Solid State Drive: Software and Hardware Design
18-545: Digital Design Project
Final Report

Kun Qian (kgian@andrew.cmu.edu)
Jihoon Kim (jihoonk@andrew.cmu.edu)

December 9, 2010

Contents

1

~J

Q w »

Introduction

1.1 Memory Storage Device
1.2 Memory Controller e
1.3 Firmware for Memory Controller
1.4 (Block) Device Driver for Host Machine
1.5 Contributions
Initial Setup

2.1 How to get the latest repo oo
2.2 How to bring up the PCI-E across Virtex b5
2.3 Setting up debugging environment
2.3.1 Serial port connection via HyperTerminal
2.3.2 Setting up Chipscopeo
2.3.3 Setting up XPS project or Importing into an Existing XPS Project .

System Design
3.1 Memory Controller

Project Environments and Possible Variants
Shortcomings and Future Work

Individual Efforts
6.1 Kun Qian
6.2 Jihoon Kim

Acknowledgments
List of All Benchmarks
Porting Virtex 5 Project to Virtex 6

Helpful Xilinx Tools

List of Figures

Expected output of Ispci.
Expected output of make;sudo make load.
Expected output of dmesg. o
Pin configuration for SW3 o oL oo

W N =

N DN ===

SO W WwWwN

20

23

23
23
24

25

25

26

27

S Ot O

HyperTerminal Setup and Properties 7
COMI Properties o 8
ASCIT Setup o e 9
Chipscope for the Memory Controller 11
Home Page of XPS upon opening the system.xmp file 12
Highlights the Firmware Section in XPS View 13
Highlights the Expanded Firmware Section in XPS View 14
Highlights the Update Bitstream Button in XPS 15
Highlights the Console indicating bitstream updated successfully 16
Highlights the Console indicating bitstream downloaded to board 17
Memory Controller FSM 18
READ STATUS operation 20
PAGE WRITE operation 20
READ ID operation 21
PAGE READ operation 21
BLOCK ERASE operation 22
RESET operation 22

Abstract

Significant progress, in both software and hardware, has been made in previous iterations
of this project in attempt to build a fully functional Solid State Drive. However, when
our team attempted to pick up where the previous teams have left off, we found it very
hard to fully utilize the progresses made by previous teams either due to the lack of clear
documentation, or simply due to miscommunication during the project hand off. To remedy
such effects for future iterations of this project, we will try to provide a clear and concise
documentation on the qualifications we feel are needed to take on this project, as well as
the process of bringing a new system up to speed with our current progress. We will also
focus on describing the PCI-E interface as we feel it is the component that was missing
from all previous documentations.

1 Introduction

What constitutes a fully functional Solid State Drive? Invariants to any SSD implementa-
tion includes a memory storage device, a memory controller for the storage device, firmware
for the memory controller, a device driver for the host machine. Recognizing the complex-
ity and significance of each component early on in the design process is very important,
since the system cannot function with any component misbehaving, and each component
will likely need to be developed separately but they must tested collectively throughout
the development process. A brief overview of each component is provided below, note that
host device refers to the device which comprises of all components that makes up an SSD,
host machine refers to the actual machine that the SSD is plugged into:

1.1 Memory Storage Device

Primary storage unit, most commonly use NAND based flash chips. In addition to the
storage units, the device must also provide signal translation units if there exists voltage
differences between the chip signals and the host device bus. The entire device is then
connected to the 10 bus on the host device. Note that flash memory have different orga-
nization than traditional memory storage devices, background knowledge of flash memory
is definitely required in understanding how to operate the memory storage device.

1.2 Memory Controller

Resides as reprogrammable hardware modules in the host device, acts as both administrator
and caretaker of the memory storage device. Handles the transmission of request signals to
the memory chips, as well as response signals from the memory chips. Since NAND flash
cells can endure limited amount of erase cycles before becoming unreliable, it is crucial for
the memory controller to provide wear leveling, an algorithm to monitor the health of the
individual flash blocks, and avoid wearing out any individual block prematurely. Memory
controller needs to be finished early, since it requires long duration synthesis, the idea is to
have the memory controller emit all signals supported by the memory device, and handle
the forwarding of all signals from the memory device onto the IO bus. Requires background
in flash memory, Verilog, VHDL and memory scheduling algorithms.

1.3 Firmware for Memory Controller

Although the memory controllers are usually reprogrammable in the design project, they
should not be in a real implementation of SSD, mainly due to the fact that reprogrammable
hardware modules usually require power to maintain (e.g. FPGA implementations), and
to improve performance they are usually fabricated. Since the memory controller are
invariant, there would need to be something that can adapt to different host machine
environments, acting as the translator of requests from the host machine to the SSD.

Firmware for the memory controller are C code run by an onboard core in the host device.
It acts as the translator between the host machine’s requests, and the memory controller’s
responses. Background knowledge required are embedded software development and basic
knowledge of operating systems.

1.4 (Block) Device Driver for Host Machine

When the SSD is plugged into the PCI-E slots of the host machine, it is the device driver’s
job to recognize the SSD and handle application generated requests to the SSD. A device
driver is different from a block device driver in that the sole purpose of the device driver
is to recognize the SSD and only enabling a specific set of application to issue requests to
the SSD, whereas block device driver will setup translation of traditional memory request
signals to the ones specified by the memory controller firmware, and mount the SSD as a
block memory storage device, thus enabling all applications to issue requests to the SSD
through the OS.

1.5 Contributions

This paper makes the following main contributions:

1. Clean concise documentation to the process of establishing a benchmarked debug-
gable platform across the PCI-E

2. Clear definition of what needs to be done for the Memory Controller
3. Source code that is easy to read and understand
4. Consolidation of all previous efforts into one project report

By now you should have a good idea of what to expect if you choose to take this project.
If you have what it takes, read on.

2 Initial Setup

This section will describe the steps to take in order to obtain the source code from our
repositories and setup a testing framework within an hour.

2.1 How to get the latest repo

All project files are hosted in a svn repo at

/afs/ece/project/km_group/svn/src/ssd_repo

In order to gain access to this repo you must first contact a repo admin (e.g.) Yu Cai
<yucai@andrew.cmu.edu>, the admin will need to give you access to the repo by running
the following shell script:

H#H#H#

#!/bin/sh

fs sa /afs/ece/project/km_group [your_andrewid] rl

fs sa /afs/ece/project/km_group/svn [your_andrewid] rl

fs sa /afs/ece/project/km_group/svn/src [your_andrewid] rl
cd /afs/ece/project/km_group/svn/src/ssd_repo

find -type d -exec fs sa {} [your_andrewid] rl ’;’

H#t#H#H#

Once the admin has run the shell script giving you the correct privileges, you may execute
the following commands on afs.

mkdir ssd
cd ssd; svn checkout file:///afs/ece/project/km_group/svn/src/ssd_repo

You now have access to all the latest files in this project.

2.2 How to bring up the PCI-E across Virtex 5

In this project we focused on bringing up the PCI-E of the Virtex 5 board, for similar
directions on how to do this for Virtex 6 see Appendix B. Bringing up PCI-E can be a
pain initially if you do not know exactly what is happening in the background. Heres a
brief overview:

Prior to attempting to debug the PCI-E interface the FPGA must be plugged into
the PCI-Ex8 slot on your motherboard, and completely programmed with the memory
controller and firmware running. Follow the memory controller section, Section 3.1 for
more details. The host machine needs to be rebooted every time changes are made onboard
the FPGA, simply because whenever bitstreams change on the FPGA, the host machine
needs to run POST to detect hardware changes. This is only done at boot time.

