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Abstract

The authors provide a report on the completed development of an ARM-like System-on-Chip built on a Xilinx Virtex-5
FPGA. A high-level overview of the design is provided, as well as detailed examinations of various submodules within
the system. An examination of both the hardware and software stack is provided, and the authors take a moment to
reflect.
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Chapter 1

Introduction

In fulfillment of the 18-545 Advanced Digital Design Capstone, this group designed and implemented a System on a
Chip on an FPGA, based around a small ARM-like core. The system is built around two memory buses, and contains
I/O cores to interface with a smattering of peripherals, including:

• DVI/VGA output from Chrontel CH7301C, for which video is cached in a framebuffer in main memory;

• RS-232 serial output;

• AC’97 audio with Analog AD1981B, for which audio to be output is cached in a a simple main memory buffer;

• PS/2 keyboard input;

• CompactFlash via the Xilinx SystemACE controller;

• and main memory via a DDR2 SODIMM, for which interface glue is provided using Xilinx’s predesigned
Memory Interface Generator (MIG) IP.

The system contains various non-I/O cores to provide additional functionality, including:

• a cycle counter for precise application timing;

• a preloader to load the initial bootstrap into RAM;

• and memory set and image blit accelerators.

A primary goal of this peripheral layer is to be reused in 18-447; the system is designed to be simple to interface with
from a core perspective, and hence usable for students in an introductory computer architecture class. The core, in
particular, has a moderate anti-goal of high performance.

The system has been implemented over the course of the Fall 2010 semester to the point of successfully executing a
small rhythm game that shows off the system’s ability to render video in real time and the capability to synchronize
keyboard input with video and audio output; this completes the original goal.

2



Chapter 2

Hardware Design

In this part, we provide an overview of the design and implementation decisions involved in the hardware part of the
system. As a whole, this section corresponds to the rtl/ directory in the top level source repository; the astute reader
may follow along within.

2.1 Memory Architecture

The system, as a whole, is partitioned into two major access paths – the FSAB (Fast System Access Bus), and the
SPAM Bus (Slow Peripheral Access Memory Bus). These two buses were designed to meet wildly differing goals;
the FSAB is designed for high-bandwidth, cachable transactions, whereas the SPAMBus is designed for configuration
space register (CSR) accesses. Ideally, most of the system’s traffic will occur over the FSAB.

2.1.1 Fast System Access Bus

The FSAB is a transaction-oriented bus designed primarily for accessing high- latency memories such as DRAMs.
The vast majority of the memory accesses on the system during normal operation (i.e., not at boot/ configuration time)
will happen via the FSAB.

2.1.1.1 Terminology

The FSAB works in terms of ‘transactions’. A read transaction shall consist of the ‘read request’, and ‘read data’
phases. A write transaction shall consist only of the ‘write data’ phase.

Devices attached to the FSAB are classified as ‘masters’ and ‘slaves’; a device that initiates transactions (reads and
writes to main memory) is a master, and a device that completes transactions is a slave.

At times, it may be useful to discuss directions on the FSAB. For the purposes of this discussion, data that is traveling
from a master to a slave is considered ‘outbound’ (and so signals for that purpose will begin with fsabo); similarly,
data that initiates at the slave and returns to a master is considered ‘inbound’ (and so signals for that purpose will begin
with fsabi).
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2.1.1.2 Conceptual Overview

virtexsquared, in its first incarnation, will only have a single memory controller. For that reason, the FSAB will be
defined to have only one slave device - but since many peripherals may wish to do DMA access to or from main
memory, the FSAB will be defined to potentially have many masters. The fact that only one slave device exists shall
not be extensively exploited in either the design or implementation of the FSAB, since at a later time, a second memory
controller may be interesting.

Since many memory controllers are capable of handling multiple pipelined requests, the FSAB supports multiple
transactions in flight at a time. The slave will arbitrate these requests with a debit-credit system. Similarly, contention
between masters will be resolved with an arbiter module that also performs queueing and debit-credit arbitration. In
this regard, the bus arbiter should be “invisible” to a master; the debit-credit system should be interface-identical as if
the master were talking directly to the slave.

Most operations that peripherals on the FSAB will perform will be in similar sizes. For instance, the I$ and D$
will always read sizes of a single cache line; the TLB will generally read page directory entries at a time; and the
framebuffer will generally load half a FIFO’s worth or so at a time. The general case, anyway, will not be a read of
a single word. Similarly, writes will often be localized to each other. To facilitate this, each FSAB transaction will
have a count of words up to a defined maximum of 8 along with the command and address. Inside each transaction,
the address being written to shall autoincrement with each datum sent. Since not every datum may be interesting for a
write, a “write mask” is also sent with every word written.

Since masters are isolated from each other by one or more arbiters, it is generally not possible for one master to
know what another master is doing. Lacking any other form of cache coherency protocols (such as MOESI), a system
based around the FSAB is not cache-coherent! This means that the applications programmer must take extra care to
make sure that all data is synchronized to main memory before allowing another peripheral to access said data. (For
instance, if the programmer wishes to write new data to the frame buffer before flipping pages, he must cause the CPU
to clean that cache line by some mechanism first. In the current implementation, the data cache is implemented as
being write-through, so no such synchronization issue takes place.)

The bus protocol is designed to be easy to implement by a DRAM-based slave. For that reason, the length of a
read or write request is limited not just by the maximum, but by the alignment of the request. That is to say, if a
request is only aligned to a four-qword boundary, but not to an eight-qword boundary, then the maximum size of the
request is four qwords; a request of five or more qwords results in undefined behavior. (On the current DRAM-backed
implementation, the resulting data comes from wrapping around the row buffer; on the current simulation-backed
implementation, the resulting data comes from subsequent linear addresses.)

2.1.1.3 Design Overview: Portlist

A FSAB master has the following ports outbound:
output f s a b o v a l i d ;
output [ FSAB REQ HI : 0 ] f sabo mode ;
output [ FSAB DID HI : 0 ] f s a b o d i d ;
output [ FSAB DID HI : 0 ] f s a b o s u b d i d ;
output [ FSAB ADDR HI : 0 ] f s a b o a d d r ;
output [ FSAB LEN HI : 0 ] f s a b o l e n ;
output [ FSAB DATA HI : 0 ] f s a b o d a t a ;
output [ FSAB MASK HI : 0 ] f s abo mask ;
input f s a b o c r e d i t ;

A FSAB master has the following ports inbound:
input f s a b i v a l i d ;
input [ FSAB DID HI : 0 ] f s a b i d i d ;
input [ FSAB DID HI : 0 ] f s a b i s u b d i d ;
input [ FSAB DATA HI : 0 ] f s a b i d a t a ;
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Figure 2.2: Clocking for memory controller.

No debit output (or input) is needed; a debit occurs implicitly when a new FSAB transaction is begun. The credit input
is always considered valid, even if the inbound valid flag is not set.

2.1.1.4 Design Overview: Transaction Specifics

Transactions are defined by a start packet (and potentially additional data packets) being sent to a slave, and the slave
responding with any necessary data packets. The slave may pipeline transactions as much as it is able (credits can
be returned before the slave has responded), but the slave shall never reorder transactions. (Doing so would result in
indeterminate behavior with reads after writes, among other things.)

A start packet shall consist of the valid bit being set, the mode flag being set to either FSAB READ or FSAB WRITE,
the did/subdid set to the appropriate values, an address, a length, and the first word of data and mask, should they
be valid for the current operation. Once a transaction is being sent outbound, it shall not be interrupted by another
transaction; the next data packets are always part of this transaction. (For this reason, a master should attempt to send
packets as quickly as possible; excessive delay between subsequent assertion of the valid flag may result in poor bus
performance.) In subsequent data packets, all control flags (i.e., all but valid, data, and mask) are ignored.

The debit/credit system shall count each transaction as a debit, not each word. Another transaction may be sent
immediately after the credit flag is asserted (or the credit may be queued).

The did field of each transaction shall be set as per each master’s DID assignment. The subdid may be set according
to any internal state that the master needs to track.

Some attention should be given to the mechanisms of clock distribution. In particular, it is permissible (and indeed
often the case) that the inbound FSAB and outbound FSAB buses may be on different clock domains; usually the
inbound FSAB clock comes directly from the slave, but the outbound FSAB clock is synchronous with the logic from
the driving module. The outbound FSAB interface is then synchronized to the slave’s clock in the arbiter. 1

2.1.1.5 Known implementations

The following are known implementations of the FSAB specification:

• Caches

• Memory Controller

• Arbiter
1This may be considered a bug, as it departs from the conceptual goal that the bus arbiter is invisible to the master. From this perspective, it is

preferable to have all portions of the FSAB on the same clock domain, i.e. the slave’s.
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• DMA Controller

2.1.2 Slow Peripheral Access Memory

The SPAM bus is a word-oriented one-access-at-a-time bus designed primarily for accessing configuration space
registers (CSRs) on peripherals.

2.1.2.1 Conceptual Overview

In theory, all peripherals on the system will be matching and decoding on the SPAM bus; when the processor does a
SPAM-bus access, it is almost certainly the case that a device will respond. So, the bus should be optimized for the
common case in which a device responds shortly after a request is sent. Similarly, it should be the case that only one
device ever matches, so the bus need not be arbitrated between them; a simple OR’ing of responses should work.

No peripheral should need to access any other peripheral’s CSRs; any such accesses from a debug interface should
be multiplexed in between the CPU and the SPAM-bus. As such, the master-slave relationship in the SPAM-bus is
exactly the opposite of what it is on the FSAB; there is only one SPAM-bus master, and there can be many SPAM-bus
slaves. Again, this property should not be extensively exploited, but it is the case in the current implementation.

