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Abstract

Significant progress, in both software and hardware, has been made in previous iterations
of this project in attempt to build a fully functional Solid State Drive. However, when
our team attempted to pick up where the previous teams have left off, we found it very
hard to fully utilize the progresses made by previous teams either due to the lack of clear
documentation, or simply due to miscommunication during the project hand off. To remedy
such effects for future iterations of this project, we will try to provide a clear and concise
documentation on the qualifications we feel are needed to take on this project, as well as
the process of bringing a new system up to speed with our current progress. We will also
focus on describing the PCI-E interface as we feel it is the component that was missing
from all previous documentations.



1 Introduction

What constitutes a fully functional Solid State Drive? Invariants to any SSD implementa-
tion includes a memory storage device, a memory controller for the storage device, firmware
for the memory controller, a device driver for the host machine. Recognizing the complex-
ity and significance of each component early on in the design process is very important,
since the system cannot function with any component misbehaving, and each component
will likely need to be developed separately but they must tested collectively throughout
the development process. A brief overview of each component is provided below, note that
host device refers to the device which comprises of all components that makes up an SSD,
host machine refers to the actual machine that the SSD is plugged into:

1.1 Memory Storage Device

Primary storage unit, most commonly use NAND based flash chips. In addition to the
storage units, the device must also provide signal translation units if there exists voltage
differences between the chip signals and the host device bus. The entire device is then
connected to the IO bus on the host device. Note that flash memory have different orga-
nization than traditional memory storage devices, background knowledge of flash memory
is definitely required in understanding how to operate the memory storage device.

1.2 Memory Controller

Resides as reprogrammable hardware modules in the host device, acts as both administrator
and caretaker of the memory storage device. Handles the transmission of request signals to
the memory chips, as well as response signals from the memory chips. Since NAND flash
cells can endure limited amount of erase cycles before becoming unreliable, it is crucial for
the memory controller to provide wear leveling, an algorithm to monitor the health of the
individual flash blocks, and avoid wearing out any individual block prematurely. Memory
controller needs to be finished early, since it requires long duration synthesis, the idea is to
have the memory controller emit all signals supported by the memory device, and handle
the forwarding of all signals from the memory device onto the IO bus. Requires background
in flash memory, Verilog, VHDL and memory scheduling algorithms.

1.3 Firmware for Memory Controller

Although the memory controllers are usually reprogrammable in the design project, they
should not be in a real implementation of SSD, mainly due to the fact that reprogrammable
hardware modules usually require power to maintain (e.g. FPGA implementations), and
to improve performance they are usually fabricated. Since the memory controller are
invariant, there would need to be something that can adapt to different host machine
environments, acting as the translator of requests from the host machine to the SSD.
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Firmware for the memory controller are C code run by an onboard core in the host device.
It acts as the translator between the host machine’s requests, and the memory controller’s
responses. Background knowledge required are embedded software development and basic
knowledge of operating systems.

1.4 (Block) Device Driver for Host Machine

When the SSD is plugged into the PCI-E slots of the host machine, it is the device driver’s
job to recognize the SSD and handle application generated requests to the SSD. A device
driver is different from a block device driver in that the sole purpose of the device driver
is to recognize the SSD and only enabling a specific set of application to issue requests to
the SSD, whereas block device driver will setup translation of traditional memory request
signals to the ones specified by the memory controller firmware, and mount the SSD as a
block memory storage device, thus enabling all applications to issue requests to the SSD
through the OS.

1.5 Contributions

This paper makes the following main contributions:

1. Clean concise documentation to the process of establishing a benchmarked debug-
gable platform across the PCI-E

2. Clear definition of what needs to be done for the Memory Controller

3. Source code that is easy to read and understand

4. Consolidation of all previous efforts into one project report

By now you should have a good idea of what to expect if you choose to take this project.
If you have what it takes, read on.

2 Initial Setup

This section will describe the steps to take in order to obtain the source code from our
repositories and setup a testing framework within an hour.