By ”bringing up PCI-E” we mean the process of getting the host machine to recognize
the XUPv5 board plugged into one of its PCI-E slots, and enabling the PCI-E bus to be
initialized to test for sending and receiving data through PCI-E. However, this is just a
higher level description of a much more complex process. The entire process can be split
into three stages:

1. Loading the memory controller into XUPv5
This stage involves synthesizing the memory controller modules, and programming
them into the FPGA. (For a complete step by step guide on how to synthesize the

$ lspci
Intel Corporation 82G33/G31/P35/P31 Express DRAM Controller (rev 18)
ble controller: Intel Corporation 82G33/G31 Erpless Integrated Graphics Controller (rev 18)
Intel Corporation 82881G (ICH7 Family) High DPflnlfJon Audlo ConTlollPl (rev 81)
Intel Corporation 82801G (ICH7 Family) PCI (
Intel Corporation 82801G (ICH7 Family) PCI
Intel C0|p0|aT10n 82 (ICH7 Family) USB UHCI Controll
82 (ICH7 Family) USB UHCI Controll
: : t 82801G (ICH7 Family) USB UHCI Controll
Intel Corporation 828081G (ICH7 Family) USB UHCI Controll
Intel Corporation 82801G (ICH7 Family) USB2 EHCI Controlle
Intel Corporation 82801 PCI Bridge (rev el)
Intel Corporation 82801GB/GR LICH? Family) LPC Interface Bridge (rey
IDE interface: Intel Corporation 82801 (ICH7 Family) SATA IDE Controller (rev 01)
SMBus: Intel Corporation 82801G (ICH7 Family) SMBus Controller (rev 1)
Memory controlle linx Corporation De
Ethernet controller: Attansic Technology Corp. Device 1863 (rev c@)
.@ Ethernet control ADMtek NC1O© Network E where Fast Ethernet 18/180 (r 11)
.® Network controller: Broadcom Corporation BCM4318 [AirForce One 54g] 802.11g Wireless LAN Controller (rev 82)

Figure 1: Expected output of Ispci.

current project, follow Section 3.1) Doing so will enable the XUPv5 board emit the
following lines to the BIOS upon restart of the host machine:

Memory controller: Xilinx Corporation Device

Caution: If the BIOS does not recognize the device plugged into the host machine’s
PCI-E slot, turn the host machine off completely, and turn off the XUPv5 board.
And turn on the XUPv5 board first and program it, then turn on the host machine
after the program is completed. Order is of the utter most importance here.

2. Loading the XUPv5) drivers into Linux Kernel
After our BIOS correctly recognizes the XUPv5 board, boot up the host machine
and double check with the following command:

lspci | grep Xilinx

You should see something similar to this line, the expected output is also shown in
Figure 1

01:00.0 Memory controller: Xilinx Corporation Device 0007

Upon verification we need to allocate memory addresses to map to the PCI-E reg-
isters corresponding to the Xilinx device. This is done by a module named xupv5
made by Eric Cheung. We call this module the linux driver as per naming convention
in previous reports. To load the linux driver run the following commands in the host
machine, the expected output is shown in Figure 2:

ssd@ssd-desktop:~/ssd/Llinux dev/nand pci driver/module$ make

make -C /lib/modules/ uname -r /build SUBDIRS= pwd modules

make[l]: Entering directory /usr/src/linux-headers-2.6.28-18-generic’
Building modules, stage 2.
MODPOST 1 modules

make[1]: Leaving directory " /usr/src/linux-headers-2.6.28-18-generic’

ssd@ssd-desktop:~/ssd/linux dev/nand pci driver/module$ sudo make load
[sudo] password for ssd:

insmod xupv5.ko

rm -rf /dev/xupv5

mknod /dev/xupv5 c 258 @

ssd@ssd-desktop:~/ssd/linux_dev/nand pci driver/modules |

Figure 2: Expected output of make;sudo make load.

cd <tree>/linux_dev/nand_pci_driver/module
make; sudo make load

If you see errors at this stage, do not proceed further, try restarting the host machine
or reprogramming the FPGA. The first command gets into the module directory in
the ssd repo, while the second command makes the module files and loads the module
into the running linux kernel via insmod. A screen shot of the effect of the above
command is shown below. If there were no errors printed on the screen after the
execution, we can test if the module was probed correctly by running the following
command, expected output are in Figure 3:

dmesg | grep xupvbh

.219428] xupv5 module init(391): Initialization

.219471] xupv5 pcird 0000:01:00.8: PCI INT A -= GSI 16 (level, low) -= IRQ 16
.219475] xupv5 probe(178): BARE length: 1024

.219478] xupv5 probe(180): BAR® physical address: 1900060

.219517] xupv5 probe(183): BARG virtual address: f7fde@@@

.219525] xupv5 probe(193): Registered interrupt 16
.219527]

.219528] xupv5 probe(253): Probe completed
.219544] xupv5 dev = 262144000

Figure 3: Expected output of dmesg.

Make sure you do not see errors in this screen. If errors exist, the memory controller
was not detected correctly, and you need to restart the host machine, and reprogram
the FPGA.

3. Run applications and verify requests to and response from PCI-E
There are several benchmark programs that exists, the most commonly used, and the
fastest program is the nand_pci_driver. It is a test for all the currently supported
nand commands. For a full list of benchmark programs see Appendix A

You now have a working PCI-E interface.

2.3 Setting up debugging environment

Being able to debug is perhaps the simplest yet most important thing in any developing
environment. Referring back to our system design, the only things visible to the program-
mer, if you followed our instructions so far, are the outputs from benchmark programs,
which only has access to responses from the PCI-E bus. In order to see debug messages
at the lower level (i.e. the firmware debug messages, and signal assertion in the memory
controller) we must involve additional tools.

2.3.1 Serial port connection via HyperTerminal

The documentation from the Xilinx getting started guide is very good, but there are a few
shortcomings, for example, they do not document the errors that may occur. Refer to the
following for setting up serial port connection for both Virtex 5 and Virtex 6.

1. On the Virtex 5 board, set SW3 to 00010101 see Figure 4, ignore this step for Virtex
6

Figure 4: Pin configuration for SW3
2. Connect a modem serial cable between your Windows machine and the FPGA Board
serial out.

(a) On the windows machine, click Start — Program — Accessories — Communi-
cations — HyperTerminal

(b) Give any name to the Connection Description window, preferably something
easy to remember, because you will need this over and over again.

(¢) In the Connect To window click Cancel then select File — Properties. Be sure
to select Connect using COM1. See Figure 5

9600 Properties @E}

Connect Ta | Settings

Change |con...

Countny/region:

Enter the area code without the long-distance prefis.

Area code:

Phone number; | |

Connect ugsing: [EDM‘I W |

[oK][Cancel]

Figure 5: HyperTerminal Setup and Properties

(d) Click Configure and input the following settings. See Figure 6
i. Bits per second = 9600
ii. Data bits = 8
iii. Parity = None
iv. Stop bits =1
v. Flow control = None
vi. Click OK to accept settings

(e) Select File — Properties.

i. Select the Settings tab and click on ASCII Setup. See Figure 7
ii. Character delay: 20 milliseconds
iii. Click OK to accept settings

COM1 Properties @@

Part Settings
Bits per second: | 8600 “
Data bits: l = v
Parity: | Mone “
Stop bits: | 1 ~
Elow convot: TN
Bestare Defaults
[QK] [Cancel] I Apply }

Figure 6: COM1 Properties

Your HyperTerminal should now display outputs from the firmware code. Sample firmware
outputs from nand_pci_driver benchmark program are provided below:

TestApp PCIe-NAND -- Entering main() --
Got 1 Byte DMA Sync: O

Waiting...commandloop: got garbage command

Waiting...command is TEST_READ --

----sent out data (8) bytes 0

Waiting...command is TEST_WRITE --

----got write data (8)bytes 70717075

Waiting...command is TEST_READ --

----sent out data (8) bytes 70717075

Waiting...command is NAND_RESET: Chip 1 --

————— Sending NAND RESET cmd_reg = 8, status_reg = 4-———-
NAND RESET status = NAND_BUSY (2)

————— Finished NAND RESET: status = NAND_CMD_DONE (1)-----

ASCII Setup ?]%]

ASCI Sending
[] Send line ends with line feeds
[] Echo typed characters locally

Line delay: |0 milliseconds.
Character delay: |20 millizeconds.