Requests on the SPAM-bus should ordinarily be low latency, but there may be need for wait states for various reasons.
For instance, if the other peripheral is far away on the die, it may take an extra clock to compute the appropriate
response for a read. A write, perhaps, may block until some (short) action is complete. There may also be a need to
block because the target peripheral is in a different clock domain, and a synchronizer needs to shift the data over.

If no peripheral answers by deasserting busy b within a reasonable number of cycles (usually 256), the request is
deemed to have timed out, and a read should return a value indicating that (usually something along the lines of
0xDEADDEAD).

2.1.2.2 Design Overview: Portlist

The processor has the following ports outbound:

output s p a m o v a l i d ;
output spamo r nw ;
output [ SPAM DID HI : 0 ] spamo did ;
output [SPAM ADDR HI : 0 ] spamo addr ;
output [ SPAM DATA HI : 0 ] spamo da t a ;

The processor has the following ports inbound:

input c i o s p a m i b u s y b ;
input [ SPAM DATA HI : 0 ] c i o s p a m i d a t a ;

2.1.2.3 Design Overview: Lifecycle of a request

A request begins by the processor asserting the valid flag and specifying the rest of the fields. This happens for exactly
one cycle. Some time later (potentially even on the same cycle), a device may assert the busy b flag for one cycle to
indicate that the request has been filled. Inbound data shall be valid on the same cycle.

No new request shall be specified until either a previous request has returned, or a previous request has timed out. A
request shall time out after no fewer than 128 cycles; the current DCache implementation times out after 256 cycles.
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When a device is not specifying data inbound, it shall drive its output port to zero; this allows the bus to simply OR
together all responses.

Since the SPAM bus is always on the core’s clock domain, some synchronization may be needed for CSRs on a
different clock domain. Standard modules have been provided to synchronize reads and writes; for more information
on those, see the documentation for the CSRAsync modules in section 2.5.1.

2.2 Core Microarchitecture

As part of the virtexsquared system, the core must conform to the defined bus protocols on the external interface (see
section 2.1); but within the core itself, anything goes. Although the ARM core will not be reused in future projects,
the caches and global interface will be, and hence potentially merit discussion.

2.2.1 ARM Core

The ARM core consists of the register file, fetch, decode, issue, execute, memory, and the writeback units based off of
Joshua’s early FireARM core. None of them are any good, and hence no more of them will be mentioned.

2.2.2 Caches

The caches each have a latency of one cycle. Upon missing, they send requests for fills to the FSAB arbiter, which in
turn propagates up to the main memory. The caches have a zero-cycle latency for whether they have missed; that is to
say, the lookup takes place on the same cycle. In addition to the standard FSAB connections, the Icache’s port list is
as such:

input [ 3 1 : 0 ] i c r d a d d r 0 a ;
input i c r d r e q 0 a ;
output i c r d w a i t 0 a ;
output [ 3 1 : 0 ] i c r d d a t a 1 a ;

and the Dcache’s port list is as such: (excluding SPAM and FSAB connections)

input [ 3 1 : 0 ] d c a d d r 3 a ;
input d c r d r e q 3 a ;
input d c w r r e q 3 a ;
output d c r w w a i t 3 a ;
input [ 3 1 : 0 ] d c w r d a t a 3 a ;
output [ 3 1 : 0 ] d c r d d a t a 4 a ;

The Icache and Dcache differ in two important ways. To wit:

• The Icache is multi-way set associative. The number of ways is controlled through a parameter. With the current
Dcache architecture, this is not feasible (due to the nature of writes).

• The Dcache has a SPAM interface. The Icache cannot, because the SPAM is single-master.

Beyond these differences, though, the Icache and Dcache are very similar internally. Both modules have two clock
domains (the core clock and the FSAB clock); data is received back inbound on the FSAB clock, and the core is
serviced on the core clock. Synchronization is performed internally in the form of a read and write request service
flag, similar to the internals of the synchronizers.
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2.3 FSAB Internal Mechanisms

Although the FSAB (described in the high level memory system overview; see section 2.1) is conceptually simple,
there are a few specific portions of it that merit further explanation. In particular, the system’s instruction cache is ca-
pable of reading only from the FSAB, leaving the problem of how to bootstrap the system; and the FSAB specification
makes no mention of the mechanics of multiplexing multiple FSAB masters onto one bus. These issues are solved,
respectively, by the FSAB Preloader and the FSAB Arbiter.

2.3.1 Preloader

In order to boot the system, instructions must first be somehow loaded into memory, since the instruction cache is not
capable of fetching from an alternative non-volatile source. A few alternative options for this were considered, and
ultimately rejected. In brief, we considered:

• adding an alternate path to the instruction cache during boot. This was rejected, since it would add a potentially
substantial amount of logic to the critical path.

• adding a SPAM interface to the instruction cache. This was rejected, since the SPAM bus is not nominally
capable of multi-master support, and adding an arbitration mechanism would be necessary, which the protocol
does not easily support.

• modifying the reset value for the instruction cache. This was rejected since the code size available would be
very limited, and support within synthesis tools would be likely to be poor.

• adding a second, non-volatile, slave to the FSAB. This was rejected since the bus’s architecture was mostly in
place already, and a redesign to support that would prove difficult in light of the requirement that transactions
return in order.

• adding a preloader as an FSAB master. This was ultimately accepted.

The preloader loads boot0, which is the first running software on the system, into main memory. (For more details
about the boot sequence, see section 4.1.) It acts as a simple FSAB master, with one additional output - it has a
mechanism to hold the CPU core in reset. Since it never does any reads, it has no fsabi interface; it only does size-8
writes to incrementing addresses. Once DRAM has successfully been loaded, the preloader has no function. The data
that it loads is stored in a ROM that is implemented as a BRAM on an FPGA and as a simple ROM in simulation; it is
both synthesizable and simulatable.

The ROM for the preloader is compiled in from a $readmemh statement. In synthesis, it is copied in during
the build process (see section 4.2.7) from sw/boot0/boot0.pad.hex64; in simulation, it is copied in from
tests/testbench.pad.hex64. These are generated by a combination of xxd and dd during software build.

2.3.2 Arbiter

Since the FSAB is a multimaster system, but the slave memory module has only one master memory interface, there
must be a multiplexing module to issue requests in sequence to the slave memory. In the system, this module is called
the FSABArbiter; it has a parameterizable number of fsabo ports as inputs, and a single fsabo port as an output. Given
the debit/credit system, not every request needs to be immediately dispatched to the slave memory; indeed, each fsabo
virtual-slave in the arbiter has a built in FIFO (see section 2.5.3) to buffer requests.

The buffer on the receiving end of each fsabo master also functions as a clock domain synchronizer; by using the
asynchronous FIFO, fsabo packets can be safely transitioned from any system clock domain to the DRAM’s clock
domain. Each buffer has, as a basic interface, a signal from the main arbiter to begin outputting a transaction to the
slave (if one is available), and a signal to the main arbiter reporting completion of the current transaction. (This may
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take zero cycles, if no transaction was available, or it may take up to eight cycles, in the case of a maximum-length
write.)

The top-level arbiter makes no attempt at providing fairness between peripherals. The original goal was to include
support for fairness, but it was later discovered that doing so would require adding substantial logic to the system, and
potentially for negative benefit; guaranteeing bandwidth to the framebuffer and AC’97 proves to be invaluable in the
face of a high-bandwidth fill component that could potentially cause the framebuffer’s DMA engine to underrun.

2.3.2.1 Interface

Some mention should be given to the portlist, and how that is managed. Since arrays of bitfields (i.e., two-dimensional
bitfields) cannot be passed in through a portlist in Verilog, all signals from the masters are concatenated together into
inputs of parameterized width. Internally, this looks somewhat like this:

. . .
input [ ( FSAB DEVICES∗ (FSAB DATA HI+1))−1:0]

f s a b o d a t a s ;
. . .

Keeping all of the input signals synchronized and ordered, though, especially in the face of the need for adding and
removing new types of modules quickly, sometimes proved difficult. To maintain our sanity in the top-level module,
we employed verilog-mode’s AUTOLISP extensions along with a small chunk of code provided to us by Michael
Arntzenius. This prefixer module is used as part of an AUTO TEMPLATE, as shown:

/∗AUTO LISP ( s e t q l i s t −of−p r e f i x e s ’ (” pre ” ” f b ”
” aud io ” ” i c ” ”dc” ” a c c e l c l e a r ” ) ) ∗ /

. . .
/∗ FSABArbi ter AUTO TEMPLATE (

. . .
. f s a b o v a l i d s (@”( t e m p l a t e

\” f s a b o v a l i d \” ) ” ) ,
. f s a b o m o d e s (@”( t e m p l a t e

\” f s a b o m o d e [ FSAB REQ HI : 0 ]\” ) ” ) ,
. f s a b o d i d s (@”( t e m p l a t e

\” f s a b o d i d [ FSAB DID HI : 0 ]\” ) ” ) ,

When verilog-mode re-templates when make auto is run, all instantiated ports in the arbiter will be automatically
updated. It is important to note that the wire arrays fsabo clks and fsabo rst bs must also be updated when a
new device is added to the list-of-prefixes; failing to do so will result in five hour long debug sessions. The
arbiter assigns priority to incoming transactions based on the order of the list-of-prefixes; that is to say, in the
above example, the preloader takes all available bandwidth before the framebuffer, which takes remaining bandwidth
before the AC’97 controller, etc. The screen-clear accelerator takes bandwidth last, because it would otherwise starve
the rest of the system for bandwidth.

