how the
game at runtime can repurpose a tile from representing land (on the right) to
water (on the left).

1942 Final Report - 17

Team Arcade

Sprites

Sprites are a little different since they require more freedom in positioning
and change more frequently in position. A 128-byte sprite RAM contains 32 4-
byte entries representing sprites currently visible on the screen. The four bytes
contain the x coordinate, y coordinate, index into sprite ROM, and colorbase for the
sprite. The sprite ROM provides color offset values for the 256 pixels that make up
a particular 16x16 pixel sprite.

The complete sprites stored in ROM are shown here, rendered with two
different colorbases, which is how the game achieves different color aircraft.

1942 Final Report - 18

Team Arcade

Pixel Rendering

Pixel rendering is accomplished with a set of relatively complex pipelines that read
the required data, perform any necessary transformations, buffer the data
momentarily, and finally decide on and provide a color to the VGA controller. There
are four main pipelines working simultaneously.

Timing

The pixel rendering pipelines operate in the video clock domain. This clock is the
same as the pixel clock of the CRT at this resolution so that the final pixel color
generation pipeline can operate in lockstep with the VGA controller. This frequency
is 25.175MHz.

Foreground pipeline

This pipeline produces 8 pixel colors every 8 clock cycles. As such, it begins 8
cycles before the first pixel needs rendering to the screen. The steps in this
pipeline:

1. fetch foreground tile from RAM (2 sequential reads)
2. load tile from ROM (2 sequential reads)
3. set foreground linebuffer

Background pipeline

This pipeline produces 8 pixel colors every 8 clock cycles. As such, it begins 8
cycles before the pixel needs rendering to the screen. The steps in this pipeline:

1. fetch background tile from RAM (2 sequential reads)
2. load tile from ROM (3 simultaneous reads)
3. transform tile
4. set background linebuffer

In order to facilitate one-pixel granularity background tile scrolling, a buffer was
made for the entirety of the current scanline. Therefore, it was able to then offset
the start in this scanline and choose which pixel it would start at. This allowed for
scrolling with ease as the background pipeline would be tricked several scanlines
ahead to be able to line the background up correctly.

Sprite pipeline

This pipeline produces 224 pixel colors every scanline. Because this takes a
considerable number of cycles, it operates one scanline ahead of the current pixel

1942 Final Report - 19

Team Arcade

rendering to screen. The steps in this pipeline are performed 32 times in building
the linebuffer (once for each sprite in the sprite RAM). The steps in this pipeline:

1. fetch sprite from RAM (4 sequential reads)
2. evaluate y-coordinate
3. load sprite from ROM (4 sequential reads from 2 ROM’s)
4. transform sprite
5. set sprite linebuffer

Priority logic evaluates at any given pixel coordinate from the VGA controller which
sprite from the sprite linebuffer is relevant. To simplify this priority logic, only 8
sprites are allowed per scanline and the rest are dropped. There are therefore
really 8 sprite linebuffers, each with an x register that holds the starting column at
which it should be rendered. Sprites can overlap because they have a transparency
color.

Pixel rendering pipeline

This pipeline produces 1 pixel color per clock. The output of this pipeline is a 12-bit
color for VGA controller. The stages in this pipeline:

1. read/choose pixel color from (sprite || foreground || background) linebuffer
2. read palette color
3. output 12-bit color to VGA controller

1942 Final Report - 20

Team Arcade

Schedule

Our project, as of design review time, was on target with this Gantt chart. We kept
an aggressive schedule in order to keep ourselves ahead of the late November,
early December rush of assignments. We found that keeping an aggressive
schedule worked out well. As of Thanksgiving break, we had a project that had a
fully working game without sound, with a few minor graphical glitches, and without
one-pixel granularity scrolling. From there we had enough time to focus on the
details such as, scrolling, sounds, and most importantly arcade control artwork and
CRT bezel artwork.

1942 Final Report - 21

Team Arcade

Methodology

Our team used git for version control. We maintained a Team Arcade wiki (dokuwiki)
where we document 1942 and the workings of our implementation. This was also
the home to our schedule and list of tasks.

Results

Our project was a success. It received positive feedback from students, faculty, and
an Apple representative. The game was fully working with a great audio and visual
experience. There are no known bugs. We believe our goal of implementing 1942
on an FPGA was met and although some of our initial visions changed, we believe
the end result exceeded our initial expectations. The finished product was a great
blend of sensory experience and technical merit.