ASCI Receiving

[] &ppend line feeds ta incoming line ends
[] Force incoming data to 7-bit ASCII
Wiap lines that exceed terminal width

[ok | [Cancel

Figure 7: ASCII Setup

Waiting...command is NAND_RESET: Chip 2 --
————— Sending NAND RESET cmd_reg = 56, status_reg = 52----—-
NAND RESET status = NAND_BUSY (2)

Waiting...command is NAND_RESET: Chip 3 --
————— Sending NAND RESET cmd_reg = 104, status_reg = 100-----
NAND RESET status = NAND_BUSY (2)

Waiting...command is NAND_RESET: Chip 4 --

————— Sending NAND RESET cmd_reg = 152, status_reg = 148-----
NAND RESET status = NAND_BUSY (2)

----- Finished NAND RESET: status = NAND_CMD_DONE (1)-----

Waiting...command is NAND_READ_ID: Chip 1, Addr 0--
————— Sending NAND READ_ID: CMD_REG = 8, STATUS_REG = 4, DATA_BUF

NAND READ_ID: status = NAND_BUSY (2)
————— Finished READ_ID; status = NAND_CMD_DONE (1)
Read_ID read val: D3902E64

----sent out data (8) bytes D3902E64
Waiting...command is NAND_READ_ID: Chip 1, Addr 20--

NAND READ_ID: status = NAND_BUSY (2)
————— Finished READ_ID; status = NAND_CMD_DONE (1)
Read_ID read val: 4E46494F

----sent out data (8) bytes 4E46494F
Waiting...command is NAND_READ_ID: Chip 2, Addr 0--

NAND READ_ID: status = NAND_BUSY (2)
————— Finished READ_ID; status = NAND_CMD_DONE (1)
Read_ID read val: D1902E60

----sent out data (8) bytes D1902E60
Waiting...

The above outputs are generally pretty self explanatory. A few note worthy register

and signal names are clarified below:

NAND_RESET Signal sent to nand chip to reset all signals,
this is not the block reset signal

TEST_READ/WRITE Test signal sent to nand chip to trigger sendback
this is not the page read signal

CMD_REG Command register on FPGA used to store incoming signals

2.3.2 Setting up Chipscope

Chipscope is one of the few Xilinx tools that prove to be worthy of the time spent to try
to figure out how to make it work, and thus will not be discussed in detail here. We have

included a picture of what the final result should look like see Figure 8

Note that Chipscope is called Chipscope Pro Analyzer under the Xilinx Tools. And
the process involves creating an ILA Core and an ICON Core and inserting them into
your design so that signals in your design could be monitored in real time based on trigger

settings you specify.

10

Project: Counter HIl 7 Trigger Setup - DEV:4 MyDeviced (XC5VLX110T) UNIT:0 MyILAD {ILA)
DEV.0 MyDevicel CF32F) | fI's =
DEV1 WyDeviced (CCF327) = . Match Linit Fuic_tmn Value ! Counter R
DEV:2 MyDeviceZ 000850010 ES @ MO:TriggerPaord == HOOOE_HO0G Ein dizabled =
DEY:3 MyDeviced (Systermn_A _———e—ee—,—e,e,ee—e—,,,,,,_,,,Y,Y,Y,Y,Y,Y,Y,Y,Y,Y,Y,Y,_Y,,_,_e,e,YeYP L.,
¢ DEV:4 WyDeviced (XCEVLHTT ; add || Active Trigger Condition Name | Trigger Condition Equation | |
Systern Monitar Console = | | @ ‘ TriggerConditiand | M0 |§|
¢ URIT:O hiyILAD (LAY
Trigoer Setup E, ,7
\Wavaform B Type = Windows ‘ 1 Depth: [1024 - Position 0
oL T Tl =
= @ | Storage Qualification Al Data
signals: DEV: 4 UNIT: 0 |
o Data Port @ sample Buferis full

o Trigger Ports

@ ‘Waveform - DEV:4 MyDeviced (XC5VLX110T) UNIT:0 MyiLAO (ILA) -::

. 0 80 160 240 320 400 480 560 640 720 800 8B0 960
Bus/Signal X 1]
%) l l l l ! l l ! ! l ! !
DataPort[0] il n =
DataPort[l] 1 1
DataPort[2] a 1]
DataPort[3] 1] i
DataPort[4] 1 1
DataPort[5] 1 1
DataPort[o] 1 1
DaraPort[7] 1 1
-
[T D[4 a4 D]
Wiawefor captured Sep 8, 2070 11:57:11 A o of«Jr] o o[«Jr] aceo: o

o

COMMAND: import_inserter_cdc C:\Documents and 4
COMMAND: reset_trigger_settings 4 0

COMMAND: set_window_capture 400 110240
COMMAND: set_match_function 4 0 00 3 1 XXXXXXXX
COMMAND: set_trigger_condition 40 3 1 5555
COMMAND: set_storage_condition 4 0 FFFF
COMMAND: run 4 0

COMMAND: upload 4 0

INF©Q - Device 4 Unit 0: Sample Buffer is full

INFQ - Device 4 Unit 0: Waveform captured Sep 8, 2010 11:57:11 AM

Figure 8: Chipscope for the Memory Controller

2.3.3 Setting up XPS project or Importing into an Existing XPS Project

We recommend new users of our project to use our original sources to avoid unnecessary
hassle with Xilinx Tools. Upon receiving the latest repo, one should proceed to
<tree>/ssd_repo/ssd_Chipscope and copy the directory over to a location on the local
disk where the file path does not have space characters. This is very important, as Xilinx
will refuse to open the xmp file if the project directory is on a path with spaces in the path
name. Once we have the directory in a valid path, open system.xmp which should bring
us to Figure 9, the home page of XPS.

