
1

 SNES on an FPGA
 Team Bubba Gump Shrimp Co.

Rachael Harding

Dustin Musselman

Grant Newsome

Lincoln Roop

2

 Overview

Our capstone design project was to build a Super Nintendo Entertainment System on an FPGA.

 Game Description

The SNES was a popular game console in the early 1990's. Over 40 million units were sold worldwide.

Popular games available on the console include Super Mario World and The Legend of Zelda: A Link

to the Past .

The Super Nintendo Entertainment System was a 16-bit video game console designed by the

Nintendo corporation that was a successor to their original and highly successful Nintendo

Entertainment System. It contains four chips that run simultaneously to produce the video and sound

while interfacing to the two controller inputs used by the user of the system and a cartridge providing

the game data. Two chips control the sound system, a Sony SPC700 processor and a custom designed

Digital Signal Processing (DSP) chip, which work in tandem with each other and a digital to audio

converters to generate the stereo sound for the system. These each share a 64kB of SRAM that are

interfaced by the different clock times associated with each chip.

In parallel to the sound system we have the video cores, which are two nearly identical

processors that work almost seamlessly (called one unit: the PPU) to produce the video. The PPU has

64kB of SRAM itself, along with some extra memory specifically for storing sprite data for it's video

output. The PPU also features several different video Modes (0-7) which can lead to various visual

effects dependent on design. These units are controlled by a single main CPU which is a Ricoh 5A22

processor, which is based on a 16-bit 65c816 core and has added DMA/HDMA, parallel I/O

processing, and hardware multipliers and dividers. It has 128kB of SRAM for it's memory.

The main operation of the SNES comes from the data passed in on an input data bus provided

by the cartridge inserted into the top of the system. These cartridges contain a variety of chips, and

when powered interact with the main CPU to provide information to the audio and video units of the

system. The main CPU is also where the controllers interface to the game, providing a 'central hub' to

the system that controls both input and processing. Input pins vary from the Japanese PAL design

compared to the North American design (which we are basing our project off of.)

 Hardware Description

The SNES hardware consists of a cartridge, controllers, and four main cores: the CPU, DSP, SPC700,

and PPU.

Cartridge & Controllers

As we wanted to use actual SNES cartridges and controllers in our project, we had

3

to deal with interfacing these devices to the FPGA board, which presented us with

three problems:

 The connectors used aren't just standard parts that can be purchased from an

electronics supplier.

 The SNES cartridges and controllers use 5V TTL signaling versus the 3.3V TTL used

by our FPGA board.

 The SNES uses a cartridge lock-out system designed to make pirating cartridges or

consoles more difficult. Since our project is essentially a pirated console, this

will have to be dealt with.

The physical connectors were scavenged from a used Super Nintendo console. These

were carefully desoldered from the mainboard of the SNES, and then soldered to a

piece of perfboard (A type of premade PCB with a grid of plated holes on it). For

the lock-out system, we scavenged a lockout chip from an old SNES cartridge, as the

chips found in consoles and cartridges are identical in function, but the console

one is in a surface-mount package as opposed to the dual inline package used in

most cartridges.

To deal with the difference in voltage levels, we used Texas Instruments

SN74LVC245AN 8-bit bidirectional level shifter ICs. These ICs can accept inputs of

up to 6.5 volts and output the appropriate logic level, but limited by the voltage

supply to the IC. Here, we used the 3.3V DC rail from the FPGA board to power our

level shifters, and the logic high output was around 3.2V, which will work fine

with the FPGA board's inputs. These level shifters were used to shift down the

voltage of any inputs from the cartridge and controllers to the FPGA board

(Cartridge data bus and a few control signals, controller data inputs, see

schematic.), level shifting in the other direction was not necessary, as the 3.3V

logic high output of the FPGA board is high enough to register as a logic high on

the older 5V logic.

This circuitry was wired, and connected to the FPGA board using the user I/O

expansion headers on the board. The connectors on the board are standard 0.1"

spaced inline pin headers, we chose to use the same connectors on our interface

circuit. During assembly, we checked each new solder joint with a multimeter to

ensure that the correct connection had been made, and no incorrect connections were

made. After the circuit was built, we injected test voltages with a standard bench

power supply to ensure the proper operation of the level shifter ICs. Finally, we

were able to confirm that this circuit works properly, as we were able to read

valid data from game cartridges and controllers, all without damaging the FPGA

board, game cartridges, or controllers.