2.4 Memory Controller

In the virtexsquared memory system (see section 2.1), the memory controller is the sole client on the FSAB. The
memory controller acts as an intermediary between the FSAB and the coregen-produced Memory Interface Generator
(MIG).
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2.4.1 Interfaces

On the side facing the FSAB and the rest of the virtexsquared system, the memory controller behaves as a slave as
specified in the FSAB specification (see section 2.1.1).

On the side facing the MIG, the memory controller behaves as specified in the Xilinx Memory Interface Generator
documentation.

2.4.2 Implementation

The memory controller is best described by tracing the lifetime of a request as it is made on the FSAB, passes through
the memory controller and MIG, and is returned to the requesting device. At the first packet of the request, the device
identifiers, address, and length are stored in the request info FIFO. If the request is a write request, the controller reads
packets of data into the data FIFO until the entire request is stored in the FIFO. Each entry in the data FIFO is two
packets wide; the MIG requires data to be double-wide to facilitate DDR memory. If a write request is not aligned, the
controller inserts a packet’s worth of masked data at the front of the request.
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Once the entire transaction has been stored in the FIFOs, the controller sends it to the MIG. The MIG performs burst
operations of a standard length (in the current implementation, 8 words of 64 bits each; because the memory is DDR,
it takes four clock cycles to transmit or receive a burst). The request begins with a write to the MIG address and
command FIFOs. On a write request, the first write to the data and mask FIFOs is in the same clock cycle, and the
rest of the burst follows on consecutive cycles. If the actual request is shorter than the burst length, masked data is
written for the remainder of the burst. On a read request, the device identifier and request length are stored in the
output request info FIFO.

On a read request, some time after sending the request to the MIG, the MIG will send data back. This data is read
into the output data FIFO. When the data FIFO becomes not empty, the controller reads the device identifier and
length from the request FIFO and the first row from the data FIFO. Data is returned to the device, with reads from the
double-width FIFO every two packets, until the full length has been transmitted.

2.4.3 Known Bugs

• Reads not aligned to whatever boundary the MIG wants are incorrect (the address is not stored in the output-side
request info FIFO, so the output side has no way to know that the first data the MIG returns is not the requested
data).

• Reads not of the full burst length may mess everything up, since I don’t think we discard the rest of the data the
MIG returns in its burst.

2.5 Synchronization Mechanisms

Within virtexsquared, there are two “utility” modules that are commonly used for synchronizing across clock domain
boundaries – the CSR synchronizers, and the async FIFO.

2.5.1 CSR Synchronizers

2.5.1.1 Motivation and Design Overview

Since the virtexsquared system has many peripherals on different clock domains, it only makes sense to have a unified
mechanism of synchronizing SPAM accesses between those domains and the core. Synchronization logic is not only
difficult to write, but it is also difficult to verify the correctness of; to that end, by encapsulating the synchronization
mechanisms as much as possible, we stand a much better chance of writing correct code. The Configuration Space
Register (CSR) synchronizers are one of two primary mechanisms for synchronization; for the other, see the AsyncFifo
implementation in section 2.5.3.

It was decided early on that CSRAsyncRead and CSRAsyncWrite should be two different modules, and that there
should be no CSRAsyncReadWrite module. Since the registers that the CSR interfaces mirror are usually primarily
controlled by the peripheral’s internal logic, holding register state inside a ReadWrite module would result in vastly
unnecessary complexity, and would substantially obscure the intent of the logic in the peripheral. (Indeed, often the
resulting state of the register after a write operation is not the same as the data that was written.)

The CSRAsyncRead and CSRAsyncWrite modules are designed to closely mirror the SPAM bus protocol; for many
uses, the CPU side (on the cclk domain) can be directly or’ed in on the SPAM bus to implement a peripheral’s CSR
space. The target side (on the tclk domain) was designed to produce single cycle strobes that can be effectively used
by a target’s internal logic to trigger updates.
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2.5.1.2 Interface

The CSRAsyncRead and CSRAsyncWrite modules are parameterized across the width of the register that they are
synchronizing; the CSRAsyncWrite module is also parameterized for its reset value. Both modules have two clock
inputs, and their corresponding negated resets – cclk is the clock corresponding to the CPU core that initiates a
request, and tclk is the clock corresponding to the target peripheral. All ports are suffixed with the clock domain on
which they live (i.e., rst b cclk and rst b tclk).

Both modules have the same core port structure for synchronizing between the two domains; the only difference in
their portlist is in direction on the data port. The portlist for the read module is as such:

input r d s t r o b e c c l k ;
output [ ( WIDTH−1) :0 ] r d d a t a c c l k ;
output r d w a i t c c l k ;
output r d d o n e s t r o b e c c l k ;

output r d s t r o b e t c l k ;
input [ ( WIDTH−1) :0 ] r d d a t a t c l k ;

This provides for a relatively straightforward mechanism for interfacing with the SPAM bus. For example, the follow-
ing code for reading a counter was taken from the blit accelerator:

wire [ 3 0 : 0 ] rd data WRDONE ;
wire rd done strobe WRDONE ;

CSRAsyncRead # ( .WIDTH( 3 1 ) )
CSR WRDONE READ( /∗ NOT AUTOINST ∗ /

/ / O u t p u t s
. r d d a t a c c l k ( rd data WRDONE ) ,
. r d w a i t c c l k ( ) ,
. r d d o n e s t r o b e c c l k ( rd done strobe WRDONE ) ,
. r d s t r o b e t c l k ( ) ,
/ / I n p u t s
. c c l k ( c c l k ) ,
. t c l k ( f s a b i c l k ) ,
. r s t b c c l k ( c c l k r s t b ) ,
. r s t b t c l k ( f s a b i r s t b ) ,
. r d s t r o b e c c l k ( r d d e c o d e &&

( spamo addr [ 4 : 0 ] == 5 ’ b10100 ) ) ,
. r d d a t a t c l k ( wrdone [ 3 0 : 0 ] ) ) ;

a s s i g n a c c e l b l i t s p a m i b u s y b =
/∗ . . . ∗ / | rd done strobe WRDONE ;

a s s i g n a c c e l b l i t s p a m i d a t a =
{32{ rd done strobe WRDONE}} & {1 ’ b0 , rd data WRDONE } ;

The instantiation mechanism is somewhat bulky, but it is certainly better than reimplementing the synchronizer each
time! Future work may be possible to extend verilog-mode to be able to automatically instantiate CSR synchronizers.

2.5.1.3 Implementation

The synchronizers are based around sound two-flop principles for synchronizing between clock domains. In order to
transmit a value between the two clock domains, the “hold-and-sample” technique is used; once a flag is seen indicating
that new data is ready to be transferred, the synchronizers wait a cycle before sampling the data and transmitting it to
the recipient clock domain. Building on this principle, the synchronizers can be trivially implemented with a small
amount of internal state to generate strobes and output data.

All internal signals are named according to the clock domain on which they live; signals named ... tclk are on
the target clock, and signals named ... cclk are on the core clock. To synchronize a signal, the progression of
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naming foosig cclk, foosig cclk s1, and foosig cclk tclk is used to represent the signal after no flops,
one flop, and two flops, respectively.

2.5.2 Synchronous FIFO

Although the synchronous FIFO is not strictly a clock synchronization mechanism, it is presented in this section as a
means to understanding the asynchronous FIFO, and since it is a fundamental building block of the system.

2.5.2.1 Motivation

There are a number of reasons to have a packaged-up FIFO utility. One is cleanliness and readability of code; an
instantiation of a FIFO module is immediately apparent to a reader, while an implementation mixed in with other code
is less so. Another reason for the Fifo module is the reduction of opportunities for bugs; every implementations of
FIFOs scattered through the RTL is another opportunity for a mistake to appear, costing valuable debug time (around
20 minutes per synthesis run).

2.5.2.2 Implementation

The Fifo module is implemented as a block RAM with read and write pointers. Both pointers are initialize to zero;
after a read or write, the appropriate pointer increments. If the pointers are equal, the FIFO is empty. (Each pointer is
one bit wider than required to index into the RAM so that a full FIFO does not appear identical to an empty FIFO.)

2.5.2.3 Implementation: Parameters

• DEPTH: how many entries the FIFO can store

• WIDTH: how many bits each entry has, and the width of the input and output data ports

• ALMOST: how few entries away from full or empty the FIFO must be to be considered almost full or almost
empty

2.5.2.4 Implementation: Portlist

input c l k ;
input r s t b ;

input wr en ;
input r d e n ;
input [WIDTH−1:0] w r d a t ;

output [WIDTH−1:0] r d d a t ;
output empty ;
output f u l l ;
output [ ‘ADDR WIDTH : 0 ] a v a i l a b l e ;
output a f u l l ;
output aempty ;

At a positive clock edge, when wr en is high, the data at wr dat is stored in the FIFO, and when rd en is high, the next
entry in the FIFO is presented at rd dat.

Interesting outputs:

• empty: is high when the FIFO is empty

14



• full: is high when the FIFO is full

• afull: is high when there are ALMOST or fewer empty spaces left in the FIFO. 2

• aempty: is high when there are ALMOST or fewer entries in the FIFO

• available: the number of entries in the FIFO; the width of this port is log2 DEPTH + 1

2.5.3 Asynchronous FIFO

2.5.3.1 Motivation

As with a simple FIFO, there are a number of motivations for a packaged cross-clock-domain FIFO utility: code reuse,
clarity, and reduction of bugs. This last motivation carries significant additional weight for a cross-clock-domain FIFO:
hardware crossing multiple clock domains is tricky, so the less of it that needs to be written, the better.