While other functionalities of XPS exist, we primarily use XPS for two purposes, com-
piling the firmware code and synthesis and downloading of bitstream onto the FPGA. To
see the firmware loaded in the current project click the Application tab at the lower left

11

< Xilinx Platform Studio - E\SSD_Chij

opelsystem, xmp - [System Assembly View]

EEX
-8 x

[# Fie Edi WYiew Project Hardware tware Device Configuration Debug Simulation Window Help
D2a BER A DOX® oo A RrBERG BRR PcARme @x Bz 2smN
Froject 08 x L L |4 BusIterfaces | Ports | Addresses Bus Interface Fiters
Platform ¥¥ | heme Bus Nams: P Type P version TP Classfication S oy Cameen
& Project Files mirotioze ¢ Jr miooblaze 7.0 Processor Uncormerted
S e e e b ¢ Imb_vi0 100 L Bus (=) By Bus Standard
Ml e Jowbvio Lo e e o
IMPACT Command File: etcjdawrload.cnd o g b_vis 104 PLEVAS Bus LG
Implementation Option Fie: etcffast_runtime pt Jg b bram .. 210 Memory Controler
Bitgen Options File: ete/hitgen. vt e Imb_bram .. 210 Memory Controler
= By Inter
= Project Options e J¢ mpme 4030 Memory Controler
Device: xcSvl1 041 136-1L Jr bram block 1.00.a Hemory
Wetlst: TopLevel e) aes decrypt.. 1.00.3 Peipheral
Inplementation: xPS (xflow) & coeenrypt Lo0a Faidal
DL T 4 e o ots
S Model: BEHAVIORAL v - e
Design Summary v I Lo0g
& aand ob o 3.00.a Peripheral
I s [mbpb 2
e oci_ran_ @ 2.00.2 Peipheral
° ezPRON 202 Periheral
> LoD Inks roller
° 3 sps_sysace 1.01.a Peri
e sps._timer 1 Jr wps e L0Lb Perpheral
e RS732. a1 Jo s uathte 1.0L.a Peripheral
chipscoge._ic. ¢ chipscope_con 1.04. 3
chipscape_ia. +r chipscope_ila 1.03.3 *
clock_gerera. Jr dock_gener.. 2013 3
proc_sya_res proc_sys re.. 2.00.a Peripheral
< | @
Project | Applications | IF Catslog & System Assembly View B3 Block Diagram s Design Summary
Console w08 x
console | warnings | Ermers
~

Figure 9: Home Page of XPS upon opening the system.xmp file

corner. As shown in Figure 10.

In this view, we can see the list of applications Figure 11 shows the expanded view of
the Firmware applications. We can see the path to the source code for each of the firmware
here. (Also very important, because Xilinx editor tends to play tricks on files and make
them full of compile errors).

At this point, the host machine should be off, the FPGA should be on, and the Serial
port monitoring the COM1 data port should be on. Find the update bitstream button and
click it. See Figure 12

Note, this step is known more commonly as synthesis. Changes made to the memory
controller will usually take about 40 minutes to an hour to finish updating the bitstream.
When the bitstream finishes updating the console should display text as shown in Figure 13,
at which point we can click the Download bitstream button to initiate the XPS tool to
program our board, the button is shown in the same figure.

When the bitstream is successfully downloaded, we can proceed to power on the host

12

< Xilinx Platform Studio - E\SSD_Chipscope\system xmp - [System Assembly View]

EEX

(® Fle Edt Yiew Project Hardware Software Device Configuration Deb imulation window Help -8 x
BB AC X® 0o ARBORS AL A-AW M @XRric | R508R
+08x L L & busiterfaces | ports | Addresses Bus Interface Fiters
wom e e o T Geten = & Caeaten
mirobioze_0 Jr mocblaze 720 Processor
alb 100 L s
b 100 LM Bus
b mbolb 10ta PLB4S Bus
alb_cnth 2106 Memory Contraler
) dbnb_coth 2106 e
° DOR2 SDRAM 4038 Memory Controler
Inb_bram Jr bram block 1,003 Wemory
roject: EC_PCle_DMA_FIFO_TEST > aez_decrypt. 2 aes_decrypt.. LOD.a Peripheral
o bl 0 d ses_encpt 0 & sesencrypt LOD.a Peripheral
ikable: E\35D_ChipscopelEC_PCle_DMA_FIFO_TESTigxecutable. elf s chpscope_ol. T chipscope pl.. 1.03.a Peripheral
ompiler Options " g mogtite < mdm 1.00g Debug
s = nend otb_to. & nand pb_to... 3003 Peripheral
s . T v
roject: 'ﬁt‘\;w‘;"ﬂ b4 Ppare_ram 0 @ piesan 2008 Peripheral
sori microblaze. s ps ic a Perpherd
able: E\55D_ChipscopeTestapp Nandiexscutable.olf 12 IR O] I xped 202 EETE]
ompiler Options. - xpainte 0 T ups_inke 1003 Inkerrupt Controller
curces e SysACE Com Jr s sysate L01a Periheral
s e xps_tiner 1 Yo xpstmer L0Lb Peripheral
° RS237_ Uere 1 Jr xpsuartite 101a Peripheral
chipscope_it. ¢ chipscope_icon 1.04.a P
chipscape_da. +r chipscope_la 1.03.8 P
clock genere. Jr dock gener.. 201 3
proc_sys res. s proc_sys_re.. 200 Peripheral
< | >
Project (|_Applcations._|J 1p Catalog & System Assembly Yien [& Block Diagram = Design summary
Console 08 x
Console | warnings | Enors
~

Figure 10: Highlights the Firmware Section in XPS View

machine and perform tests for PCI-E recognition and so on. You should see something
similar to the text highlighted in Figure 14.

In order to import the project into an existing project. Given the XPS tool is 11.1, one
must first ensure that all the libraries listed on the Figure 9 are present in their distribution
of XPS, then check the version number.

Our team attempted to migrate the XPS 11.1 project into 12.1, and the results were
not promising due to a few reasons. Certain packages such as MPMC does not remain
compatible across different versions of XPS. If we modify their version numbers manually,
then they will fail during synthesis. We must import newer versions of each incompatible
package to make the transition between XPS tool versions successful.

Another obstable for inter-version importing/exporting of existing XPS projects is the
UCEF file. Generally the UCF file stays the same for all Virtex 5 boards, however, when
a newer tool version deprecates a package version, it in turn also deprecates the connec-
tion assigned to that package in the UCF file. When such situations occure, one should

13

 Xilinx Platform Studio - E:\SSD_Chipscopelsystem.xmp - [System Assembly View]

[% Fie Edt View Froject Hardware Software Device Configuration Debug Simulation Window Help -8 x
L3 B iDOX® wed M RUBERG BRNL F-=AR B EEXBriccZ50K
oo x L L | Businterfaces | Ports | addesses
o jects W e Bus Name: 1P Type 1P tersion
microblaze, 6 7r microblaze 7.20.4
dinb ¢ Inb_vio 100
efaul Y b ¢ Inb_vid 100
= [project: _PCle_NAND b bl Jc pbvi6 1.04a PLBN46 Bus
Processor: nicroblaze_0 W ain_enth Fr Inb_bram £ 2.10b Mervory Contraler
Exccutable; E:\55D_Chipscape|TestARp_PCle_NAND|execLtable e ity ot ¥ Inb_bram £ 2.10b Memory Controler ik
§Z$Zli' ortns s DORZ_SORAN ¥ mpme 4.03.8 Menory Controller
E:1550_Chipscope! Testapp_PCle_MANDsrcinand-mb.c [t ¢ bramblock 1008 ey
£:155D_Chipscope!TestApp_PCle_WANDisteimain.c > aes_decrpt. b aes_decrypt... 1.00.a Peripheral
hipscope!TestApp_PCle NANDisrclpcie.c e ae encpt 0 s enaypt LoLa Perigheral
hd chprcope_pl. ¢ chipscope_pl... 1.03.a Peripheral
=% EC_PCle_DMA_FIFO_TEST hd debug_modtie mchn L.o0.g Debug nitistors
Processor: microblaze_0 B nand pib_to. & nand_pb_to.. 3.00.a Peripheral
Executoble; E:155D_Chipscope|EC_PCle_DMA_FIFG_TESTiexccutable, of > e [wbpb =
Comoler Ootions e pcie_ram_0 S peeran 2003 Peripheral
_ChipscopelEC_Pcle_DMA_FIFQ_TESTisrclTestApR_Memary.c v ey g e ic Z028 Eerpheral
pd waintc 0 Yropne 100 Tnterrupt Controller
=1 TestApp_Nand pe SYSAGE_ Gom. 1 wps_sysace LOLa Peripheral
ssor: nicroblaze_0 e s tiner_§ Ferigheral
table: E-{55D_Chi hd 5222 Uart 1 Peripheral
5 chpseope_ic. 4 »
ehpreope i chpscope_la 1.03.2 »
E:S5D_Chi X [:fk gin}a g ey an;v 2012 »
:{550_Chipscopsi TestApp_Nandisrcinand-mb. - -
i proc_sys res. e proc_sysre.. 2.00.a Peripheral
< >
Project | Applications | 1P Catalog L Systern Assembly View | & Block Diagram b Design Summary
Console *08x

Console | warnings | Errars

Figure 11: Highlights the Expanded Firmware Section in XPS View

consolidate the Xilinx Forum for solutions. Many hacks exist on Xilinx forms dealing with
exactly such situations.