4

CPU

The CPU in the SNES is a modified Ricoh 5A22. We were fortunate to get a synthesizable Verilog

description of the 65C816 from Western Design Center (WDC), which was used as the core in the

SNES CPU. We added several peripherals to the CPU.

 Multiplier: An 8-bit multiplier

 Divider: A fixed-point divider with 16-bit dividend and 8-bit divider

 Interrupt Module: Gathered interrupts from other devices (e.g., cartridge) to feed into the core

5

 Work RAM (WRAM): A 128KB byte-addressable RAM accessible by the CPU (see “CPU

Memory Map” below)

 DMA/HDMA: A module that quickly transfers data from the Cartridge ROM to WRAM, ROM

to VRAM, WRAM to VRAM, or vice versa.

 Memory Map registers: A series of registers mapped to locations in memory (see “CPU

Memory Map” and “Hardware Registers” below)

 Timers: Timers for vertical and horizontal blanking periods

DMA/HDMA

The DMA/HDMA has 8 channels which can hold information for DMA/HDMA transfers. HDMA is

prioritized over DMA, and lower channels are prioritized over higher channels. A DMA transfer begins

when the CPU enables a channel by writing a 1 to the DMA enable register bit corresponding to that

channel. Execution is suspended in the CPU until the DMA completes. HDMA only transfers 1-4 bits

on every horizontal blank, which enables certain special effects on the screen.

The source address (usually ROM or WRAM) can either increment or decrement. The destination

address (usually a PPU register) can be accessed in a pattern determined by the 3-bit bus mode:

DMA:

000, 010 : B B B B

001 : B B+1 B B+1 B

011 : B B B+1 B+1 B

100 : B B+1 B+2 B+3 B B+1

HDMA: (per line)

000 : B

001 : B B+1

010 : B B

011 : B B B+1 B+1

100 : B B+1 B+2 B+3

6

 Hardware Registers

Address Register name Comment

0x2100 Screen Display Register
a000bbbb a: 0=screen on 1=screen off, b =

brightness

0x2101
OAM Size and Data Area

Designation

aaabbccc a = Size, b = Name Selection, c = Base

Selection

0x2102 Address for Accessing OAM

0x2104 OAM Data Write

0x2105 BG Mode and Tile Size Setting
abcdefff abcd = BG tile size (4321): 0 = 8x8 1 =

16x16, e = BG 3 High Priority, f = BG Mode

0x2106 Mosaic Size and BG Enable aaaabbbb a = Mosaic Size b = Mosaic BG Enable

0x2107 BG 1 Address and Size
aaaaaabb a = Screen Base Address (Upper 6-bit), b

= Screen Size

0x2108 BG 2 Address and Size
aaaaaabb a = Screen Base Address (Upper 6-bit), b

= Screen Size

0x2109 BG 3 Address and Size
aaaaaabb a = Screen Base Address (Upper 6-bit), b

= Screen Size

0x210A BG 4 Address and Size
aaaaaabb a = Screen Base Address (Upper 6-bit), b

= Screen Size

0x210b BG 1 & 2 Tile Data Designation aaaabbbb a = BG 2 Tile Base Address, b = BG 1

7

Tile Base Address

0x210c BG 3 & 4 Tile Data Designation
aaaabbbb a = BG 4 Tile Base Address, b = BG 3

Tile Base Address

0x210d BG 1 Horizontal Scroll Offset

Scroll offset registers are all 16 bits wide.

0x210e BG 1 Vertical Scroll Offset

0x210f BG 2 Horizontal Scroll Offset

0x2110 BG 2 Vertical Scroll Offset

0x2111 BG 3 Horizontal Scroll Offset

0x2112 BG 3 Vertical Scroll Offset

0x2113 BG 4 Horizontal Scroll Offset

0x2114 BG 4 Vertical Scroll Offset

0x2115 VRAM Address Increment Value

0x2116
Address for VRAM Read/Write

(Low Byte)

0x2117
Address for VRAM Read/Write

(High Byte)

0x2118 Data for VRAM Write (Low Byte)

0x2119 Data for VRAM Write (High Byte)

0x211a Initial Setting for Mode 7
aa0000bc a = Screen Over b = Vertical Flip c =

Horizontal Flip

0x211b Mode 7 Matrix Parameter A

Registers 211b through 2120 are 16 bits wide.