1942 Final Report - 22

Team Arcade

Sources

1. Multi-Williams Project Report (www.ece545.com)
2. MAME (www . mamedev . org)
3. Virtex-5 User Guide
(http :// www . xilinx . com / support / documentation / user _ guides / ug 190. pdf)
4. Wikipedia (http :// commons . wikimedia . org / wiki / File : AY -3-8910_ pinout . JPG)
5. OpenCores (http :// opencores . org / project , tv 80)
6. FPGA Arcade (http :// www . fpgaarcade . com / scramble . htm)
7. 1942 Schematics

1942 Final Report - 23

http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://www.fpgaarcade.com/scramble.htm)
http://opencores.org/project,tv80)
http://opencores.org/project,tv80)
http://opencores.org/project,tv80)
http://opencores.org/project,tv80)
http://opencores.org/project,tv80)
http://opencores.org/project,tv80)
http://opencores.org/project,tv80)
http://opencores.org/project,tv80)
http://opencores.org/project,tv80)
http://opencores.org/project,tv80)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://commons.wikimedia.org/wiki/File:AY-3-8910_pinout.JPG)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf)

Team Arcade

8. 1942 Game (CAPCOM)
9. 1943 Graphics and Sounds
10. Team Dragonforce (AC'97)

Appendix

Poster

1942 Final Report - 24

Team Arcade

Arcade controls overlay graphic

CRT bezel graphic

1942 Final Report - 25

Team Arcade

Personal Statements

Tyler Huberty

My initial efforts were focused on finding an arcade game of the appropriate
challenge and scope for the course. I spent much time on the frontend to make
sure we chose an exciting game and studied the MAME source code thoroughly to
understand and assist our project as the main source of documentation. I was
capable of editing and compiling MAME after much work and used this ability on
several occasions for debugging (since testing changes in MAME was quicker than
testing our hardware changes, I could “break” MAME in different ways to rapidly
check if that introduced bug might be what we were seeing in hardware--an
interesting type of debugging). I wrote the initial implementation of the foreground,

1942 Final Report - 26

Team Arcade

background, and sprite pipelines and subsequent rendering. I assisted with the
debugging of these units as well as the debugging of the audio and memory
mapping units. The marketing materials, poster, and graphics for our presentations
and final demo were largely my work. I also hosted the wiki on my server for our
internal documentation.

My average time spent on class including lectures, reading the course textbooks,
and working the labs was 12-16hrs/wk. One key to our group’s success was
undoubtedly that the early weeks especially were closer to the higher extreme of
this range. The extensive and smart research throughout and hard work on the
right units at the right time to keep the project moving were other keys to our
success. Finally, I had strong teammates with effective dynamics and collaboration.

This course was a fun, challenging, and rewarding experience. The most exciting
accomplishment was using technical skills developed throughout CMU to create a
polished, beautiful product that entertained many during demo. Having industry
sponsorship from Apple was a plus as well.

In picking a project, my advice would be to read all the previous project reports to
learn from the success and be critical of the causes of failure. While it’s important
to choose a project with appropriate scope in order to have a polished product by
demo time, problems previous groups encountered (such as the CRT timings of the
Multi-Williams group) may be obstacles your group can overcome with early
warning and mindfulness to the issue.

1942 Final Report - 27

Team Arcade

Gregory Nazario

I was the one who was the Linux guru and figured out first how to get all the
tools working on the machine and how to use the toolchain. It seemed to have a lot
of issues with drivers, simulation, and synthesis problems with 32-bit and 64-bit
versions of the software. Many times, we had to switch between one or the other
due to the fact that it would say place and route successful, and then place and
route failed immediately afterwards. Also, the machine would not recognize the
programming wire without using 64-bit drivers.

I spent time building the external devices for the system. In the first few
weeks, I had made a VGA breakout board and a VGA test screen in order to show
that it was possible to output to the screen without using the DVI controller. Also,
the controls which we borrowed from the Multi-williams had to be rewired and
adapted to the new system and reconfigured to adapt to the new system. The
acquisition of a CRT monitor was also something I went out of my way to do. It
allowed for a more authentic gameplay experience as well as the ability to move
the graphics around the screen to the appropriate place.

I also, spent a lot of time working on debugging and integration of systems.
I don’t know what I could estimate my approximate time, but I spent about 8-14
hours a week outside of class, where I’d just sit down and try to work on debugging
or adding whatever feature of the week. Usually, 4 hours was with my team on
Saturday afternoons. I spent more time working on the project at the beginning of
the semester in order to meet our goal of having the game work mostly well before
thanksgiving break.