2.1 How to get the latest repo

All project files are hosted in a svn repo at

/afs/ece/project/km_group/svn/src/ssd_repo
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In order to gain access to this repo you must first contact a repo admin (e.g.) Yu Cai
<yucai@andrew.cmu.edu>, the admin will need to give you access to the repo by running
the following shell script:

#####
#!/bin/sh
fs sa /afs/ece/project/km_group [your_andrewid] rl
fs sa /afs/ece/project/km_group/svn [your_andrewid] rl
fs sa /afs/ece/project/km_group/svn/src [your_andrewid] rl
cd /afs/ece/project/km_group/svn/src/ssd_repo
find -type d -exec fs sa {} [your_andrewid] rl ’;’
#####

Once the admin has run the shell script giving you the correct privileges, you may execute
the following commands on afs.

mkdir ssd
cd ssd; svn checkout file:///afs/ece/project/km_group/svn/src/ssd_repo

You now have access to all the latest files in this project.

2.2 How to bring up the PCI-E across Virtex 5

In this project we focused on bringing up the PCI-E of the Virtex 5 board, for similar
directions on how to do this for Virtex 6 see Appendix B. Bringing up PCI-E can be a
pain initially if you do not know exactly what is happening in the background. Heres a
brief overview:

Prior to attempting to debug the PCI-E interface the FPGA must be plugged into
the PCI-Ex8 slot on your motherboard, and completely programmed with the memory
controller and firmware running. Follow the memory controller section, Section 3.1 for
more details. The host machine needs to be rebooted every time changes are made onboard
the FPGA, simply because whenever bitstreams change on the FPGA, the host machine
needs to run POST to detect hardware changes. This is only done at boot time.

By ”bringing up PCI-E” we mean the process of getting the host machine to recognize
the XUPv5 board plugged into one of its PCI-E slots, and enabling the PCI-E bus to be
initialized to test for sending and receiving data through PCI-E. However, this is just a
higher level description of a much more complex process. The entire process can be split
into three stages:

1. Loading the memory controller into XUPv5
This stage involves synthesizing the memory controller modules, and programming
them into the FPGA. (For a complete step by step guide on how to synthesize the

3



Figure 1: Expected output of lspci.

current project, follow Section 3.1) Doing so will enable the XUPv5 board emit the
following lines to the BIOS upon restart of the host machine:

Memory controller: Xilinx Corporation Device

Caution: If the BIOS does not recognize the device plugged into the host machine’s
PCI-E slot, turn the host machine off completely, and turn off the XUPv5 board.
And turn on the XUPv5 board first and program it, then turn on the host machine
after the program is completed. Order is of the utter most importance here.

2. Loading the XUPv5 drivers into Linux Kernel
After our BIOS correctly recognizes the XUPv5 board, boot up the host machine
and double check with the following command:

lspci | grep Xilinx

You should see something similar to this line, the expected output is also shown in
Figure 1

01:00.0 Memory controller: Xilinx Corporation Device 0007

Upon verification we need to allocate memory addresses to map to the PCI-E reg-
isters corresponding to the Xilinx device. This is done by a module named xupv5
made by Eric Cheung. We call this module the linux driver as per naming convention
in previous reports. To load the linux driver run the following commands in the host
machine, the expected output is shown in Figure 2:
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Figure 2: Expected output of make;sudo make load.

cd <tree>/linux_dev/nand_pci_driver/module
make; sudo make load

If you see errors at this stage, do not proceed further, try restarting the host machine
or reprogramming the FPGA. The first command gets into the module directory in
the ssd repo, while the second command makes the module files and loads the module
into the running linux kernel via insmod. A screen shot of the effect of the above
command is shown below. If there were no errors printed on the screen after the
execution, we can test if the module was probed correctly by running the following
command, expected output are in Figure 3:

dmesg | grep xupv5

Figure 3: Expected output of dmesg.

Make sure you do not see errors in this screen. If errors exist, the memory controller
was not detected correctly, and you need to restart the host machine, and reprogram
the FPGA.

5



3. Run applications and verify requests to and response from PCI-E
There are several benchmark programs that exists, the most commonly used, and the
fastest program is the nand_pci_driver. It is a test for all the currently supported
nand commands. For a full list of benchmark programs see Appendix A

You now have a working PCI-E interface.