2.5.3.2 Implementation

The core fifo implementation is similar to that to that of the Fifo module (see section 2.5.2): a block RAM with read
and write pointers. Reads from and writes to the block RAM occur on the different clock domains. To accommodate
empty and full outputs, the pointers must be converted into grey code and passed across the clock domain boundary.
The empty output is on the read clock domain (so that the module using the FIFO can avoid reading when empty),
and the full output is on the write clock domain (so that the module using the FIFO can avoid writing when full).
To accomplish this, both pointers are converted to grey code, passed through a register, and passed across the clock
domain boundary, and passed through two more registers (to avoid metastability).

Because of the delay associated with crossing the clock domain boundary, it is possible that the module may incorrectly
indicate an empty or full FIFO. However, it will be incorrect in the other direction (with a false negative). This is
guaranteed for the empty output because it is the write index which is late: there can be more data in the FIFO than
the reader knows about, but since the read index is not delayed, there is never less. (Similar reasoning holds for the
full output.)

2.5.3.3 Implementation: Parameters

• DEPTH: how many entries the FIFO can store

• WIDTH: how many bits each entry has, and the width of the input and output data ports

2.5.3.4 Implementation: Portlist

input i c l k ;
input o c l k ;
input i c l k r s t b ;
input o c l k r s t b ;

input wr en ;
input r d e n ;
input [WIDTH−1:0] w r d a t ;

output [WIDTH−1:0] r d d a t ;

2I’M ALMOST FULL!!!
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output empty ;
output f u l l ;

2.6 Simple DMA Read Controller

The Simple DMA (Direct Memory Access) Read Controller provides a FIFO-like interface for a target peripheral to
read from memory.

2.6.1 Motivation

Since many devices require memory read access in a linear pattern, it only made sense to support such access pattern
in a simple way.

2.6.2 Conceptual Overview

After providing a start address, length, and a trigger command through the SPAM bus (see section 2.1.2), data ready
will be asserted high and the master will be able to get the next 8 bytes of data one cycle after request is asserted high
as long as the FIFO (queue) is not empty (no underflow). Once the DMA is done reading through the entire length, it
may be triggered again to read from a new start address and different length.

2.6.3 Design Overview

2.6.3.1 Portlist

Simple DMA Read Controller has the following ports that the master should not directly interact with:

• the default FSAB portlist (prefixed by dmac for outbound)

• SPAM portlist (prefixed by dmac )

For the master, it has the following ports:

input r e q u e s t ;
input t a r g e t c l k ; /∗ c l k t h a t t h e ma s t e r i s r u n n i n g i n ∗ /
input t a r g e t r s t b ;
output [ 6 3 : 0 ] d a t a ; /∗ 8 b y t e s o f new da ta ∗ /
output d a t a r e a d y ;
output f i f o e m p t y ;
/∗ a s s e r t e d when t h e f i f o i s empty . T h i s may be t h e case when t h e r e i s an
∗ u n d e r f l o w or when t h e DMA didn ’ t s t a r t r e a d i n g ∗ /

2.6.3.2 Parameters

parameter FIFO DEPTH = 128 ; /∗ must be a power o f 2 ∗ /
parameter FIFO HI = c l o g 2 ( FIFO DEPTH ) − 2 ;
parameter FSAB DID = 4 ’ hF ;
parameter FSAB SUBDID = 4 ’ hF ;
parameter SPAM DID = 4 ’ hx ;
parameter SPAM ADDRPFX = 24 ’ h000000 ;
parameter SPAM ADDRMASK = 24 ’ hFFFFE0 ;
parameter DEFAULT ADDR = 31 ’ h00000000 ;
parameter DEFAULT LEN = 31 ’ h00000000 ;
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The parameters are defined as follows:

• FIFO DEPTH: Depth of the internal FIFO. DMA Controller will try to keep this FIFO as full as possible. This
value must be a power of 2 and 8 or greater to be functional.

• FIFO HI: Highest bit needed to represent FIFO DEPTH space. (log2(FIFO DEPTH) - 2) if FIFO DEPTH is
power of 2.

• FSAB DID: FSAB device id of the master. (if the master doesn’t have one, give the master one by setting it in
rtl/fsab/fsab defines.vh)

• FSAB SUBDID: FSAB sub device id of the master. (if the master doesn’t have one, give the master one by
setting it in rtl/fsab/fsab defines.vh)

• SPAM DID: SPAM device id of the master. (if the master doesn’t have one, give the master one by setting it in
rtl/spam/spam defines.vh)

• SPAM ADDRPFX and SPAM ADDRMASK: To write/read from the SPAM bus, it must be the case that
((spamo addr & SPAM ADDRMASK) == SPAM ADDRPFX). (Note: Always set the last 5 bits of the
SPAM ADDRMASK to 0.)

• DEFAULT ADDR: Default starting address for the DMA.

• DEFAULT LEN: Default length that the DMA will read. The DMA will provide values starting from address
up to the length.

2.6.3.3 Config Registers (SPAM)

The following values come from rtl/fsab/dma config defines.vh; these addresses correspond to the last 5
bits that the spamo addr needs to be set to refer to these registers.

parameter NEXT START REG ADDR = 5 ’ h000 ;
parameter NEXT LEN REG ADDR = 5 ’ h004 ;
parameter COMMAND REG ADDR = 5 ’ h008 ;
parameter FIFO BYTES READ REG ADDR = 5 ’ h00c ;
parameter TOTAL BYTES DELIVERED REG ADDR = 5 ’ h010 ;
parameter CURR START REG ADDR = 5 ’ h014 ;

parameter DMA STOP = 2 ’ b00 ;
parameter DMA TRIGGER ONCE = 2 ’ b01 ;
parameter DMA AUTOTRIGGER = 2 ’ b10 ;

The registers are defined as follows:

• NEXT START REG (write only): sets the starting address of the DMA for the next time it is triggered.

• NEXT LEN REG (write only): sets the length that the DMA has to read for the next time it is triggered.

• COMMAND REG (write only): sets the next command for the DMA engine to execute, from one of:

– DMA STOP: DMA does not trigger again.

– DMA TRIGGER ONCE: Triggers the DMA once.

– DMA AUTOTRIGGER: Everytime, the DMA is done reading, it is triggered again.

• FIFO BYTES READ REG (read only): the number of bytes that the internal FIFO has read so far since it
was last triggered.

• TOTAL BYTES DELIVERED REG (read only): the total number of bytes that was delivered to the master
since the last reset. (note: it is not “last triggered”)
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• CURR START REG (read only): the address that the DMA started reading from. (It provides the value of
NEXT START REG before it was triggered)

2.6.3.4 Implementation

The internal queue for DMA is represented in the following way:

reg [ FSAB DATA HI : 0 ] f i f o [ ( FIFO DEPTH−1 ) : 0 ] ;

/∗ Clock domain : f s a b i c l k ∗ /
reg [ FIFO HI : 0 ] f i f o w p o s ;

/∗ Clock domain : t a r g e t c l k ∗ /
reg [ FIFO HI + 1 : 0 ] c u r r f i f o l e n g t h ;
reg [ FIFO HI : 0 ] f i f o r p o s ;

While the DMA is triggered, it attempts to obtain data in 64 byte blocks using FSAB as long as there is space in the
queue for it. When the request for 64 byte block is sent, these data will come 8 bytes at a time. Whenever, a value
arrives, the value is stored in the fifo but only fifo wpos changes values. Once all 64 bytes arrive, a completion message
gets synchronized from fsabi clk domain to target clk domain so that curr fifo length can be updated. fifo rpos is used
to read values from the fifo to provide data to the master.

2.6.4 Users

The Simple DMA Read Controller is used by:

• Framebuffer (see section 2.7)

• Audio (see section 2.8)

2.7 Framebuffer

The framebuffer provides pixeldata to the DVI to be displayed on the screen.

2.7.1 Conceptual Overview

Framebuffer uses the Simple DMA Read Controller (see section 2.6) to obtain pixel data to be displayed and uses
SyncGen to figure out whether the value needs to be sent for display.

Notes:

• Four bytes contain data for one pixel.

• Each primary color uses one byte (RGB) and occupies the first 3 bytes.

• The last byte is thrown away.

• (Be aware of little endianness while programming...)
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2.7.2 Framebuffer DMA configuration

These can be accessed through 0x820000<Register Addr>

Some relevant addresses for the framebuffer are:

• 0x82000000 (write only): Framebuffer DMA start address (for setting buffer locations)

• 0x82000004: Framebuffer length

• 0x82000014 (read only): Start address of the buffer currently being read by the DMA (needed for triple buffer-
ing).

2.7.3 Example Usage

The Framebuffer is used by the multibuf library (see section 3.1).

2.8 Audio

The audio module streams sample frames to the AC’97 codec to generate sound.

2.8.1 Motivation

Our application required an audio and we only needed to make simple modifications to the SimpleDMAReadController
(see section 2.6) for it to be usable for producing audio from a range of address. We also had ACLink and AC97Conf
that are from our 2nd lab.

2.8.2 Implementation

Audio module contains few improvements from our AC97 base code:

• AudioGen is replaced with DMA to fetch audio data from DRAM

• Some additional logic has been added because DMA provides data in chunks of 8 bytes.

• AC97 configuration can be controlled through the SPAM bus.

2.8.3 Audio Configuration Registers

We have chosen these addresses to not conflict with the DMA configuration registers. The registers are:

• 0x84000100 (write only): Master Volume

• 0x84000104 (write only): Microphone Volume

• 0x84000108 (write only): Line In Volume

• 0x8400010C (write only): Audio CD Volume

• 0x84000110 (write only): Audio PCM Volume

• 0x84000114 (write only): Audio Recording Select
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• 0x84000118 (write only): Audio Recording Gain

2.8.4 To do

• Need a way to stop/pause a playing audio.