0x211B is also used as the 16-bit multiplicand for

registers 0x2134-6 (write twice)

0x211C is also used as the 8-bit multiplier for

registers 0x2134-6

0x211c Mode 7 Matrix Parameter B

0x211d Mode 7 Matrix Parameter C

0x211e Mode 7 Matrix Parameter D

0x211f Mode 7 Center Position X

0x2120 Mode 7 Center Position Y

0x2121 Address for CG-RAM Write

0x2122 Data for CG-RAM Write

0x2123 BG 1 and 2 Window Mask Settings
aaaabbbb a = BG 2 Window Settings b = BG 1

Window Settings

0x2124 BG 3 and 4 Window Mask Settings
aaaabbbb a = BG 4 Window Settings b = BG 3

Window Settings

0x2125 OBJ and Color Window Settings
aaaabbbb a = Color Window Settings b = OBJ

Window Settings

0x2126 Window 1 Left Position Designation

0x2127
Window 1 Right Position

Designation

0x2128 Window 2 Left Postion Designation

0x2129
Window 2 Right Postion

Designation

8

0x212a
BG 1, 2, 3 and 4 Window Logic

Settings
aabbccdd a = BG 4 b = BG 3 c = BG 2 d = BG 1

0x212b
Color and OBJ Window Logic

Settings
0000aabb a = Color Window b = OBJ Window

0x212c
Background and Object Enable

(Main Screen)

000abcde a = Object b = BG 4 c = BG 3 d = BG 2 e

= BG 1

0x212d
Background and Object Enable (Sub

Screen)

000abcde a = Object b = BG 4 c = BG 3 d = BG 2 e

= BG 1

0x212e
Window Mask Designation for Main

Screen

000abcde a = Object b = BG 4 c = BG 3 d = BG 2 e

= BG 1

0x212f
Window Mask Designation for Sub

Screen

000abcde a = Object b = BG 4 c = BG 3 d = BG 2 e

= BG 1

0x2130 Initial Settings for Color Addition

aabb00cd a = Main Color Window On/Off, b = Sub

Color Window On/Off, c = Fixed Color

Add/Subtract Enable, d = Direct Select

0x2131 Add/Subtract Select and Enable

abcdefgh a = 0 for Addition, 1 for Subtraction, b =

1/2 Enable c = Back Enable, d = Object Enable,

efgh = Enable BG 4, 3, 2, 1

0x2132 Fixed Color Data
abcddddd a = Blue b = Green c = Red ddddd =

Color Data

0x2133 Screen Initial Settings

ab00cdef a = External Sync, b = ExtBG Mode, c =

Pseudo 512 Mode, d = Vertical Size, e = Object-V

Select, f = Interlace

0x2134 Multiplication Result (Low Byte)

0x2135 Multiplication Result (Mid Byte)

0x2136 Multiplication Result (High Byte)

0x2137 Software Latch for H/V Counter

0x2138 Read Data from OAM (Low-High)

0x2139 Read Data from VRAM (Low)

0x213a Read Data from VRAM (High)

0x213b
Read Data from CG-RAM (Low-

High)

0x213c H-Counter Data

0x213d V-Counter Data

0x213e
PPU Status Flag

0x213f

0x2140

APU I/O Port

0x2141

0x2142

0x2143

9

0x4200 NMI, V/H Count, and Joypad Enable
a0bc000d a = NMI b = V-Count c = H-Count d =

Joypad

0x4201 Programmable I/O Port Output

0x4202 Multiplicand A

0x4203 Multplier B

0x4204 Dividend (Low Byte)

0x4205 Dividend (High-Byte)

0x4206 Divisor B

0x4207 H-Count Timer (Upper 8 Bits)

0x4208 H-Count Timer MSB (Bit 0)

0x4209 V-Count Timer (Upper 8 Bits)

0x420a V-Count Timer MSB (Bit 0)

0x420b Regular DMA Channel Enable
abcdefgh a = Channel 7...h = Channel 0: 1 =

Enable 0 = Disable

0x420c H-DMA Channel Enable
abcdefgh a = Channel 7 .. h = Channel 0: 1 =

Enable 0 = Disable

0x420d Cycle Speed Designation 0000000a a: 0 = 2.68 MHz, 1 = 3.58 MHz

0x4210 NMI Enable

0x4211 IRQ Flag By H/V Count Timer

0x4212 H/V Blank Flags and Joypad Status

0x4213 Programmable I/O Port Input

0x4214
Quotient of Divide Result (Low

Byte)