2.3 Setting up debugging environment

Being able to debug is perhaps the simplest yet most important thing in any developing
environment. Referring back to our system design, the only things visible to the program-
mer, if you followed our instructions so far, are the outputs from benchmark programs,
which only has access to responses from the PCI-E bus. In order to see debug messages
at the lower level (i.e. the firmware debug messages, and signal assertion in the memory
controller) we must involve additional tools.

2.3.1 Serial port connection via HyperTerminal

The documentation from the Xilinx getting started guide is very good, but there are a few
shortcomings, for example, they do not document the errors that may occur. Refer to the
following for setting up serial port connection for both Virtex 5 and Virtex 6.

1. On the Virtex 5 board, set SW3 to 00010101 see Figure 4, ignore this step for Virtex
6

Figure 4: Pin configuration for SW3

2. Connect a modem serial cable between your Windows machine and the FPGA Board
serial out.

(a) On the windows machine, click Start → Program → Accessories → Communi-
cations → HyperTerminal
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(b) Give any name to the Connection Description window, preferably something
easy to remember, because you will need this over and over again.

(c) In the Connect To window click Cancel then select File → Properties. Be sure
to select Connect using COM1. See Figure 5

Figure 5: HyperTerminal Setup and Properties

(d) Click Configure and input the following settings. See Figure 6

i. Bits per second = 9600
ii. Data bits = 8
iii. Parity = None
iv. Stop bits = 1
v. Flow control = None
vi. Click OK to accept settings

(e) Select File → Properties.

i. Select the Settings tab and click on ASCII Setup. See Figure 7
ii. Character delay: 20 milliseconds
iii. Click OK to accept settings
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Figure 6: COM1 Properties

Your HyperTerminal should now display outputs from the firmware code. Sample firmware
outputs from nand_pci_driver benchmark program are provided below:

TestApp PCIe-NAND -- Entering main() --
Got 1 Byte DMA Sync: 0
-----Starting HW Reset------
-----Finished HW Reset------

Waiting...commandloop: got garbage command
Waiting...command is TEST_READ --
----sent out data (8) bytes 0
Waiting...command is TEST_WRITE --
----got write data (8)bytes 70717075
Waiting...command is TEST_READ --
----sent out data (8) bytes 70717075
Waiting...command is NAND_RESET: Chip 1 --
-----Sending NAND RESET cmd_reg = 8, status_reg = 4-----

NAND RESET status = NAND_BUSY (2)
-----Finished NAND RESET: status = NAND_CMD_DONE (1)-----
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Figure 7: ASCII Setup

Waiting...command is NAND_RESET: Chip 2 --
-----Sending NAND RESET cmd_reg = 56, status_reg = 52-----

NAND RESET status = NAND_BUSY (2)
-----Finished NAND RESET: status = NAND_CMD_DONE (1)-----

Waiting...command is NAND_RESET: Chip 3 --
-----Sending NAND RESET cmd_reg = 104, status_reg = 100-----

NAND RESET status = NAND_BUSY (2)
-----Finished NAND RESET: status = NAND_CMD_DONE (1)-----

Waiting...command is NAND_RESET: Chip 4 --
-----Sending NAND RESET cmd_reg = 152, status_reg = 148-----

NAND RESET status = NAND_BUSY (2)
-----Finished NAND RESET: status = NAND_CMD_DONE (1)-----

Waiting...command is NAND_READ_ID: Chip 1, Addr 0--
-----Sending NAND READ_ID: CMD_REG = 8, STATUS_REG = 4, DATA_BUF = 1C------
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NAND READ_ID: status = NAND_BUSY (2)
----- Finished READ_ID; status = NAND_CMD_DONE (1)

Read_ID read val: D3902E64

----sent out data (8) bytes D3902E64
Waiting...command is NAND_READ_ID: Chip 1, Addr 20--
-----Sending NAND READ_ID: CMD_REG = 8, STATUS_REG = 4, DATA_BUF = 1C------

NAND READ_ID: status = NAND_BUSY (2)
----- Finished READ_ID; status = NAND_CMD_DONE (1)

Read_ID read val: 4E46494F

----sent out data (8) bytes 4E46494F
Waiting...command is NAND_READ_ID: Chip 2, Addr 0--
-----Sending NAND READ_ID: CMD_REG = 38, STATUS_REG = 34, DATA_BUF = 4C------

NAND READ_ID: status = NAND_BUSY (2)
----- Finished READ_ID; status = NAND_CMD_DONE (1)

Read_ID read val: D1902E60

----sent out data (8) bytes D1902E60
Waiting...