2.9 PS2

The PS2 module obtains PS2 keyboard scancode data and stores each value into a fifo such that the value could be
obtained one at a time through the SPAM bus.

2.9.1 Portlist

The PS2 module includes the SPAM portlist (see section 2.1.2), prefixed by ps2 on all outbound.

input p s 2 c l k ;
input p s 2 d a t a ;

The PS2 module complies with the timings listed in the Nexys 2 reference manual on page 8.

2.9.2 Implementation Details

Since the data arrives asynchronously (it is a keyboard input afterall), ps2clk must first be latched with 2 flip flops to
get a stable value.

Then, one would wish to obtain each data by checking the value at the negative edge. Unfortunately, ps2clk is not
a real clock so the method doesn’t work. Instead, the value of ps2clk is checked every positive edge of the core
clock(cclk) and detects the falling edge of ps2clk. This is a valid method only because the core clock is much faster
than the ps2clk.

Once all 11 bits ({start bit, scancode data[7:0], odd parity bit, stop bit}) are received and odd parity check matches,
scancode data is stored in the queue.

When a request for scancode data is made through the spam bus, if the fifo is empty, 0xFFFFFFFF is returned.
Otherwise, a value is dequeued from the fifo and returns {24’h0, scancode data}.

2.9.3 Usage

For an example of usage, see the keyhelp library in section 3.2.

2.9.4 To Do

• Sending data to the keyboard to have Num Lock, Caps Lock, and Scroll Lock lights flashing when appropriate.
(Or change the scancode set of the keyboard if we want to use 15-410 version of process scancode instead)

• The keyboard should still work after being unplugged and replugged many times.
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2.10 Timer

The timer module provides the number of clock cycles since reset through the SPAM bus (see section 2.1.2).

2.10.1 Motivation

As we started writing the game and painted arrows on the screen, we quickly realized that performance may become
an issue. Whenever we made a change to RTL or our code, we needed a way to measure performance. The number of
clock cycles since reset seemed to be the easiest way to measure this.

2.10.2 Portlist

The Timer module includes the SPAM portlist (see section 2.1.2), prefixed by timer on all outbound.

2.10.3 Usage Example

# i n c l u d e <m i n i l i b . h>
i n t ∗ t i m e r = 0 x86000000 ;
p r i n t f ( ” Cy c l e s : %d\ r \n ” , ∗ t i m e r ) ;

2.10.4 To Do

• Have a real timer that returns real time in ms since reset instead of core clock cycles

• Clock cycle counter overflows too often (approximately every 30 seconds)

2.11 Hardware Blit/Clear Accelerators

2.11.1 Clear Accelerator

2.11.1.1 Motivation

Whenever we got a new buffer (see the section on multibuf, section 3.1) to start drawing, we always had to clear the
screen and draw things on top of the cleared screen. This meant that we had to effectively draw the screen twice. We
figured that clearing the screen in hardware is relatively easy and give big performance boost. This also has many
uses because it is effectively a memset accelerator assuming that start address is 64-byte aligned and length is 8-byte
aligned.

2.11.1.2 Implementation

Implementation is similar to the Simple DMA Read Controller without the queue. Every time the clear accelerator
gets control of the FSAB bus, it writes up to 64 bytes.
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2.11.1.3 Implementation: Portlist

The clear accelerator’s port list consists simply of the SPAM portlist (prefixed by accel for the outbound), and the
FSAB portlist (prefixed by accel for the outbound).

2.11.1.4 Implementation: Configuration Space Registers

• 4’b0000 (write only): 4 byte data that every value inside [start address, start address+num packets*8) need to
be set to. Must be 64-byte aligned.

• 4’b0100 (write only): start address (start address)

• 4’b1000 (read/write): number of FSAB packets (num packets) - each fsab packet is 8 bytes since FSAB DATA HI
= 63 (64 bit transaction at a time)

AccelClear begins clearing when the number of FSAB packets is set to a value greater than 0.

2.11.1.5 Usage

See the section on the accel library, section 3.3.

2.11.2 Blit Accelerator

2.11.2.1 Motivation

When we realized that our application is not drawing fast enough (≤ 30 frames per second) even after clear accelerator
and triple buffering, we realized that we needed to make another improvement.

We had two options:

• Rewrite the blitter we had in software in assembly. We believed that this would give us a performance boost
because the assembly code that the compiler gave just didn’t seem very good.

• Write a bitblt (“blit”) accelerator in hardware.

We went with the blit accelerator in hardware because we were confident that a blit accelerator would give a big
performance boost.

2.11.2.2 Implementation

There are 3 stages:

1. Read 64 bytes from current read address and increment the current read address by 64.

2. Write those 64 bytes to the current write address.

3. Increment write address by 64 if a row hasn’t been completed or make it point to the next row.

2.11.2.3 Implementation: Portlist

The blit accelerator’s port list consists simply of the SPAM portlist (prefixed by accel for the outbound), and the
FSAB portlist (prefixed by accel for the outbound).
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2.11.2.4 Implementation: Configuration Space Registers

• 5’b00000 (write only): read start address (must be 64-byte aligned)

• 5’b00100 (write only): read length (in 64-byte packets)

• 5’b01000 (write only): write start address

• 5’b01100 (write only): write row length (in 64-byte packets)

• 5’b10000 (write only): write row stride (in bytes)

• 5’b10100 (read/write): = 64-byte packets written

The blit accelerator begins blitting when read length is set to a value greater than 0.

2.11.2.5 Usage

See the section on the accel library, section 3.3.

2.12 SystemACE Interface

2.12.1 Motivation and Design Constraints

At some point during the development process, it was decided that using the linear StrataFlash, as done on the initial
AC’97 demo project, would be insufficient; the size of the flash is insufficient to store substantial quantities of music,
and reprogramming new data onto the flash requires a relatively lengthy process over JTAG. It was decided, then, that
the SystemACE’s CompactFlash card interface should be used to load code and data into the running system.

The SystemACE provides a very usable microcontroller interface to its internal registers; these registers can be used
to command the CompactFlash card, and interrogate other aspects of the system’s state. It was decided that the easiest
mechanism to gain access to these registers - and hence the CompactFlash card - was to add a “glue” interface between
the MPU pins and the SPAM bus. If additional performance was needed later from CompactFlash requests, then FSAB
DMA could be added; but the first priority was to gain a working mechanism to access the CompactFlash, with the
simplest hardware possible.

2.12.2 Interface

The SystemACE module provides a device on the SPAM bus with DID 4’h3 (i.e., with base address 0x83000000).
Registers are linearly mapped into the SPAM address space on dword (four-byte) boundaries; that is to say, A< 0 >
on the SystemACE is wired to A< 2 > on the SPAM, and so on up. A complete register mapping of the SystemACE
interface can be found on Xilinx’s site, in DS080: SystemACE CompactFlash Solution. Since all 16 data pins are
connected through on the XUPV5, the device can be used in word-wide mode (i.e., with 0x1 written to address
0x83000000).

2.12.3 Implementation

A very similar synchronization mechanism to that used in the CSRAsyncRead/Write blocks (see section 2.5.1) is em-
ployed to synchronize addresses along with data between the CPU clock and the SystemACE clock domain. However,
some changes are noted; for instance, since CSRAsyncRead is not reading directly from a register, it must also wait

23

http://www.xilinx.com/support/documentation/data_sheets/ds080.pdf


for a response to come back from the SystemACE before it acknowledges the request (and sends the data back) to
the CPU clock domain. Similarly, since the external bus protocol for the SystemACE is not quite as simple as a write
enable on a register, or a read from a multiplexed register; instead, the external bus lines must be driven in a certain
order. This is implemented in a state machine with seven states that ensure that setup and hold times are all met.

Appropriate tristate gating to the outside world is enforced using a raw IOBUF instantiation. One possible alternative
coding style for this is to use an inout reg that can be set to z; tests determined that although somethings Xilinx tools
correctly synthesize this, other times the tools fail to synthesize this as a tristateable output. Manually invoking the
IOBUF primitive forces the tools to generate the correct routing for the tristate enable.

2.12.4 Software

Software support for the SystemACE controller is provided by the sysace and fat16 libraries in sw/lib. The
primary external interfaces to sysace are sysace init() and sysace readsec(); other functions are intended
as internal mechanisms exported only because they are named processes in the SystemACE user’s guide.

The fat16 library is best investigated by example; sw/boot1 provides a good example of using the FAT16 driver
to list the contents of the root directory, and to open and load the application code ELF image.
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Chapter 3

Software Design

In this part, we mention salient libraries located in sw/lib that we designed to abstract some of the details of the
hardware.

3.1 Multibuf Library

Multibuf library implements triple buffering for screen display

3.1.1 Motivation

Originally, we had double buffering but performance was an issue. In double buffering, after the framebuffer start
address has switched, the code couldn’t continue writing to the new buffer because the dma may not have started
reading from the new address yet. This caused a notable choppiness of the arrows going up the screen in Stepmania.
After measuring the time this took with Timer module (see section 2.10), we decided to implement triple buffering.

3.1.2 Implementation Details

multibuf init allocates three arrays of size (width*height*4+64) bytes, aligns it to 64 bytes (because of the warning in
DMA controller(See section 2.6) ), and calls multibuf flip to provide a new buffer.

multibuf flip sets the frame buffer DMA’s start addr (0x82000000) to the buffer that is currently writing and provides
a new buffer that the DMA is currently not reading (can be read from 0x82000014). Since only two buffers could be
used in the worst case, there is always a new buffer that could be returned immediately.