0x4215
Quotient of Divide Result (High

Byte)

0x4216
Product/Remainder Result (Low

Byte)

0x4217
Product/Remainder Result (High

Byte)

0x4218 Joypad 1 Data (Low Byte)

abcd0000 a = Button A b = X c = L d = R
0x421a Joypad 2 Data (Low Byte)

0x421c Joypad 3 Data (Low Byte)

0x421e Joypad 4 Data (Low Byte)

0x4219 Joypad 1 Data (High Byte)

abcdefgh a = B b = Y c = Select d = Start efgh =

Up/Dn/Lt/Rt

0x421b Joypad 2 Data (High Byte)

0x421d Joypad 3 Data (High Byte)

0x421f Joypad 4 Data (High Byte)

10

 DMA Registers

'X' being from 0 to 7:

Address Register name Comment

0x43X0 Parameters for DMA Transfer
ab0cdeee a = Direction b = Type c = Inc/Dec d =

Auto/Fixed e = Word Size Select

0x43X1 B Address

0x43X2 A Address (Low Byte)

0x43X3 A Address (High Byte)

0x43X4 A Address Bank

0x43X5
Number Bytes to Transfer (Low

Byte) (DMA)

0x43X6
Number Bytes to Transfer (High

Byte) (DMA)

0x43X7 Data Bank (H-DMA)

0x43X8 A2 Table Address (Low Byte)

0x43X9 A2 Table Address (High Byte)

0x43Xa
Number of Lines to Transfer (H-

DMA)

DSP

When compiling data on the DSP, we had been fortunate to come to the realization that people have, in

the past, modeled the DSP on FPGA's before. Long after the time of the SNES, many

independent technophiles came up with a format for the sound binary file associated with the cartridges

called an .SPC file. This, when pushed into a software-designed parser, can play the sounds associated

with whichever game the .SPC file was created from. There were some ambitious graduate students at

various universities that wrote the actual DSP hardware to generate the sound on an FPGA already, and

while it was done in VHDL, it allowed us to have a fairly good idea on how the DSP should be

designed. This code, along with several documents explaining how the different parts of the DSP

worked, allowed us to design it properly.

In brief, the DSP is a highly customized and advanced 8-voice audio processor that outputs 16-

bit stereo sound at 32 KHz. It decompresses and processes audio samples as opposed to actually

generating audio signals with oscillators. These samples are stored in the SPC700/DSP shared

memory, and the SPC700 sets various control registers inside the DSP to point it to the correct source

of samples for each voice.

What we noticed about the DSP, as opposed to the SPC700 was that it was much more modular

a design. There are several major subsystems to the DSP, many of which we were able to implement

and test as individual Verilog modules:

11

 Sample decoder: Converts compressed audio samples to raw digital audio

 Pitch Modulator: Adjusts the pitch of each voice by a selectable value, and for voices 1

through 7 by the output value of the previous voice.

 Noise Generator: Generates a pseudorandom noise signal that can be substituted for the

output of each of the 8 voices by setting a bit in a control register.

 Envelope Generator: Generates a volume envelope for each channel. Supports ADSR (Attack,

Decay, Sustain, Release), simple direct gain, and simple variable gain.

 Echo system: Produces an echo effect with selectable delay.

 Per-channel and master volume control.

The DSP follows a very rigid 32-step process to generate each stereo output sample. Within

each 32-step block, an output sample is generated for each voice that is keyed on. Then, these samples

are combined along with the sample generated by the echo system (if enabled), the master volume is

applied, and the samples are output. In the original SNES, two 16-bit samples, left and right, are output

to a serial DAC; our implementation behaves similarly, but outputs to the AC'97 control logic. Because

of this rigid behavior, our DSP's control logic is a simple hard-coded finite state machine that has a

maximum of 24 states for each of the 32 steps.

SPC700

The SPC700 is an 8-bit CISC CPU core that was originally manufactured by Sony. Upon initial review

we were skeptical that all 256 op-codes in the chip were actually used by the games that were played

on the console, but according to the documentation that we eventually read all of the codes could have

been used by the cartridges. o avoid having to return to the chip and spend more time implementing

ops at the end, we decided to include all of the opcodes into our design. The SPC700 is large in scope,

but following basic processor design priciples we were taught in 18-447 we were able to model the

core with a standard data path and FSM.