I started working on some graphical bugs and lining up the system that Tyler
had made with the VGA output, and eventually worked on interrupts in the CPU
which allowed the game to finally progress, as it is interrupt driven. The Multi-
williams team before said that it was very hard to imitate these video interrupts
from the pixel gun, but we found no problems with it. From there, I fixed some
problems with sprites, background tiles, and foreground tiles with some simulation
and trial and error. The final graphical bug was the scrolling to make sure that it
scrolled at 1 pixel granularity.

Finally, I worked on having sound working as both background and
foreground sounds. I had previously had bad experience of using the flash memory
from the lab. However, it seemed that it was not the flash memory that was
inconsistent, but instead it was the AC’97 interface. I spent time getting the two
boards to work in tandem to create the sounds for the game.

Overall, I thought the class was a great experience, and my team worked
great together on the project. It seemed that there needed to be a clearer way to
program things onto the board, as sounds for some reason would not work correct
when programmed from the onboard flash PROM, but everything else would work.
Also, either finding tools that always work on the 64-bit version correctly or just
installing the 32-bit version of linux on the machines to avoid the 64-bit - 32-bit
problems would be a good choice.

1942 Final Report - 28

Team Arcade

Isaac Simha

When we started this project, we wanted to try something not attempted before
that would be challenging yet feasible to do over a semester. Once we decided on
1942, I Initially worked on the memory mapping and CPU. We decided early that we
would take the Z80 from OpenCores, and my task began to test it and look for any
significant issues in the implementation, of which we found few.

For the memory mapping, the MAME documentation for 1942 provided a lot of hints.
We decided after doing lab 2(the sound lab), that flash was too inconsistent, and I
found that using the ISE Block Memory Generator to create block memory provided
the best alternative. Then it was mostly a matter of figuring out what BRAMs were
needed, and which ones needed to be dual-port vs. single-port (Video controller
might need to read while CPU writes, etc.) I created about 20 BRAMs/BROMs initially
(we had originally planned to write the AY-8910 for sound, which also needed
BRAM), and I soon realized that simply waiting for them to synthesize could be a
significant portion of time needed for this project (once we had a lot of
BROMs/BRAMs in our system, synthesizing could take up to 20 minutes, which made
testing using trial and error inconvenient to say the least).

One of the less documented things I spent time on was how the video interrupts
were supposed to work, and the timing issues involved. The interrupt comes from
an instruction we send to the Z80 that tells the Z80 to jump to the video interrupt
handler. Although this seemed simple, figuring out when to assert and de-assert the
signal lines proved to be a bit challenging since following the diagrams in the user
guide did not work, and simulating the Z80 until it got to an interrupt was never a
fast process. Interrupt issues were the last major hurdle in making the game run,
and after this point, I focused more on sound.

Once we decided to not use the AY8910 and instead use the AC97, I started
modifying Team Dragonforce's code to use BRAM instead of flash, and recording
sounds that would be triggered by the various sound codes generated from the
CPU. Using the AC97 ended up allowing us to avoid incorporating a system bus and
other timing issues, and it even allowed us to make the game sound better; I
believe this was one of our best design decisions.

Time I spent on this class varied from week to week, usually about 10 hours, but
because of our relatively early success with the project, I managed to avoid a
significant increase in hours put into the final weeks that many other teams had. I
feel that I have learned a lot from completing this project, especially about research
and going through documentation, and putting an entire system together. I had lots
of fun with the class, especially once I started seeing results from our hard work,
and I am very happy with Team Arcade's final product.

1942 Final Report - 29

Team Arcade

Acknowledgements

Team Arcade would like to thank Professor Nace, the ECE department, and Apple for
their support and generosity throughout the project. We would also like to voice our
appreciation to those that gave us advice or attended our public demo.

1942 Final Report - 30

	Introduction
	Platform
	System Overview
	Main CPU
	VGA Controller
	Peripherals
	Sound Controller
	BROM’s and BRAM’s
	Memory Map
	Sprite and Tilemap Hardware
	Screen
	Color
	Character Tilemap
	Background Tilemap
	Sprites
	Pixel Rendering
	Timing
	Foreground pipeline
	Background pipeline
	Sprite pipeline
	Pixel rendering pipeline
	Schedule
	Methodology
	Results
	Sources
	Appendix
	Personal Statements
	Acknowledgements