3.1.3 Example Usage

m u l t i b u f t m u l t i b u f ;
i n t ∗ buf ;
buf = m u l t i b u f i n i t (& m u l t i b u f , 640 , 4 8 0 ) ; /∗ 640 by 480 s c r e e n ∗ /
/∗ f i l l t h e b u f f e r o f s i z e 640∗480 i n t s where t h e l a s t 3 b y t e s are BGR ( t h a n k s t o l i t t l e e n d i a n n e s s )
and w h a t e v e r you f e e l l i k e i n t h e f i r s t b y t e ∗ /
buf = m u l t i b u f f l i p (& m u l t i b u f ) ;
/∗ now t h e b u f f e r you wro te t o t h e b u f f e r w i l l be d i s p l a y e d on t h e s c r e e n and you

can w r i t e more s t u f f t o t h e new b u f f e r ∗ /

25

http://en.wikipedia.org/wiki/Multiple_buffering#Triple_buffering


buf = m u l t i b u f f l i p (& m u l t i b u f ) ;

3.2 Keyhelp Library

Keyhelp library contains a function to process scancode and other helper macros to read keyboard input

3.2.1 Motivation

After implementing the RTL for obtaining scancode from PS/2, it became apparent that we need a function like pro-
cess scancode from 15-410 kernel. We wanted to use the process scancode code that they had but the process scancode
that 15-410 kernel has implemented is for set 1 scancodes and the default scancodes we got when we plugged in our
keyboard was set 2. That meant that we either had to modify our RTL to support changing sets or had to write a new
process scancode function. We ended up writing a new process scancode because writing more RTL is more difficult
than writing more C code. (See scancode for differences)

3.2.2 Implementation

The implementation of process scancode is very similar to the one from 15-410 except it is for scancode set 2 and
doesn’t implement all the keys. It contains an internal state machine to keep track of the current state of the keyboard
and returns a value of type kh type that could be used with some of the macros from keyhelp.h as shown in example
usage.

3.2.3 Example Usage

# i n c l u d e ” k e y h e l p . h ”

v o l a t i l e unsigned i n t ∗ s c a n c o d e a d d r = 0 x85000000 ;
unsigned i n t s c a n c o d e ;
k h t y p e k ;
char new char ;

whi le ( ( s c a n c o d e = ∗ s c a n c o d e a d d r ) != 0 x f f f f f f f f ) {
k = p r o c e s s s c a n c o d e ( s c a n c o d e ) ;
i f (KH HAS CHAR( k ) ) {

new char = KH GET CHAR( k ) ;
i f ( ! KH IS RELEASING ( k ) ) {

sw i t ch ( new char ) {
case ’ z ’ : /∗ i n s e r t code here ∗ /
case ’ a ’ : /∗ i n s e r t code here , e t c . ∗ /
/∗ e t c . e t c . ∗ /

}
}

}
}

3.3 Accelerator Library

Uses hardware accelerator (See section 2.11) to perform acceleration of clearing the framebuffer and bliting images
onto the screen.
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3.3.1 Motivation

See section 2.11

3.3.2 accel fill

(variable names are bolded)

accel fill(unsigned int* base, unsigned int value, unsigned int words)

Writes value for the next words words starting from base.

3.3.2.1 Implementation

This function is implemented by setting the corresponding config registers of AccelClear (setting length last) and spin
waiting until clearing is complete. By spin waiting, Cache does not eat up memory bandwidth and guarantees that
bliting is complete when the function completes.

3.3.3 accel blit

(variable names are bolded)

accel blit(unsigned int* base, unsigned int* src, unsigned int w, unsigned int h)

Copies an image of size w by h represented in src to dest (framebuffer) assuming that the screen is 640 pixels wide.

3.3.3.1 Implementation

This function is implemented by setting the corresponding config registers of AccelBlit (setting read length last) and
spin waiting until bliting is complete. By spin waiting, Cache does not eat up memory bandwidth and guarantees that
bliting is complete when the function completes.

3.4 Audio Library

Contains various audio helper functions that are implemented with the help of audio module.

void audio master volume set(char mute, char left, char right):

• mute: Volume is not muted if 0. Muted otherwise.

• left, right: Sets the volume of left and right speakers.

void audio play(void* location, int length, int mode):

• location: start location of the audio. (may need to be 64-byte aligned)

• length: length of the audio in bytes. The function will truncate the last 8 bits.

• mode: 0 = stop, 1 = play once, 2 = play repeatedly
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void audio stop():

int audio samples played():

int is audio done(int len): checks whether the audio module finished playing the audio given its length.
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Chapter 4

Miscellaneous System Notes

In this part, we describe other portions of the system that do not easily fit as being called either hardware or software,
but that still merit discussion.

4.1 virtexsquared Boot Sequence

Since the sequence of steps that virtexsquared takes to boot is somewhat unlike a modern x86 PC, it is worth discussing
in brief. Specifically, in order to boot, control of the system first starts with the SystemACE, is passed to the preloader,
then to boot0, then boot1, and then finally to application code.

4.1.1 SystemACE

When the board is first powered on, there is no configuration loaded on the FPGA. In order to get the virtexsquared
system running at all, the configuration must be somehow loaded. If the CompactFlash card is inserted (and contains
the BOOT.ACE file generated from the bitstream), then the Xilinx SystemACE CompactFlash controller on the board
will begin programming the FPGA over the configuration JTAG interface; this procedure takes about a second and
a half. If CompactFlash FPGA programming fails, then the red LED on the board will either blink or illuminate
statically.

The SystemACE can also be removed from this stage of boot by programming the board using the external JTAG
connector; this is useful when debugging the design using ChipScope.

When the FPGA is programmed, the internal circuitry begins a post-reset sequence.

4.1.2 Preloader

Once the FPGA has been configured, the PLLs and DCMs have locked, and the DRAM PHY has self-calibrated, the
preloader is taken out of reset, and begins performing DMA from an internal block RAM into the very beginning of
DRAM (address 0x0). The preloader DMAs in 8-qword blocks, and transfers a total of 16 kBytes of data into DRAM.
While this occurs, the core is held in reset using a signal OR’ed in with the normal reset path.

Once the preloader completes, the core is taken out of reset and allowed to begin operating.

The operation and design behind the preloader is discussed in more detail in section 2.3.1.
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Figure 4.1: boot0’s failure display.

4.1.3 boot0

boot0 is the first code that is executed by the ARM core. It begins with a small fragment of ARM assembly, called
crt0, which sets up a stack pointer, and zeroes the .bss section. Once it has done those, the C runtime environment
is ready, and crt0 jumps into the main function. The main function prints some text to the console, initializes the
SystemACE’s microprocessor interface, paints the boot display, and loads and jumps to boot1.

Importantly, boot0 does not know anything about any executable formats, and it does not know anything about filesys-
tems; the limitation of its intelligence is in finding a partition that is marked as bootable, and loading the first 512
kBytes of that partition to a specific address in memory (0x4000). If any sector read fails, then boot is aborted; if the
partition cannot be found, or the CompactFlash is not present, then boot is also aborted. boot0 has a minimum feature
set because it is baked into the preloader’s Block RAM; making changes to boot0 costs 20 minutes to recompile the
core, and so it is of the utmost import that boot0 be solid, versatile, and stable.

If boot is aborted, or the boot1 program returns control to boot0, then the message “Control returned to
boot0; press reset to retry boot” will be printed to the serial console, and the colorbars and color-
cycling virtexsquared logo are displayed on screen. (See figure 4.1.)

4.1.4 boot1

boot1 is the next stage of code executed by the ARM core. It, too, begins with a crt0, but this crt0 does not need
to set up the stack pointer; all future stack usage on the system will be on the same stack as that set up by boot0. The
main differences from boot0 to boot1 are:

• boot1 does not paint a splash screen. The system has already been shown to be ”alive” by boot0; boot1 needs to
take no further steps in that regard.

• boot1 is capable of reading the FAT16 partition on the CompactFlash. boot0 does not have this capability, since
boot0’s feature set must be small.
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• boot1 is capable of loading an ELF file. boot0 loads a flat memory image, as created by objcopy; boot1 loads
full ELF programs that may have many segments.

• boot1 is replaceable with a minimum of pain by dd’ing over a partition; boot0 requires a resynthesis to replace.

When boot1 takes control of the system, it first initializes the SystemACE, and then mounts the FAT16 partition. It
then prints the contents of the root directory to the serial console. If GAME.ELF exists on the partition, boot1 loads
it into memory at 0x01000000 (+16MB), and then hands the loaded image off to the ELF loader. If all of the above
succeed, boot1 prints a message indicating that it is transferring control to the application code, and then jumps to the
game’s entry point.

If boot1 fails, it may emit any of a few diagnostics. The message “boot1 exiting” indicates that for some reason,
boot1 completed and is returning control to boot0. The message “ELF loading failed” indicates that boot1’s
ELF loader determined that the file format was invalid for some reason; common causes are a flash card that has not
been properly unmounted, and hence had become corrupted.

4.1.5 Application

Once boot1 has loaded GAME.ELF from the CompactFlash card, the application is running. The initialization se-
quence of the application code involves loading a series of resources and eventually presenting a menu.

4.2 Tools

virtexsquared is developed using some standard tools, and some custom tools. The parts of the virtexsquared develop-
ment system that appared to be of particular use are elucidated below.