The above outputs are generally pretty self explanatory. A few note worthy register
and signal names are clarified below:

NAND_RESET Signal sent to nand chip to reset all signals,
this is not the block reset signal

TEST_READ/WRITE Test signal sent to nand chip to trigger sendback
this is not the page read signal

CMD_REG Command register on FPGA used to store incoming signals

2.3.2 Setting up Chipscope

Chipscope is one of the few Xilinx tools that prove to be worthy of the time spent to try
to figure out how to make it work, and thus will not be discussed in detail here. We have
included a picture of what the final result should look like see Figure 8

Note that Chipscope is called Chipscope Pro Analyzer under the Xilinx Tools. And
the process involves creating an ILA Core and an ICON Core and inserting them into
your design so that signals in your design could be monitored in real time based on trigger
settings you specify.
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Figure 8: Chipscope for the Memory Controller

2.3.3 Setting up XPS project or Importing into an Existing XPS Project

We recommend new users of our project to use our original sources to avoid unnecessary
hassle with Xilinx Tools. Upon receiving the latest repo, one should proceed to
<tree>/ssd_repo/ssd_Chipscope and copy the directory over to a location on the local
disk where the file path does not have space characters. This is very important, as Xilinx
will refuse to open the xmp file if the project directory is on a path with spaces in the path
name. Once we have the directory in a valid path, open system.xmp which should bring
us to Figure 9, the home page of XPS.

While other functionalities of XPS exist, we primarily use XPS for two purposes, com-
piling the firmware code and synthesis and downloading of bitstream onto the FPGA. To
see the firmware loaded in the current project click the Application tab at the lower left
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Figure 9: Home Page of XPS upon opening the system.xmp file

corner. As shown in Figure 10.
In this view, we can see the list of applications Figure 11 shows the expanded view of

the Firmware applications. We can see the path to the source code for each of the firmware
here. (Also very important, because Xilinx editor tends to play tricks on files and make
them full of compile errors).

At this point, the host machine should be off, the FPGA should be on, and the Serial
port monitoring the COM1 data port should be on. Find the update bitstream button and
click it. See Figure 12

Note, this step is known more commonly as synthesis. Changes made to the memory
controller will usually take about 40 minutes to an hour to finish updating the bitstream.
When the bitstream finishes updating the console should display text as shown in Figure 13,
at which point we can click the Download bitstream button to initiate the XPS tool to
program our board, the button is shown in the same figure.

When the bitstream is successfully downloaded, we can proceed to power on the host
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Figure 10: Highlights the Firmware Section in XPS View

machine and perform tests for PCI-E recognition and so on. You should see something
similar to the text highlighted in Figure 14.

In order to import the project into an existing project. Given the XPS tool is 11.1, one
must first ensure that all the libraries listed on the Figure 9 are present in their distribution
of XPS, then check the version number.

Our team attempted to migrate the XPS 11.1 project into 12.1, and the results were
not promising due to a few reasons. Certain packages such as MPMC does not remain
compatible across different versions of XPS. If we modify their version numbers manually,
then they will fail during synthesis. We must import newer versions of each incompatible
package to make the transition between XPS tool versions successful.

Another obstable for inter-version importing/exporting of existing XPS projects is the
UCF file. Generally the UCF file stays the same for all Virtex 5 boards, however, when
a newer tool version deprecates a package version, it in turn also deprecates the connec-
tion assigned to that package in the UCF file. When such situations occure, one should

13



Figure 11: Highlights the Expanded Firmware Section in XPS View

consolidate the Xilinx Forum for solutions. Many hacks exist on Xilinx forms dealing with
exactly such situations.