3 System Design

3.1 Memory Controller

The memory controller has gone through multiple different revisions, after consolidating
changes from previous project groups, we settled on the following design, see Figure 15:
Below is a description of each of the FSM stages:

1. stage 1: WAIT_FOR_CMD This stage just waits for command to be pushed in.
WAIT_FOR_CMD stage detected which command was pushed in and set several val-
ues for next stages in fsm. For example, it runs case tests of 8 bits in command
register(nand_cmd_reg) to see which command is pushed in. Next step is setting

14

= Xilinx Platform Studio - E:\SSD_Chipscopelsystem,xmp - [Design Summary]

X Fle Edt Ve Projct Hardware Softwars Device Configuration Debug Simulation Window Heip

DBEA L[BEE 4E0OX0 va A BBNRe MRE[A=A ue Bx Br ce[manK

A seens C=IERE 7 éogjr’::;”w ‘ [Update bitstream with software progran rformation] | system Project Status
Software Projects) B o ¥ = =T Implementation State: New
(5] Add Software Application Project. [Modu Level Utiization T ystem e
Defaul: microblaze_0_bootloop (5] [Timing Constraints
Default: miroblaze_0_smdstub 03 Fincut Report Product ersion: EDK 114 « Warnings:
& (8] Project: Testapp_pCre_Nanp [%] O ClockReport
Processor: microblaze_0 [| = 45 Errors and warnings
sentale £A250_ChpsopelTstace. et ANl o) Plakgen Messages XPS Reports =1
Compller Optiors: B
B o EE) [E) Ubgen tessages Report Name Generated Errors Warnings Infos
1155D_Chipscape| TestApp_PCLe_NANDYsrcinandb,c L [——"
E:155D_Chipscope| Testpp_PCle_MANDstclwmsin.c L] [£) et Messages ik
E:155D_ChipscopeiTestApp_PCLe_NANDlsrclpee.c & ¥P5Reports Libgen Log Fie
ers [0 PlatgenLog Fie Ecporin
5 |8, Project; EC_PCle_DMA_FIFO_TEST 13 ubgen oaFie imgen Log Fie
Processer: microblaze_0 () simgen Log Fie siInt Log Fie
Exec:llab\ce;f 455D_Chipscope|EC_PCle_DIA_FIFO_TEST|exectable.ef E e m:‘ setemioatle T T—
ompler Options ystem Log File E
- sourees & Errars and Warrings
:155D_ChipscopelEC_PCle_DMA_FIFO_TESTIsrc TestApp_Memory.c
Headers 1ap Messages Current Warnings 1
& [§), Project: TestApp_Nand e . ‘ ‘
Processor: microblaze_0 lace and Routs Messages |No Warnings Found |
Executabls: E:\SSD_Chipscope|Testapp_Nandiexecutable. cff Timing Messages
Compler Gptiors [fitgen Messages
= Sowrces) AllCurrent Messages -
Detailed Reports =
:155D_Chipscope|TestApp_Nandisrcimain.c & Detalld Reports s [=
E:155D_Chipscope{Testpp_Nandigrcinand-mb.c [Translation Report Report Name Status Generated Errors Warnings Infos
Headers [MepReport Transiation Report
[Place and Route Repart
(] Past-PAR Static Tining Report Vp Report
[sitgen Report Place and RoLte Report

Secondary Reparts Post-PAR Static Timing Report

Bitgen Report

Design Properties

Enable Enhanced Design Summary I o — =
Display Incramentl Messages
Enable Message Fikering |Report Name Status Generated |
(Optionsl Design Summary Contenks
] Show Clock Report Date Generated: 12/08/2010 - 21:26:10

0] Show Faiing Constraints
Show Warnings

[] Show Errors

] how Partition Data

< | >
Project | Applications | 17 Catalog & System Assembly View B3 Block Disgram E Design Summary B nand e

Console “+08 x

Console | warnings | Ermars

Update bitstream wih software program information

Figure 12: Highlights the Update Bitstream Button in XPS

correct value for flags. In our current fsm design, we have 5 flags to set up in
WAIT_FOR_CMD command; num_addr_cycles, num_read_cycles, fsm_timer_nand_addr_delay,
cmd_reads_data, and needs_second_cmd.

num_addr_cycles - number of cycles needed to latch address for further operation.
num_read_cycles - number of cycles needed to be run when reading from flash mem-
ory.

fsm_timer_nand_addr_delay - to synchronize with clock in hardware.

cmd _reads_data - 1 if current command need to read from flash memory, else 0.
needs_second_cmd - 1 if current command demands second command after addresses
are latched, else 0.

After setting up right values for flag. from WAIT_FOR_CMD stage, we designed it to

15

~ Xilinx Platform Studi

X Fle Edt Ven Projct Hardware Software D [tion Window Help
D2 ag DO 4iDOX®wo M BEIRG AR AAR MBI X BRI LI THE 0K
Applcations. w08 x @ = Desi Zolf:ffyy [Dowrload Bitstream to the FPGA ‘ system Project Status
Software Projects) [108 Properties Pror T Jsvstemomp Implementation State: New
€] Add Software Appication Project. [Moduls Level Ltiization e Srstem “Errors:
Defaul: microblaze_0_bootioop (5]) Timing Constraints
Defaul:microblase_o_smdstub 03 pinout Report Product Version: K114 « Warnings:
& 8} Project: Testapp_PC1e_nanp [#] O ClockReport
Processor: microl blaze_0 [| & #psErrors and warnings
vecutable: EASSD_Chipscape|TestApp_PCle_NAND|execLtable, o 2 Platgen - XPS Reports 1
ompler Options B 8 ubgen
= Sources =) by Report Name Generated Errors Warnings Infos
€:155D_Chipscope|Testapp_PCle_NANDIsrcnand-b.c B F——
:155D_Chipscopel|Testapp_PCle_MANDIscimain.c L [5) ittt Meszages o0 109
E:135D_Chipscope{TestApp_PCle_NANDYsrclpeie.c = FSReports Libgen Log Fie
Headers [Platgen Log File mgenLog il
- [, Project: EC_PCle_DMA_FIFO_TEST [Libgen Log Fie mgen Log File
Processor: microblaze_0 [simgen Log File BikIni: Log File
Executable: E\53D_Chipscape|EC_PCle_DMA_FIFO_TESTiexecutable.cF 0 sinicLog Fie e LonFl TS
Compller Options 2 systemLog Fle Sustemoa Fle
= Sources & Emors and Warrings
:155D_ChipscopelEC_PCle_DMA_FIFO_TESTisre{TestApp_Memary.c B
Hearers = Current W, 1
§ B MpMessages ... CurentWamin a
=) Project:Testapp-Hand [£) Place and Route Messages |No warnings Found |
(=) Timing Messages
o 03 Bkoen Messages
= Sources) All Currert Messages BEETEORES T o
E:55D_Chipscope{Testpp_Nar & Detaled Reports
:155D_Chipscope{TestApp_Nandlsrcinand-nb.c [} Translation Report Report Name: status Generated Errors warnings Infos
Headers [MapReport Translation Report
[0} Flace and Rovte Report
[Post PAR Static Tiring Report Map Report
[sitgen Report Place and Route Report
Secondary Report Post-PAR Seati Tring Repart
Bitgen Report
Design Froperties
stecohaed s sunry Secondary Reports =
iplay Incremental Messages
Enable Message Fiering |Report Name Status Generated |
Optional Design Sumary Conterts
[] shaw Clock Report Date Generated; 12{05/2010 - 22:5%35
] Show Faling Canstraints
Show Warnings
(] Show Errors
[] Show Partion Data
< I >
Project | _Applcations | 1P Catalog 4 System Assembly Vew k3 Block Diagram £ Design Sunmery [nand-mb.c
Console w08 x
~
Initializing Memory...
Running DatazNem with the folloving command:
Qataznen -bm "implementation/system b’ -bt "implementation/system.bit” -bad
"TestApp_PCIe_NAND/executsble.elf” tag microblaze D -o b
inplenentation/dovnload.bit
Hemory Inivialization completed successfully.