4.2.1 verilog-mode

verilog-mode is a tool to reduce the tedium and redundancy of writing Verilog. It is designed as a plugin for emacs;
however, we use it in batch mode and invoke it using the “auto” target in our Makefile (see section 4.2.7). Some of the
more prominently used features of verilog-mode are described below.

4.2.1.1 Automatic Portlists

AUTOARG is used to automatically generate input and output portlists. This is particularly helpful when a port width
comes from an included file. A usage example, from the preloader (section 2.3.1):

module FSABPreload ( /∗AUTOARG∗ /
/ / O u t p u t s
r s t c o r e b , p r e f s a b o v a l i d , p r e f s a b o m o d e , p r e f s a b o d i d ,
p r e f s a b o s u b d i d , p r e f s a b o a d d r , p r e f s a b o l e n ,
p r e f s a b o d a t a , p r e f s a b o m a s k ,
/ / I n p u t s
c lk , r s t b , p r e f s a b o c r e d i t , f s a b i v a l i d , f s a b i d i d ,
f s a b i s u b d i d , f s a b i d a t a
) ;

‘ i n c l u d e ” f s a b d e f i n e s . vh ”

input c l k ;
input r s t b ;
output wire r s t c o r e b ;
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/∗ FSAB i n t e r f a c e ∗ /
output reg p r e f s a b o v a l i d = 0 ;
output reg [ FSAB REQ HI : 0 ] p r e f s a b o m o d e = FSAB WRITE ;
output reg [ FSAB DID HI : 0 ] p r e f s a b o d i d = { ( FSAB DID HI +1){1 ’ b1 }} ;
output reg [ FSAB DID HI : 0 ] p r e f s a b o s u b d i d = { ( FSAB DID HI +1){1 ’ b0 }} ;
output reg [ FSAB ADDR HI : 0 ] p r e f s a b o a d d r = 0 ;
output reg [ FSAB LEN HI : 0 ] p r e f s a b o l e n = 8 ;
output reg [ FSAB DATA HI : 0 ] p r e f s a b o d a t a = 0 ;
output reg [ FSAB MASK HI : 0 ] p r e f s a b o m a s k = 8 ’ hFF ;
input p r e f s a b o c r e d i t ;

input f s a b i v a l i d ;
input [ FSAB DID HI : 0 ] f s a b i d i d ;
input [ FSAB DID HI : 0 ] f s a b i s u b d i d ;
input [ FSAB DATA HI : 0 ] f s a b i d a t a ;

4.2.1.2 Automatic Instantiation

AUTOINST connects a module’s ports to wires of the same name. This behavior can be modified using the AUTO TEMPLATE
directive. An example, from the framebuffer (section 2.7):

/∗ SyncGen AUTO TEMPLATE (
. r s t b ( ˜ f i f o e m p t y 1 a ) ,
) ;

∗ /
SyncGen sync ( /∗AUTOINST∗ /

/ / O u t p u t s
. vs ( vs ) ,
. hs ( hs ) ,
. x ( x [ 1 1 : 0 ] ) ,
. y ( y [ 1 1 : 0 ] ) ,
. b o r d e r ( b o r d e r ) ,
/ / I n p u t s
. f b c l k ( f b c l k ) ,
. r s t b ( ˜ f i f o e m p t y 1 a ) ) ; / / Templa ted

Additionally, AUTOINSTPARAM can be used to set parameters in an instantiated module to parameters in the current
module.

4.2.1.3 Automatic Wires

AUTOWIRE automatically creates wires referenced by AUTOINST that have not already been declared by the user.

4.2.2 Xilinx XST

The Xilinx tools are invoked in two major phases: xst and xflow. They both suck.

4.2.3 makecdc for ChipScope

A CDC file contains names for the wires connected to ChipScope integrated ILAs so that they do not need to be typed
in manually each time. We create CDC files using a custom Lua script. Wires connected to the ILAs are listed, along
with width information, in reverse order. The script then generates the CDC design file which is, in turn, imported into
ChipScope. Unused wires are given a placeholder label.
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The representation for one ILA in the audio module (section 2.8):

p r o j e c t = {
iconname = ”mem” ,
{ name = ”mem/ i l a 0 ” ,

bus = {
” f i f o e m p t y ” ,
” d a t a r e a d y ” ,
{ name = ” d a t a ” , b o t =0 , t o p =63 } ,
” r e q u e s t ” ,
” s e c o n d h a l f ” ,
” a c 9 7 o u t s l o t 4 v a l i d ” ,
{ name = ” a c 9 7 o u t s l o t 4 ” , b o t =0 , t o p =19 } ,
” a c 9 7 o u t s l o t 3 v a l i d ” ,
{ name = ” a c 9 7 o u t s l o t 3 ” , b o t =0 , t o p =19 } ,
” a c 9 7 o u t s l o t 2 v a l i d ” ,
{ name = ” a c 9 7 o u t s l o t 2 ” , b o t =0 , t o p =19 } ,
” a c 9 7 o u t s l o t 1 v a l i d ” ,
{ name = ” a c 9 7 o u t s l o t 1 ” , b o t =0 , t o p =19 } ,
” a c 9 7 s d a t a i n ” ,
” a c 9 7 s t r o b e ” ,
” a c 9 7 r e s e t b ” ,
” a c 9 7 s y n c ” ,
” a c 9 7 s d a t a o u t ” ,
{ name = ” b u l l s h i t ” , b o t =157 , t o p =255 } ,
}

} ,

4.2.4 Verilator

Verilator is an optimizing open source simulator which gives decent warnings, unlike xst. We like Verilator.

We used Verilator both as a simulation tool, and a lint tool for non-simulatable code (via the --lint-only op-
tion).1 The sim target in the makefile builds for simulation; this produces the executable sim/Vsystem in the build
directory.

4.2.5 j4cbo

Although he is a tool, j4cbo was not used in the making of this project.

rntz was used in the making of this project.

4.2.6 git

We used git for version control. Our repository is browsable at https://github.com/teamdragonforce/
virtexsquared/. We like git.

4.2.7 GNU make

Another key tool that we utilized to facilitate development was GNU make. make allowed us to integrate the simula-
tion as well as the Xilinx build flows. The build system provides a number of top level targets; in particular:

• sw builds all software (including boot0, boot1, and the game);

1“But it wasn’t a very good lint tool...” “Yeah, but... did it save our asses?” “...yes.”
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• fpga runs a full pass through the synthesis flow;

• sim runs a Verilator build;

• tests rebuilds the toplevel simulation testbench;

• and auto reruns verilog-mode to regenerate AUTOs.

Of interest is that the build system operates in terms of runs; each invocation of make, by default, carries a run ID
of the time in which it was started, and all compilation takes place within a run directory unique to each run. This
provides a few useful traits in the context of this project. For one, it allows us to easily revert to any old build, and to
swap back and forth between two compiles that may have different debug features enabled; since the source is saved
for each build, we are capable also of diffing two builds that may not have been committed. The other important
ability that this provides is to run two builds in parallel; as we incrementally fix bugs (or try multiple techniques to
avoid Xilinx bugs), we found it very important to be running multiple spins at the same time to have a constant stream
of bitfiles to test.

The build system also provided confidence in our tools. The Xilinx GUI in previous versions was known for doing
incomplete rebuilds (i.e., not resynthesizing after files had changed), resulting in lost productivity while the wrong
bitfile was being debugged; having a powerful system that we understood every part of was immensely useful, and
absolutely critical to having a maintainable source base.
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Chapter 5

Project Reflections

In this part, we describe the logistics of the completion of this project, including miscellaneous sections required for
completion of this report.

5.1 Schedule

The Gantt chart generated at the mid-semester report can be seen in figure 5.1. We anticipated being further behind
that schedule, but we came in fairly closely. That schedule, notably, is completely disjoint from the original schedule;
as our team shifted over time, the original schedule was slipped and abandoned.

5.2 Individual Team Member Notes

Pursuant to the requirements of this report, each team member has written a section on their notes from the class.

Figure 5.1: Mid-semester estimation of schedule.
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5.2.1 Joshua Wise

I came into this class at the beginning with one specific goal in mind – come Hell or high water, I came here to really
figure out what it would take to build a System on a Chip on an FPGA. Since I learned of the concept of programmable
logic, I dreamed of building a system that was all my own – every line of code running on it was hand-crafted with
care by me (and a few friends). So, when I registered for the class, I made this my goal; I would do what it would take,
but this seemed like a prime opportunity to learn as I would, and learn as I went.

In this regard, I feel as though the course was a success. On December 3rd, 2010, I walked into HH 1112 with my
group members, and got a chance to show off this system that we had built from the ground up. All of the C source on
the system was ours; all the assembly was ours; all the RTL was ours; and to an extent, we even got an opportunity to
modify the direct primitives on the device in debug sessions with FPGA Editor. There is still plenty more to do on this
project; next semester, the system will be extended to allow for student 18-447 MIPS cores to be dropped in, and over
time, I intend to build an MMU that will allow me to boot Linux. Given the time frame that we had, and the constraints
that we faced – maybe even without taking those into regard! – I feel suffused with pride in this accomplishment.

To date, this is the largest project that I have designed from the ground up on an FPGA. Our code base spans over
10,000 lines of Verilog (not including the MIG), and nearly 5,000 lines of C; we designed all the automation for the
project, and when we needed something, we built it. Throughout the course of this, I feel as though all of us have
learned and relearned the value of adhering to a code development methodology; by sticking to best practices of testing
and architecture, we built a remarkable amount of code that worked right on nearly the first try.