3 System Design

3.1 Memory Controller

The memory controller has gone through multiple different revisions, after consolidating
changes from previous project groups, we settled on the following design, see Figure 15:
Below is a description of each of the FSM stages:

1. stage 1: WAIT FOR CMD This stage just waits for command to be pushed in.
WAIT FOR CMD stage detected which command was pushed in and set several val-
ues for next stages in fsm. For example, it runs case tests of 8 bits in command
register(nand cmd reg) to see which command is pushed in. Next step is setting
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Figure 12: Highlights the Update Bitstream Button in XPS

correct value for flags. In our current fsm design, we have 5 flags to set up in
WAIT FOR CMD command; num addr cycles, num read cycles, fsm timer nand addr delay,
cmd reads data, and needs second cmd.
—————————————————————————–
num addr cycles - number of cycles needed to latch address for further operation.
num read cycles - number of cycles needed to be run when reading from flash mem-
ory.
fsm timer nand addr delay - to synchronize with clock in hardware.
cmd reads data - 1 if current command need to read from flash memory, else 0.
needs second cmd - 1 if current command demands second command after addresses
are latched, else 0.
—————————————————————————–

After setting up right values for flag. from WAIT FOR CMD stage, we designed it to
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Figure 13: Highlights the Console indicating bitstream updated successfully

go to CMD LATCH stage automatically because first step for every single commands
is latching command. However, there is a special case that does not need address latch
cycle, reset. Reset command does not need an address latching, fsm goes straight to
STATE REST stage.

2. stage 2: CMD LATCH For six command that we were supposed to implement, they
share same wave from for latching command in. Thus, we decided to pull com-
mand latching step out of every command and make separate stage just for it.
CMD LATCH stage is consist of 2 stages. First stage is to open signal for com-
mand to be latched in and processed. After System finished CMD LATCH 1, then
it automatically goes to CMD LATCH 2. There are only one difference between
CMD LATCH 1 and CMD LATCH 2, state output. Since in first stage of command
latch, command was latched in and it is time for step 2, closing gate for command.
From second step of command latching, options for next state is split into 2 ways,
READ DATA and ADDR LATCH. If current command is read status(in our design it
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Figure 14: Highlights the Console indicating bitstream downloaded to board

is defined as CMD READ STATUS), then next state of fsm would be READ DATA
because it does not need an address to operate. Read status already knows where to
read from. In any other cases, next state is ADDR LATCH because other than read
status operation, command needs an address to be executed. While system is in this
stage, nand status register(nand status reg) indicates that nand chip is busy.

3. stage 3: ADDR LATCH Just like we pull out command latching steps out from every
command waveforms, we decided to do same for address latching steps for same rea-
son. ADDR LATCH is consist of two steps. First step is to set up right values to open
gate for address to latched in. However, we are erasing command register unless cur-
rent command demands second command later. To have more than one address to be
latched in, we decided to loop this whole latching address stages as many times as we
need according to num addr cycles register. num addr cycles register was assigned to
certain value in WAIT FOR CMD stage. 1 complete loop from ADDR LATCH 1 to
ADDR LATCH 2 would be one cycle for address latching. After completing enough
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STATE_RESET1-3

cmd = STATE_RESET

CMD_LATCH_0-1

other cmd

READ_DATA_0-1

cmd = READ_STATUS

ADDR_LATCH_0-1

cmd_reads_data

CMD2_LATCH_0-1

needs_second_cmd

WRITE_DATA_0-1

!cmd_reads_data

WRITE_DATA_WAIT_0

buffer full

Start

num_write_data_cycle  == 0

BUSY_WAIT_0

else

cmd =BLOCK_ERASE && rb1_1 =1

cmd != BLOCK_ERASE && rb1_1 =1

num_read_data_cycle == 0

WAIT_FOR_CMD

else
READ_DATA_WAIT

buffer full

mb_done_reading
mb_done_writing

Figure 15: Memory Controller FSM

number of cycles for address, from second steps of latching address, system goes into
3 different stages under certain conditions. If current command needs second com-
mand to be completed, then system goes into CMD2 LATCH stages or it goes to
READ DATA if command reads data from nand chip or WRITE DATA if it needs
to write. While system is in this stage, nand status register is showing NAND BUSY.