Console | Warnings | Errars

Dovnlaad Bistream ta the FRGA

Figure 13: Highlights the Console indicating bitstream updated successfully

go to CMD_LATCH stage automatically because first step for every single commands
is latching command. However, there is a special case that does not need address latch
cycle, reset. Reset command does not need an address latching, fsm goes straight to

STATE_REST stage.

2. stage 2: CMD_LATCH For six command that we were supposed to implement, they

share same wave from for latching command in.

Thus, we decided to pull com-

mand latching step out of every command and make separate stage just for it.
CMD_LATCH stage is consist of 2 stages. First stage is to open signal for com-
mand to be latched in and processed. After System finished CMD_LATCH_1, then
it automatically goes to CMD_LATCH_2. There are only one difference between
CMD_LATCH_1 and CMD_LATCH_2, state output. Since in first stage of command
latch, command was latched in and it is time for step 2, closing gate for command.
From second step of command latching, options for next state is split into 2 ways,
READ _DATA and ADDR_LATCH. If current command is read status(in our design it

16

< Xilinx Platform Studio - E:\SSD_Chipscope\system,xmp - [Design Summary]

I Fle Edt View Project Hardware Seftware Device Configuration Debug Simulation Window Help
D2 aa DU ADOX® v BRMNBORO HER P AR W IX Bz mE08R
Applcatons SO 8 x| (| & Desan Overview system Praject Status
) Summary
Software Projects O Project File: system. xmp Implementation State: New
[£] Add Software Application Project. EoriETre] cyetom o]
Defaulk: microblaze_0_boatioop
Default: micreblaze_0_xmdstub Product Yersion: EDK 11,4 * Warnings:
141 project: Testapp_pcie_nanp (%] [ClockReport
) Processor: microblaze_0 [| & %PS Errors and Warnings
e:u‘tab\e‘ E:55D_Chipscope!TestApp_PCle_NAND\executable.sf Flatgen Messages XPS Reports =]
ropiler Options
B o 38 [2) Ubgen Messages Report Name Generated Errors ‘Warnings Infos
E1155D_Chipscops{TestApp_PCle_NAND|src|nand-mb.c 04 3 Simoen Messages Platgen Log Fle
EASSD_Chipscope\TestApp_PCle_NAMDsrcimain. [2 siinic Messages
EX1S5D_Chipstope|TestApp_PCle_NAND|sre|prie.c = %P3 Reports. Libgen Log File
Headers [Platgen Log File SmgenLoa Fib
& %) Project: EC_PCle_DMA_FIFO_TEST [LbgenLog il oenLeo
sor: microblaze_0 Sim e BitInit Log File
sble: E:i55D_ChipscopelEC_PCle_DMA_FIFO_TEST|exerutable. elf 0O st e Setomloatls ot How & 10:05:20 2010
Compller Options [System LogFile 2ustemLoa Fle
& Sources (= Errors and Warnings
HEase\éSD_Ch\pscape\EC_P(le_DMA_F]FO_TEST\sr(\TestApp_Memﬂvy 3 [Translation Messages I ‘ =
Current Warnings bl
=) Protect: Testapp_Nend B e
501 s microblaze_0 lace and Route Messages ‘Nn Warnings Found ‘
able: E:AS5D_Chipscope|TestApp_Nandiexecutable.sfF
or Options 0 Btgen Messages
5 Sourees [Al Curent Messages Detailed Reports [1
:155D_Chipscape!Testapp_andlrclmain.c & Detaled Reports
EASSD_Chipscope!Testipp_Nandisrcinand-mb.c [Translation Report Report Name Status Generated Errors Warnings Infos
Headers [Map Report Translation Report
[Place ard Route Repart
[Post-PAR Stakic Tining Report Map Report
[Bitgen Repart Place and Route Report
Secondary Reports Post-PAR Static Timing Report
Bitgen Report
Desian Fropertes
Enable Enhanced Design Summary I Secondary Reports =)
Display In
Enable Message Fitering |Report Name Status Generated |
‘Optional Design Summary Contents
[] Show Clack Report Date Generated: 12/08/2010 - 23:03:52
[0 Show Failing Constraints
‘Show Wiarmings
[showErrors
[show Partition Data
< 2
Project | Applications | P Catalog 4 System Assenbly View I3 Block Disgram T Design Summary =] nand b
Console. +08 X
-
1) INFO: iHPACT: 2215 - Status register values:
1 INFO: iMPACT - 0011 1111 1011 1110 0000 1011 1000 0000
) INFO: iMPACT:S79 - '5': Completed downloading bit file to device.
L/ TNFO: iMPACT — 'S': Programing completed successtully.
"L/ THFO: iMPACT - 'S': Checking dome pin....done.
Done !

Console | Warnings

Errors

Figure 14: Highlights the Console indicating bitstream downloaded to board

is defined as CMD_READ_STATUS), then next state of fsm would be READ_DATA
because it does not need an address to operate. Read status already knows where to
read from. In any other cases, next state is ADDR_LATCH because other than read
status operation, command needs an address to be executed. While system is in this
stage, nand status register(nand_status_reg) indicates that nand chip is busy.

3. stage 3: ADDR_LATCH Just like we pull out command latching steps out from every
command waveforms, we decided to do same for address latching steps for same rea-
son. ADDR_LATCH is consist of two steps. First step is to set up right values to open
gate for address to latched in. However, we are erasing command register unless cur-
rent command demands second command later. To have more than one address to be
latched in, we decided to loop this whole latching address stages as many times as we
need according to num_addr_cycles register. num_addr_cycles register was assigned to
certain value in WAIT_FOR_CMD stage. 1 complete loop from ADDR__LATCH_1 to
ADDR_LATCH_2 would be one cycle for address latching. After completing enough

17

CMD_LATCH_0-1 ADDR_LATCH_0-1

{
READ_DATA_0-1

WRITE_DATA_0-1

CMD2_LATCH_0-1

else
READ_DATA_WAIT
WAIT_FOR_CMD WRITE_DATA_WAIT_0

ﬁ BUSY_WAIT_0

Figure 15: Memory Controller FSM

number of cycles for address, from second steps of latching address, system goes into
3 different stages under certain conditions. If current command needs second com-
mand to be completed, then system goes into CMD2_LATCH stages or it goes to
READ_DATA if command reads data from nand chip or WRITE_DATA if it needs
to write. While system is in this stage, nand status register is showing NAND_BUSY.