As we had no layout diagram of the core itself, we reversed engineered the core from several ISA

models we had found that were being used by emulator designers to provide the sound emulation for

their various SNES ROM emulators. Our design consists of a decode stage which upon the collection

for the opcode form memory decides the further actions taken by the chip for that operation cycle. In

all of the ISA diagrams we were given the amount of cycles each operation needed to take, so ha gave

us a fairly solid base to work from when designing the interactions needed in the decode stage of our

chip.

We knew here was no easy way to get around the 256 ops needed by the chip, so we designed the

decode around a large case-stamen that sets the various control signals throughout the code. there were

some similarities in ops that shortened our codebase, but a lot of the operations required very unique

control throughout the chip, leading to our decoder being very large (in terms of lines of Verilog.) Our

ALU is fairly straight forward, taking in two line inputs and producing an output based on a signal

generated from the decoder.

Once the decoder and ALU were finished, depending on a given op, there may be aneed for memory

access. As at this point we were unaware as to whether or not our memory coudl be designed as

synchronous or asynchronous, we decided to play it safe and model the system as a synchronous

12

read/write hat will return or finalize writing on the next clock cycle. This made our cycle conditions

fairly tricky, as before we were without the need to wait for memory and were able to perform all ops

in one cycle (decoder -> alu -> register/memory all in one cycle was feasible by our design.) With

reading from memory being a one cycle operation, it brought our minimum cycles per op to two, while

giving us added cycles to any op that required memory operations. After reviewing this we decided we

had sufficient cycles, even with the cycles for reads and writes, to have our design work.

PPU

We started building the PPU about a month and a half into the project. On the actual system, the PPU

is comprised of two closely integrated ICs. In our design, however, we decided to make it just one

system. It works by monitoring a number of registers and then translating that data into the video. The

registers are address locations 0x002100 to 0x00213F. These are memory mapped from the CPU and

are stored in the PPU itself. The 8-bit address bus "Bus B" controls which register is updated or read

from by two additional control lines, read and write. All of these are handled by the CPU wrapper.

The registers' purposes are listed above and many of them seem self explanatory. It is important to note

that it doesnt not matter how the data is getting to these registers, whether the CPU is using the DMA

channels or just updating a single register at a time, it is all viewed the same by the PPU. The main

data transfer occurs in registers 2116, 2117, 2118, and 2119. Everytime the address is updated

{2117,2116} the PPU reads the data from {2119,2118} and writes it to the appropriate location and

then increments by the value in register 2115. The CPU then writes new data and this continues,

copying data into the PPUs VRAM, which is 64kB in size. Color data is stored in a 256x15 bit

separate RAM and the sprite data is stored into yet another 544 bytes, called the OAM. These locations

are written to much the same way as VRAM, just in different registers. Any writing to the PPU

memory occurs only on vertical blanks.

After data is loaded into memory, it is time to put a picture to the screen. This uses almost all of the

other registers to create the picture. A few of the important registers are the BG Mode register which

sets the possible different sprite sizes and background resolutions are to be used. Modes 0-6 are pretty

much the same, but Mode 7 uses a lot of complicated Matrix multiplication that we never got to. This

was only used in later games. At any given time, there are four backgrounds that can be overlapped on

the screen. The sizes of them in memory are actually much larger than the actual screen resolution

itself and can be scrolled all over the screen. This also depends on the mode and a few other settings.

 As I stated earlier, most of the register purposes are self explanatory such as the window masks and

window positions.

Again, we never got to fully test the PPU. We were able to load information through a various number

of tests and then produce backgrounds and scroll them with buttons. We were confident that if we

loaded the correct information, we could create a picture close to what was created by the original

system pending some debugging. But seeing as the CPU never got out of its loading stage, we could

never get enough information from the cartridge to test it with actual SNES video.

13

 Approach

We knew from the beginning that this was a large project, and we wanted to make as few errors as

possible in the design. Therefore we began with thorough research in available documentation and

write-ups about the SNES. Most of the documentation we found was programmer-side interface detail

written by members of the large SNES fan base. We were fortunate enough to find a manual from

Nintendo that detailed the CPU and PPU components. Unfortunately our search did not bring very

many documents about the sound system, however. We also tracked down Western Design Center

(WDC), the company that designed the actual CPU core for Nintendo, and managed to get in contact

with them about potentially using their product in our SNES emulation. They agreed to send us their

Verilog after we signed a confidentiality agreement.