4. stage 4: CMD2 LATCH There are few operations that need second command after
latching address in to proceed further. However, not every commands need second
command, we decided to pull this stage out so that only those that need second
command would go through this stage. This stages outputs certain value for second
command on io O wire so that it can be transferred. After putting second command
in, we need wait for certain amount of time for requested operation to be finished.
While processing nand flash memory chip, system waits for rb 1 signal to be set in
BUSY WAIT stage.
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5. stage 5: BUSY WAIT We have to guarantee enough time for process to read or write
on flash chip. To guarantee such time, system is sitting in BUSY WAIT stage doing
nothing. We clear nand command register in here, too. When reading or writing is
finished, hardware automatically sets rb1 1 signal as 1 indicating it is safe to proceed
to next stage in sfm. When rb1 1 is set, then next stage is READ DATA unless
current command was block erase operation. When it was block erase, then block
erase operation is completed done, going back to WAIT FOR CMD stage.

6. stage 6: READ DATA This stage transfers data from flash chip to us. READ DATA
stage reads data from nand flash chip memory and put in buffer. Fsm loops through
both step 1 and 2 of READ DATA until number of read cycle is reached. We set
correct value for num read data cycles in WAIT FOR CMD stage in the beginning
of the fsm. Value of num read data cycles register is decremented every time when
buffer is full. data buffer counter register is for system to know that how many
bytes it has been reading from nand chip. We see buffer is full by multiplying 8
to data buffer counter and see if it is same as DATA BUFFER SIZE (128bytes for
our specification) -1. When buffer is full, no more data can be read from flash chip.
Data on buffer has to go somewhere, probably back to host PC in this case. To free
the buffer, fsm goes into READ DATA WAIT stage. num read data cycle register is
decremented after each reading cycle and data buffer counter register is incremented
at the same time where no certain condition rose. when num read data cycles reaches
zero, fsm goes to WAIT FOR CMD since all the operations has been completed for
read command.

7. stage 7:READ DATA WAIT Fsm gets this stage when buffer is full during read-
ing data from chip. Thus, this stage wait till motherboard reads all the data on
the buffer and free them. When motherboard finished reading data, it signals by
setting mb done reading signal. As a result, in this stage, system is looking for
mb done reading signal to be 1. When it sees mb done reading signal, fms goes back
to READ DATA stage.

8. stage 8:WRITE DATA WRITE DATA is almost exact opposite of READ DATA.
It writes onto flash chip with buffer. WRITE DATA stage keeps looping until ei-
ther buffer is full or num write data cycle reaches zero. Similarly to READ DATA,
num write data cycles was assigned to correct value for writing cycle. When num write data cycle
reaches zero, fsm enters CMD2 LATCH because program page command needs a
second command to be completed. Checking method to see buffer is full is same
as used in READ DATA. When buffer is full, fsm waits till motherboard finishes
writing. When motherboard finishes writing, fsm goes back to WRITE DATA stage
and complete the cycle. Since program page needs a second command as well, after
finishing writing cycles, fsm enters CMD2 LATCH stage.
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9. stage 9: STATE RESET Reset stage consists of 3 steps. After finishing all three
steps, fsm goes back to WAIT FOR CMD stage because there is nothing more to be
done for reset operation.

Through these listed stages we are essentially just emulating the following waveforms:

Figure 16: READ STATUS operation

Figure 17: PAGE WRITE operation

Note that the waveforms specified here must be followed exactly in terms of timing,
otherwise their behavior is undefined, and almost always wrong. The timing is constrained
by using 33 Mhz clock frequency which fits the Micron specifications, and thus the cycles
of the FSM can fit the break points in the waveform nicely.

4 Project Environments and Possible Variants

For this project, we used a host machine with Linux Kernel 2.6.28.1, other kernels may
not be used at this point, because newer kernels have a new way of handling the module
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Figure 18: READ ID operation

Figure 19: PAGE READ operation

insertion, which does not seem to be compatible with our current setup. We tested and
verified this restriction on 2.6.34.7 and 2.6.32.26.

In this project we used a 4 lane PCI-E slot to host our XUPv5 board. During the
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Figure 20: BLOCK ERASE operation

Figure 21: RESET operation

course of this project we discovered that other lane sizes may also be used. Our setup was
tested separately on a 8 lane and a 16 lane sized PCI-E slot, and were able to send and
receive to and from PCI-E bus with no errors.
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5 Shortcomings and Future Work

Due to one of our teammates dropping the course, our team steered toward coming up
with good documentation for the overall project instead of focusing on finishing the SSD
implementation. As a result of this change, we were able to throughly document the PCI-E
interface portions of our project in our source code. We placed a lot of focus on helping
future teams who decide to take on this project. We hope this report can serve as a useful
frame of reference in future development of this project.