We also rediscovered the relative difficulty of designing RTL with respect to designing software. All three of us are
accustomed to being able to write software, designing on the fly, producing a good-quality program in no time at all;
but designing hardware is much more difficult. I feel as though we all learned to put our egos aside in development;
there may be less pride in asking for help, but to be sure, there is no pride at all in code that does not work! Ultimately,
I found over and over again that the only way to design hardware is to spend a lot of time thinking before I even touch
a keyboard; when doing the first pass of the arbiter, I spent about a week thinking before I wrote RTL.

What of the class, though? I felt as though I poured an immense amount of time and effort into the class, and that
that effort went mostly unappreciated by course staff. This is a strange feeling for me, as I usually do not find myself
seeking affirmation from the staff of classes I take. But in this class, I felt as though I was being actively dismissed
by the course staff; early on in the project, I wrote status reports with questions, looking for feedback on the direction
we were headed. During the presentations, I left opportunities open there, too, for feedback and commentary on our
design. It seems that the feedback never came; it felt as if the course staff simply did not care to comment on our
project. Ultimately, the low point of this came when course staff attended our demo session for what felt like a sum
total of 20 minutes; although most of the members of the class had been in the lab for the previous 48 hours, it seemed
as if course staff was just not interested in the results that we had produced.

Without regard to the attitudes of the course staff, I still take pride in the work that I’ve produced. I feel as though
it took somewhat longer than it should have to establish a working group dynamic, but once we did so, we worked
as effectively together as any team I have worked with before; when things needed to happen, they did. The fact that
the three of us were approximately on par with each other in terms of familiarity with project-critical features such as
version control, scripting, and good coding practices made our time together that much more enjoyable.

That brings me to a note on which I may wish to end – advice for future groups. Ultimately, what made our group
successful is that we embraced our working environment, instead of holding it at arm’s length. In order to be successful,
we knew that we would have to adopt best practices, and so we chose a style guide from the first day; we picked a
version control system on day 1, and we set up our computers with an environment that we were familiar with on day
1. In order to succeed in this class, you must be prepared to take advantage of the full power of the tools in front of
you; the RTL is only a place to start.

Go forth and build.

Joshua Wise, December 8th, 2010
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5.2.2 Josiah Boning

5.2.2.1 Things I Liked

I thoroughly enjoyed our project. I especially liked the ability to choose a project and execute it, the freedom to set
up our development environment as we like, and the availability of good hardware (development machines and FPGA
board). I think I learned a lot about designing a large hardware system, writing RTL (both functionality and style),
using git, and how much Xilinx sucks. One thing to note is that much of the learning I did was either on my own, by
reading and writing code and solving problems, or from Joshua (section 5.2.1), who has significant experience doing
RTL development and is familiar with many quirks of the Xilinx toolchain and other miscellanea. His knowldedge
of Xilinx, git tricks, and verilog-mode verilator, and verilog-mode were invaluable to the project, and I consider the
things I have learned from his experience to be some of the more significant lessons I am taking from this class—so
much so that I feel bad for the other groups who lack such a verteran RTL developer, as even the TAs did not seem to
have the same ability to answer obscure questions about Xilinx.1

5.2.2.2 Things I Didn’t Like

One of the least pleasant things about this class has been the total lack of feedback on submitted items. Progress
reports, reading summaries, mid-project writeup: did anyone read them? Does anyone care? It was impossible to tell.
I ceased submitting progress reports a month and a half into the semester because it truly felt like they were being sent
to the void—and I’d rather be working on the project than sending things to the void).

5.2.2.3 Things I Did

I worked on our project.

5.2.3 Bradley Yoo

5.2.3.1 Joining this team

I joined this team more than halfway into the class because my previous group wasn’t making much progress and one
of the members in both groups dropped. When I first joined the group, I was amazed not only by how much RTL has
already been written but also by how much more RTL has to be written for the hardware design component of the
project to be complete. There were also the software component that we haven’t even touched yet.

I was able to be far more productive in the new group than my previous group. I managed to produce more RTL
in the first two weeks of joining this project than the previous 2 months I was in the other project. This was mostly
because all the other group members worked just as much if not more and the tools were nicely setup. Verilator saved
us a couple of times from hours of debugging and verilog-mode was mostly helpful in automating parts of our design
process.

5.2.3.2 What we did well

Our group didn’t have a set schedule and we were more productive because of it. Every week, we knew we had to get
something done so we would decide what is the next highest priority thing to get done, finish it, and then move on.
This way, whenever we had a new idea (and we always did), we didn’t have to revamp the Gantt chart to consider all

1“It can’t connect to the USB thing to download the bitfile” “Oh, run [obscure xilinx command]” “...oh.”
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the other things that needed to be done. Instead, we implemented it. Modules such as the SimpleDMAReadController
and hardware accelerations may not have happened if we didn’t have an extremely flexible schedule.

5.2.3.3 About the Class

One of the things that is annoying about this class is the inability of the course staff to give us any help with Xilinx.
The TAs were there but they certainly weren’t giving us any help with Xilinx in any of the labs. In fact, we rarely met
for work in mandatory lab session and instead opted to work overnight because we just got so much more productive
because of less noise and more work hours. The lab assignments we had was also useless. The first lab could be done
by anyone in 5 minutes because it was just get anything on the board but only one group (this group) managed to get
sound on the board because of the lack of documentation and guide inside the lab handout. A 3 4 step procedure on
what needs to get done to do the lab just doesn’t cut it.

5.2.3.4 Conclusion

I’m very excited that we have managed to produce something that not only works but will be reused for 18-447
(Computer Architecture) next semester. I think that class will become far more meaningful and interesting if the code
they produced in class actually ran on the fpga board with display, sound, and keyboard instead of just running on
simulation.

5.3 In the End

joshua@fuggle:˜/virtexsquared$ find rtl/ -iname ’*.v’ -o -iname ’*.vh’ | \
grep -v mig/ | grep -v chipscope | xargs wc -l | sort -n

9 rtl/fsab/clog2.vh
13 rtl/fsab/dma_config_defines.vh
14 rtl/spam/spam_defines.vh
32 rtl/fsab/fsab_defines.vh
38 rtl/core/RegFile.v
46 rtl/spam/SPAM_Timer.v
48 rtl/console/SyncGen.v
63 rtl/util/Fifo.v
64 rtl/core/Writeback.v
70 rtl/core/Fetch.v
73 rtl/fpga/RS232TX.v
79 rtl/core/ARM_Constants.v
83 rtl/spam/SPAM_ConsoleIO.v
91 rtl/util/AsyncFifo.v
96 rtl/fsab/memory_defines.vh
100 rtl/fsab/FSABPreload.v
107 rtl/util/CSRAsyncWrite.v
108 rtl/util/CSRAsyncRead.v
114 rtl/audio/ACLink.v
129 rtl/audio/AC97Conf.v
131 rtl/fsab/sim/SimpleDMAReadControllerTester.v
159 rtl/fsab/FSABArbiter.v
178 rtl/ps2/PS2.v
217 rtl/spam/SPAM_LCD.v
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221 rtl/console/iic_init.v
242 rtl/accel/AccelClear.v
257 rtl/fsab/sim/FSABSimMemory.v
260 rtl/spam/SPAM_SysACE.v
304 rtl/fsab/FSABArbiterFIFO.v
308 rtl/sim/FifoTb.v
309 rtl/core/Issue.v
322 rtl/console/Framebuffer.v
351 rtl/core/Decode.v
353 rtl/core/ICache.v
370 rtl/core/DCache.v
395 rtl/sim/system.v
398 rtl/accel/AccelBlit.v
427 rtl/audio/Audio.v
458 rtl/core/Execute.v
462 rtl/fsab/SimpleDMAReadController.v
502 rtl/core/Core.v
550 rtl/fsab/FSABMemory.v
796 rtl/fpga/system.v
861 rtl/core/Memory.v

10208 total
joshua@fuggle:˜/virtexsquared$ find sw -iname ’*.[chS]’ | grep -v util | \
grep -v res | xargs wc -l | sort -n

4 sw/graphics/crt0.S
6 sw/lib/elfload.h
7 sw/lib/malloc.h

11 sw/lib/serial.h
14 sw/lib/console.h
16 sw/audio/crt0.S
16 sw/boot1/crt0.S
16 sw/fill_perf/crt0.S
16 sw/game/crt0.S
16 sw/keyboard/crt0.S
17 sw/lib/multibuf.h
18 sw/boot0/crt0.S
19 sw/lib/qalloc.h
22 sw/lib/accel.h
26 sw/lib/stdint.h
32 sw/lib/doprnt.h
32 sw/lib/malloc.c
32 sw/lib/sysace.h
37 sw/game/gencol.c
41 sw/lib/audio.h
42 sw/lib/minilib.h
49 sw/lib/accel.c
52 sw/lib/keyhelp.h
52 sw/lib/multibuf.c
52 sw/lib/serial.c
70 sw/keyboard/boot1.c
73 sw/lib/fat16.h
76 sw/lib/elfload.c
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78 sw/lib/qalloc.c
87 sw/boot1/boot1.c
99 sw/lib/console.c
101 sw/lib/audio.c
101 sw/lib/sysace.c
108 sw/audio/boot1.c
147 sw/fill_perf/boot1.c
161 sw/lib/sprintf.c
202 sw/boot0/charset.h
203 sw/lib/minilib.c
221 sw/lib/fat16.c
239 sw/lib/keyhelp.c
264 sw/boot0/boot0.c
288 sw/lib/elf.h
514 sw/lib/doprnt.c
786 sw/game/game.c
813 sw/graphics/boot1.c

5276 total

Through the fire and the flames, we carry on.

Josiah Boning, Joshua Wise, Bradley Yoo

December 8, 2010
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