Due to the large size of the sound system (2 cores) and the strong push this year to get sound in the

games, we focused our first efforts on the SPC700 and the DSP. Due to the limited documentation and

the complexity of the chips, the SPC700 took until after mid-semester to complete, with the DSP an on-

going effort throughout the semester.

At mid-semester, our team grew, which allowed us to tackle more pieces of the design at once. We

finally obtained a synthesizable core from WDC, which allowed us to work on the CPU. We also

started building the physical system, cartridge and controllers from a real SNES.

After completing the SPC700, we moved on to the PPU. With two weeks to go until demo, we began

integrating the CPU and PPU with the working cartridge.

 Design Partitioning

As alluded to previously, we partitioned the design into the four cores (CPU, PPU, SPC700 and DSP)

and the physical hardware (cartridge and controllers). We divided the work between the team members

in the following way:

Rachael: CPU (joined mid-semester)

Lincoln: DSP, cartridge, controllers

Dustin, Grant: SPC700, PPU

 Tools and design methodology

We used the Xilinx toolset for our work. Our hardware description language of choice was Verilog.

We designed the hardware based on the documentation we found from fans and Nintendo.

 Testing and verification methodology

We used a combination of simulation via ModelSim and synthesis in Xilinx ISE to test the cores and

verify correct operation.

14

 Status and future work

As of demo day, we have the cores completely implemented in Verilog (minus some instructions in the

DSP and SPC700) and the physical hardware built and operational. We have a partially integrated

CPU/PPU/Cartridge which is not quite operational.

Future work would need to integrate the different cores fully and insert the missing instructions in the

DSP and SPC700. In the future additional modes could be added to the PPU which could enable a

greater variety of cartridges.

 What you learned

 How to organize (and not organize) a large-scale project

 How to search for relevant information online

 Hindsight

We wish we had a better comprehension of the scope of the project we were taking on. If we had

known the sound system was going to take so long, we may have organized the project differently.

 Design Decisions

We made several major design decisions that helped, or in some cases hurt, our project

Real Cartridges

Our early decision to build a cartridge reader from real SNES parts, as opposed to reading a ROM off

flash, turned out to be a great idea. The reasoning behind this decision was to enable the use of a

variety of cartridges (and in a working system to play a variety of games). Allowing the player to

choose their game made the project much more appealing.

Although the system did not work as a whole, the cartridge reader worked on the first try. It was an

accomplishment that gave us not only something to show for our work, but let us use a variety of

cartridges for debugging purposes. Many people who came to our demo were impressed by the

cartridge reader we built.

Timing

We decided to work on the sound system first because it had the least documentation, there was a push

in class to get sound working on games this year, and it looked easy. These were all the reasons why we

should have worked on it last (or, at least, not first).

First, the limited documentation meant that we were trying to figure out what went in a black box. After

feeling around for awhile, we found that the black box was more complicated than we initially thought.

By that point, weeks had passed.

15

Second, although pushing sound was good in that most groups end up running out of time for it, there

is a reason why groups leave it until the end. Sound is not critical to game play. If the sound is not

working, the game can still be played (“It's just muted!”). Without the CPU or video decoder, however,

game play is impossible. We learned this the hard way when, instead of running out of time on sound,

we ran out of time on system integration, and ended up losing everything.

Third, a good lesson we learned is that if something looks easy, it probably isn't, especially if there is

no documentation.

Protocol

We chose to follow the documentation we had to the letter. This led to unnecessary complications

during implementation and integration that we could have avoided by figuring out what Nintendo was

trying to accomplish and making it simpler. For example, timing in the DMA controller was

unnecessarily complex, due to the latency between ROM accesses and chip responses. Since we were

building our design on customizable hardware, we probably did not have to incorporate the timing

switches.

We also found in integration that the CPU-SPC700 communication protocol is very complex, and could

have possibly been simplified.

 Advice to Future Groups

To future 545-ers, we suggest the following:

 Get started on implementation early! (Corollary: Get started early!) We spent several weeks on

research before starting to implement our project. There is a sweet spot to the amount of

research you do (more research to prevent bugs, less research to get more time to debug at the

end).