The current SSD implementation lacks the complete set of six commands to make up
a fully functional SSD. So far read id, reset, block erase, fetch error appear to be working
through our Chipscope analysis. The missing commands are page read and page write,
both of which are multicycle commands that require synchronization between the firmware
and the memory controller. The anticipated clock cycle synchronization appears to have
bugs, and NAND chip 2 proves to be simply unusable.

Once the six fundamental commands are working and passes the listed benchmarks in
Appendix A, a block device driver should be written to facilitate the abstraction between
the OS and application layer, so that the SSD could be treated as a normal disk drive.

6 Individual Efforts

This section lists individual contribution to the project.

6.1 Kun Qian

1. Worked on researching and identifying the progress of previous groups, a seemingly
simple task, but in reality took 3 weeks amidst confusion of repositories.

2. Maintainer of the newest repository.

3. Creator and maintainer of the team gantt chart.

4. Setup the initial SysACE demo application for presentation through VGA (about 1
hour).

5. Worked on the chipscope anaylsis tool for the memory controller. (about 2 hours)

6. Setup the Serial port connection to debug Mem controller firmware. (about 2 hours)

7. Worked on the Memory Controller FSM debugging. (3 weeks)

8. Worked on the Linux driver to add enhancements for block erase, page read command
and page write command. (about 40 hours in 2 weeks)
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9. Worked on the firmware application TestApp PCIe NAND, providing enhancements
for block erase, page read and page write command. (about 20 hours in 2 weeks)

10. Developed the Design Review Demo application, which was a benchmark application
showing activity across the PCI-E bus. (1 hour)

11. Developed the Status Demos, which demonstrated the functionality of the PCI-E
driver. (about 2 hours)

12. Created presentation slides for all presentations (around 6 hours total in semester)

13. Documented developement of PCI-E (6 hours in 2 days)

14. Meetings with Yu Cai for help on Project. (6 hours in semester, avg 1 hour per
meeting)

15. Regular meeting with Professor Kenneth Mai (6 hours in semester, avg 30 mins per
meeting)

16. Drafted and formatted this Final Report (32 hours in 4 days)

6.2 Jihoon Kim

I, JiHoon Kim, worked on fsm and firmware mostly. From the beginning of the project,
Matt Cheong who dropped in middle of semester, and I decided to work on six commands
first. I finished fsm for block erase, reset and page read. To latch multiple addresses
sequentially, we had to change basically entire fsm from last year. Last group did not
have to worry about sequential address latching because they did not have command that
required multiple addresses. However, most of our 6 commands require multiple addresses.
After building fsm for commands, I worked on synchronizing with firmware. However,
firmware took much more time than I expected, while working on firmware, one of our
teammates dropped the course. After talking to professor Nace and Professor ken Mai,
direction of our project was changed. It was to have same project on different board,
virtex-6. After trying to compile everything with virtex-6, it didnt even compile. I had
to change some stuff in system.mhs and system.mss. Virtex-6 and virtex-5 have different
hardwares, such as memory microblaze version. We had to look up specification for virtex-
6 and changed from .mms and .mhs files. Also, I thought I could go through all the pin
assignments in .ucf file for virtex-5 and change assignments line by line. There are pin
specifications for both virtex-5 and virtex-6. Thus, it was easy to find pin description for
each board. However, I could not find any relationships between any pins in two different
boards. If one pin is used in virtex-5 by our program, then corresponding pin in virtex-6
should be used too. However, I could not find corresponding pin for virtex-6 even with pin
description. This project was not successful project at all. There are many obstacles that
our team had to go through. We did not have enough communication among team members
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nor with professors. Our project repository changed many times too. Also, taking over
project that some one worked on last semester is not an easy job. There must be better
documentation for next team to look at and to understand project much more quickly.
However, Kun and I decided to stay in class and learned a lot. First, when working in
team, communication is much more important than I thought. Our team did not have any
problems with each other. We just didnt meet enough times. If we meet more often and
talk more, then project would have been in much better shape. Communication among
team members is important, but also communicate with others who worked or is currently
working on same project is important too. When having hard time understanding someone
elses work, it could be much easier if one asks. I did learn many things technically, such
as dealing with fpga board. Furthermore, I learned more valuable things, from choosing,
scheduling the project, working in team for semester long, and going through problems
with team.
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A List of All Benchmarks

The following benchmarks can be used to test the functionality of the PCI-E interface.