4. stage 4: CMD2_LATCH There are few operations that need second command after
latching address in to proceed further. However, not every commands need second
command, we decided to pull this stage out so that only those that need second
command would go through this stage. This stages outputs certain value for second
command on io_O wire so that it can be transferred. After putting second command
in, we need wait for certain amount of time for requested operation to be finished.
While processing nand flash memory chip, system waits for rb_1 signal to be set in
BUSY_WAIT stage.

18

5. stage 5: BUSY_WAIT We have to guarantee enough time for process to read or write
on flash chip. To guarantee such time, system is sitting in BUSY_WAIT stage doing
nothing. We clear nand command register in here, too. When reading or writing is
finished, hardware automatically sets rb1_1 signal as 1 indicating it is safe to proceed
to next stage in sfm. When rbl_1 is set, then next stage is READ_DATA unless
current command was block erase operation. When it was block erase, then block
erase operation is completed done, going back to WAIT_FOR_CMD stage.

6. stage 6: READ_DATA This stage transfers data from flash chip to us. READ_DATA
stage reads data from nand flash chip memory and put in buffer. Fsm loops through
both step 1 and 2 of READ_DATA until number of read cycle is reached. We set
correct value for num_read_data_cycles in WAIT_FOR_CMD stage in the beginning
of the fsm. Value of num_read_data_cycles register is decremented every time when
buffer is full. data_buffer_counter register is for system to know that how many
bytes it has been reading from nand chip. We see buffer is full by multiplying 8
to data_buffer_counter and see if it is same as DATA_BUFFER_SIZE (128bytes for
our specification) -1. When buffer is full, no more data can be read from flash chip.
Data on buffer has to go somewhere, probably back to host PC in this case. To free
the buffer, fsm goes into READ_DATA_WAIT stage. num_read_data_cycle register is
decremented after each reading cycle and data_buffer_counter register is incremented
at the same time where no certain condition rose. when num_read_data_cycles reaches
zero, fsm goes to WAIT _FOR_CMD since all the operations has been completed for
read command.

7. stage T"READ_DATA_WAIT Fsm gets this stage when buffer is full during read-
ing data from chip. Thus, this stage wait till motherboard reads all the data on
the buffer and free them. When motherboard finished reading data, it signals by
setting mb_done_reading signal. As a result, in this stage, system is looking for

mb_done_reading signal to be 1. When it sees mb_done_reading signal, fms goes back
to READ_DATA stage.

8. stage 8: WRITE_DATA WRITE_DATA is almost exact opposite of READ_DATA.
It writes onto flash chip with buffer. WRITE_DATA stage keeps looping until ei-
ther buffer is full or num_write_data_cycle reaches zero. Similarly to READ_DATA,
num_write_data_cycles was assigned to correct value for writing cycle. When num_write_data_cycle
reaches zero, fsm enters CMD2_LATCH because program page command needs a
second command to be completed. Checking method to see buffer is full is same
as used in READ _DATA. When buffer is full, fsm waits till motherboard finishes
writing. When motherboard finishes writing, fsm goes back to WRITE_DATA stage
and complete the cycle. Since program page needs a second command as well, after
finishing writing cycles, fsm enters CMD2_LATCH stage.

19

9. stage 9: STATE_RESET Reset stage consists of 3 steps. After finishing all three
steps, fsm goes back to WAIT_FOR_CMD stage because there is nothing more to be
done for reset operation.

Through these listed stages we are essentially just emulating the following waveforms:

Figure 18: Status Register Operation for READ STATUS

CE# %
‘anr
CLE / !I;
|
WE#
\/ taea
RE# A

Figure 16: READ STATUS operation

Figure 20: PROGRAM and READ STATUS Operation

tPROG

RiE# i |l i

0 {50 R e (B) o

VO 0= 0 PROGRAM successful
VO 0= 1 PROGRAM amor

Motes: 1. GCommand can be 70h or 78h.

Figure 17: PAGE WRITE operation

Note that the waveforms specified here must be followed exactly in terms of timing,
otherwise their behavior is undefined, and almost always wrong. The timing is constrained
by using 33 Mhz clock frequency which fits the Micron specifications, and thus the cycles
of the FSM can fit the break points in the waveform nicely.

4 Project Environments and Possible Variants

For this project, we used a host machine with Linux Kernel 2.6.28.1, other kernels may
not be used at this point, because newer kernels have a new way of handling the module

20

Figure 16: READ ID Operation

as /T
@ T\
v — T

Y N\ S

YwHR _|'REA

1Ox { 90 »———(00h or 20 Byte 1——{Byte 2——(Byte I—(Byte 4)
Address, 1 gyde

Notes: 1. See Table 9 on page 27 for byte definitions.

Figure 18: READ ID operation

Figure 14: PAGE READ Operation

we —\/_\f_\f_\/_\/_\f—\,“
ALE / AN

.

R \WAVENIAVAVE

10 Address (5 gycles) Data cutput (Serial access) }
Don't Care

Figure 19: PAGE READ operation

insertion, which does not seem to be compatible with our current setup. We tested and
verified this restriction on 2.6.34.7 and 2.6.32.26.
In this project we used a 4 lane PCI-E slot to host our XUPv5 board. During the

21

Figure 25: BLOCK ERASE Operation

as_/\ S\ /\
N /N N/
LAV ARVARVAR VARV A\
T \

R/E#

RE# A /

VO 0 =0 ERASE successful
VO 0=1 ERASE error

Dion't Care

. 'BERS

Notes: 1. Command can be 70h or 78h.

Figure 20: BLOCK ERASE operation

Figure 91: RESET Operation

WE# hY 4'2
tRST
RE#
W { FFh
* N, /
RESET
command

Figure 21: RESET operation

course of this project we discovered that other lane sizes may also be used. Our setup was
tested separately on a 8 lane and a 16 lane sized PCI-E slot, and were able to send and
receive to and from PCI-E bus with no errors.

22

5 Shortcomings and Future Work

Due to one of our teammates dropping the course, our team steered toward coming up
with good documentation for the overall project instead of focusing on finishing the SSD
implementation. As a result of this change, we were able to throughly document the PCI-E
interface portions of our project in our source code. We placed a lot of focus on helping
future teams who decide to take on this project. We hope this report can serve as a useful
frame of reference in future development of this project.

The current SSD implementation lacks the complete set of six commands to make up
a fully functional SSD. So far read_id, reset, block_erase, fetch_error appear to be working
through our Chipscope analysis. The missing commands are page_read and page_write,
both of which are multicycle commands that require synchronization between the firmware
and the memory controller. The anticipated clock cycle synchronization appears to have
bugs, and NAND chip 2 proves to be simply unusable.

Once the six fundamental commands are working and passes the listed benchmarks in
Appendix A, a block device driver should be written to facilitate the abstraction between
the OS and application layer, so that the SSD could be treated as a normal disk drive.

6 Individual Efforts

This section lists individual contribution to the project.

6.1 Kun Qian

1. Worked on researching and identifying the progress of previous groups, a seemingly
simple task, but in reality took 3 weeks amidst confusion of repositories.