1. TestApp Nand
Location: <tree>/ssd_repo/PCIe-MB-NAND-DIMM/TestAPP_Nand
There is a software project taken from the rev2 Nand Controller project, called
TestApp Nand. This test is a good place to start to make sure that the hardware is
hooked up properly and you get the serial prints. If this test runs, you can see the
readID values from each nand chip and compare them to the expected values.
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2. EC PCIe DMA FIFO TEST
Location: <tree>/ssd_repo/PCIe-MB-NAND-DIMM/EC_PCIe_DMA_FIFO_TEST
it is a good idea to run this test again in the context of this XPS project before
proceeding to the more complicated tests, just to verify the hardware is hooked up
right.

One difference is that our custom DIMM is used this time, not the standard 256MB
DDR DIMM provided by Xilinx.

There is an issue with our DDR controller which I have noted but not looked into.
Currently, the XPS project is configured to use BRAM instead of DDR for all of
the microblaze address space, since using DRAM caused an unexpected amount of
slowdown ( 1 minute per DMA transfer instead of 300uS). There is probably a quick
fix in the DRAM clocks or configuration of the DDR controller, but its easier to just
disable the system at this point.

3. TestApp PCIe NAND
Location: <tree>/ssd_repo/PCIe-MB-NAND-DIMM/TestApp_PCIe_NAND
This project utilizes the PCIe channel to send specific messages from the host PC
to the MB, issuing commands and transferring the associated data. The rev2 nand
controller is used and the commands it supports at this point are made accessible to
the host PC running the ’nand pci driver’ project.

On the XPS side, make sure to mark the ’TestApp PCIe NAND’ project for BRAM
initialization. The NAND+DDR dimm needs to be used, and apart from that the
hardware setup for the PCIe project needs to be followed.

On the host PC, the ’nand pci driver’ project needs to be built and run. Enter the
root directory of nand pci driver and run the command ’make’. This will build all
the necessary files and then you can run ./nand pci driver. This assumes you have
already loaded the kernel module (in the ’module’ directory). You can modify the
main.c file in ’nand pci driver’ to change what commands are being issued, or change
nand.c and nand.h to add more commands.

B Porting Virtex 5 Project to Virtex 6

Importin virtex-5 project onto virtex-6 board is not simple job. Basically, one would have
to create a new project for virtext-6. Even with all the source code from virtex-5 proejct,
one still has to create a new project for virtext-6. However, it could be much simpler
than creating new virtex-6 project when one has access to virtex-5 project because logic
and block diagrams would be similar between virtex-5 and virtex-6. Even though, pin
assignment in virtex-5 board and virtex-6 board are obviously different. Thus, it is crucial
to modify user constraint file(.ucf) to have project working properly on virtex-6 board. It
is going to take a lot of time and effort to change every variable or ports from virtex-5 to
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virtex-6. Even, there is datasheet and pinout spreadsheet for both virtex-5 and virtex-6,
it does not explicitly say that which pin virtex-5 is corresponding to which pin in virtex-6.
With all pin assignments completed for virtex-5 board, one still have to go through pin
assigning process again with virtex-6 board. There is software development tool called
PlanAhead from Xilinx that helps you with pin assigning.

C Helpful Xilinx Tools

Project navigator and PlanAhead are two independent software each running under sep-
arate system process. There will be no synchronization for data between two separate
software. Changing design data from one tool is not automatically recognized by other
in real time. One should not attempt to modify constraint simultaneously in both tools.
Just like data synchronization in multi threading programming, one should save changed
data from one tool to update or see changes on the other software. PlanAhead in ISE
Integration mode only enables physical constraint modification for I/O pins, logic LOC
and AREA_GROUP constraints. Other PlanAhead features such that enabling logic or timing
constraint modification are not available in ISE Integration mode, one should use PlanA-
head by itself to do so. PlanAhead will try to maintain the origianl content and format of
UCF files such as comments and incomplete constraints.
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