2. Maintainer of the newest repository.
3. Creator and maintainer of the team gantt chart.

4. Setup the initial SysACE demo application for presentation through VGA (about 1
hour).

5. Worked on the chipscope anaylsis tool for the memory controller. (about 2 hours)
6. Setup the Serial port connection to debug Mem controller firmware. (about 2 hours)
7. Worked on the Memory Controller FSM debugging. (3 weeks)

8. Worked on the Linux driver to add enhancements for block erase, page read command
and page write command. (about 40 hours in 2 weeks)

23

9. Worked on the firmware application TestApp_PCle_ZNAND, providing enhancements
for block erase, page read and page write command. (about 20 hours in 2 weeks)

10. Developed the Design Review Demo application, which was a benchmark application
showing activity across the PCI-E bus. (1 hour)

11. Developed the Status Demos, which demonstrated the functionality of the PCI-E
driver. (about 2 hours)

12. Created presentation slides for all presentations (around 6 hours total in semester)
13. Documented developement of PCI-E (6 hours in 2 days)

14. Meetings with Yu Cai for help on Project. (6 hours in semester, avg 1 hour per
meeting)

15. Regular meeting with Professor Kenneth Mai (6 hours in semester, avg 30 mins per
meeting)

16. Drafted and formatted this Final Report (32 hours in 4 days)

6.2 Jihoon Kim

I, JiHoon Kim, worked on fsm and firmware mostly. From the beginning of the project,
Matt Cheong who dropped in middle of semester, and I decided to work on six commands
first. I finished fsm for block erase, reset and page read. To latch multiple addresses
sequentially, we had to change basically entire fsm from last year. Last group did not
have to worry about sequential address latching because they did not have command that
required multiple addresses. However, most of our 6 commands require multiple addresses.
After building fsm for commands, I worked on synchronizing with firmware. However,
firmware took much more time than I expected, while working on firmware, one of our
teammates dropped the course. After talking to professor Nace and Professor ken Mai,
direction of our project was changed. It was to have same project on different board,
virtex-6. After trying to compile everything with virtex-6, it didnt even compile. I had
to change some stuff in system.mhs and system.mss. Virtex-6 and virtex-5 have different
hardwares, such as memory microblaze version. We had to look up specification for virtex-
6 and changed from .mms and .mhs files. Also, I thought I could go through all the pin
assignments in .ucf file for virtex-5 and change assignments line by line. There are pin
specifications for both virtex-5 and virtex-6. Thus, it was easy to find pin description for
each board. However, I could not find any relationships between any pins in two different
boards. If one pin is used in virtex-5 by our program, then corresponding pin in virtex-6
should be used too. However, I could not find corresponding pin for virtex-6 even with pin
description. This project was not successful project at all. There are many obstacles that
our team had to go through. We did not have enough communication among team members

24

nor with professors. Our project repository changed many times too. Also, taking over
project that some one worked on last semester is not an easy job. There must be better
documentation for next team to look at and to understand project much more quickly.
However, Kun and I decided to stay in class and learned a lot. First, when working in
team, communication is much more important than I thought. Our team did not have any
problems with each other. We just didnt meet enough times. If we meet more often and
talk more, then project would have been in much better shape. Communication among
team members is important, but also communicate with others who worked or is currently
working on same project is important too. When having hard time understanding someone
elses work, it could be much easier if one asks. I did learn many things technically, such
as dealing with fpga board. Furthermore, I learned more valuable things, from choosing,
scheduling the project, working in team for semester long, and going through problems
with team.

7 Acknowledgments

We here by acknowledge the kind help of Yu Cai, Eric Chung, Will Constable, Tao Yang,
Matthew Cheung in the development of this project. We thank Professor William Nace
and Professor Kenneth Mai for their words of wisdom throughout the course of this project.

References

[1] E. Chung. http://www.ece.cmu.edu/protoflex/doku.php?id=internal:pci_express:pci_express_notes,
2009.

[2] Xilinx. http://china.xilinx.com/support/documentation/ip_documentation/mpmec.pdf,
2009.

[3] Xilinx. http://www.xilinx.com/itp/xilinx9/books/docs/xst/xst.pdf, 2009.

A List of All Benchmarks

The following benchmarks can be used to test the functionality of the PCI-E interface.

1. TestApp_Nand
Location: <tree>/ssd_repo/PCIe-MB-NAND-DIMM/TestAPP_Nand
There is a software project taken from the rev2 Nand Controller project, called
TestApp_Nand. This test is a good place to start to make sure that the hardware is
hooked up properly and you get the serial prints. If this test runs, you can see the
readID values from each nand chip and compare them to the expected values.

25

2. EC_PCle_.DMA _FIFO_TEST
Location: <tree>/ssd_repo/PCIle-MB-NAND-DIMM/EC_PCIe_DMA_FIFO_TEST
it is a good idea to run this test again in the context of this XPS project before
proceeding to the more complicated tests, just to verify the hardware is hooked up
right.

One difference is that our custom DIMM is used this time, not the standard 256 MB
DDR DIMM provided by Xilinx.

There is an issue with our DDR controller which I have noted but not looked into.
Currently, the XPS project is configured to use BRAM instead of DDR for all of
the microblaze address space, since using DRAM caused an unexpected amount of
slowdown (1 minute per DMA transfer instead of 300uS). There is probably a quick
fix in the DRAM clocks or configuration of the DDR, controller, but its easier to just
disable the system at this point.

3. TestApp_PCle NAND
Location: <tree>/ssd_repo/PCIe-MB-NAND-DIMM/TestApp_PCIe_NAND
This project utilizes the PCle channel to send specific messages from the host PC
to the MB, issuing commands and transferring the associated data. The rev2 nand
controller is used and the commands it supports at this point are made accessible to
the host PC running the 'nand_pci_driver’ project.

On the XPS side, make sure to mark the 'TestApp_PCIle_NAND’ project for BRAM
initialization. The NAND+DDR dimm needs to be used, and apart from that the
hardware setup for the PCle project needs to be followed.

On the host PC, the 'nand_pci_driver’ project needs to be built and run. Enter the
root directory of nand_pci_driver and run the command ’make’. This will build all
the necessary files and then you can run ./nand_pci_driver. This assumes you have
already loaded the kernel module (in the 'module’ directory). You can modify the
main.c file in 'nand_pci_driver’ to change what commands are being issued, or change
nand.c and nand.h to add more commands.

B Porting Virtex 5 Project to Virtex 6

Importin virtex-5 project onto virtex-6 board is not simple job. Basically, one would have
to create a new project for virtext-6. Even with all the source code from virtex-5 proejct,
one still has to create a new project for virtext-6. However, it could be much simpler
than creating new virtex-6 project when one has access to virtex-5 project because logic
and block diagrams would be similar between virtex-5 and virtex-6. Even though, pin
assignment in virtex-5 board and virtex-6 board are obviously different. Thus, it is crucial
to modify user constraint file(.ucf) to have project working properly on virtex-6 board. It
is going to take a lot of time and effort to change every variable or ports from virtex-5 to

26

virtex-6. Even, there is datasheet and pinout spreadsheet for both virtex-5 and virtex-6,
it does not explicitly say that which pin virtex-5 is corresponding to which pin in virtex-6.
With all pin assignments completed for virtex-5 board, one still have to go through pin
assigning process again with virtex-6 board. There is software development tool called
PlanAhead from Xilinx that helps you with pin assigning.

C Helpful Xilinx Tools

Project navigator and PlanAhead are two independent software each running under sep-
arate system process. There will be no synchronization for data between two separate
software. Changing design data from one tool is not automatically recognized by other
in real time. One should not attempt to modify constraint simultaneously in both tools.
Just like data synchronization in multi threading programming, one should save changed
data from one tool to update or see changes on the other software. PlanAhead in ISE
Integration mode only enables physical constraint modification for I/O pins, logic LOC
and AREA_GROUP constraints. Other PlanAhead features such that enabling logic or timing
constraint modification are not available in ISE Integration mode, one should use PlanA-
head by itself to do so. PlanAhead will try to maintain the origianl content and format of
UCF files such as comments and incomplete constraints.

27