 Be here for Thanksgiving. Unless you have your project done.

To future groups that attempt the SNES:

 Read this document carefully to avoid our pitfalls.

16

 Individual Pages

Rachael

I joined this team at mid-semester after my first team lost a member and dissolved as a result. So I'd

like to start with some short advice on choosing your team: Take skill set into account, but also take

commitment to the class. I was lucky that my teammate dropped early enough that my team could

disperse into other groups (other teams were not so lucky), but joining a group halfway through the

class was also a challenge. I had to quickly familiarize myself with their project and group dynamics.

When I joined the SNES team, I began work on the CPU peripherals: the multiplier, divider, and DMA

(plus some other small units to control interrupts and other signals). The multiplier and divider took

about a day to complete and debug. The DMA, however, was much more complex. The available

documentation was written from a programmer's perspective, so it did not include too much

information about the underlying hardware. There was also the HDMA, which only transferred a few

bytes of data on horizontal blanks (between scan lines). This mode was even more complex. Over time

I found that the DMA could have had a much simpler design than implied by the documentation and

fan observations. Since the DMA's purpose was to transfer data from ROM/RAM to the PPU, the

timing, for example, could have been done much simpler.

I also did significant integration work at the end. I spent a solid 60 hours in lab over Thanksgiving

break working on the Cartridge-CPU interface and getting a response from the controllers. I spent the

last week of classes in lab debugging the CPU-PPU interface, which did not end up being enough time

to complete the integration.

Lincoln

I'm Lincoln Roop, and I worked on the following things for our group:

Obtaining 65c816 source from Western Design Center - 4 hours (Time spent includes

estimated time it took to communicate with WDC and prepare/scan necessary paperwork,

not time spent waiting on e-mail replies.)

Cartridge & Controller Interface circuit

 Research (Finding pinouts, parts, etc.) - 14 hours

 Circuit Design - 4 Hours

 Assembly/Test - 14 hours

This work was completed over the course of 2 1/2 weeks

Audio DSP

 Research - 20 hours

 Coding/Debugging - More than 40 hours

Other work:

17

 Debugging/helping find documentation for the rest of the project.

My impression of the class:

 This class is a nice opportunity to work on something approximating a self-directed

real world project, but it could use a bit of improvement. Most importantly, more

feedback would be nice. While the in-class feedback from group status reports is

useful, I think it would be good for students to sit down (maybe once every other

week) and meet with the professor or a TA to discuss progress, current issues, and

such.

 In hindsight, I feel that my group would have chosen a different project if we knew

about some of the issues we ran into later on. This isn't a fault in the class,

but it might help to encourage students to do more research into the feasibility of

their chosen projects in the early stages when a change is still possible.

Grant

For the SNES on an FPGA project I, along with Dustin Musselman, worked mainly on the

SPC700 and PPU chips, as well as doing major testing and debugging on all other chips and their

interconnects. The first month and a half of work was mainly devoted to building the SPC700 chip. As

mentioned, the chip was mainly built by working with ISA’s that had been assembled by various

emulator developers who worked on creating SNES emulators based on ROM files (the data files

pulled straight off the cartridges.) What we thought was going to be a simple design turned out to be a

nasty 256 opcode processor with a degree of complexity far more advanced than anything we had

attempted in the past. After much struggle with overall design, including several re-writes to conform

to the monstrosity that is Xilinx development tools, Dustin and I created a working and tested version

of the chip with several opcodes. We had all of the other opcodes together and ready to be placed in

our final design file, yet our development towards the end lent to other things being more important.

 The other major component I worked on, for roughly 3-4 weeks, was the PPU. A large amount

of the processor’s workings were mainly unknown to us, so we had to start from scratch developing

FSMs based on what the software development handbook issued by Nintendo had said. This was

moderately difficult, as without any working knowledge of the hardware it was difficult to establish

what indeed had to be done to get the processor working. I specifically worked on the sprite pixel

manipulation module, which when prompted for a specific x and y coordinate would generate a proper

color address for the CGRAM and a priority so that the over-arching PPU module could decide

whether or not it was to be displayed over the four different background modules that were to be

instantiated. I also wrote major components for input manipulation from the main CPU, as there were

specific registers that needed various outputs to be changed based on whatever input sent to it by the

main CPU. With these, as well as the background logic and other data compiled by Dustin, we had

what we were confident was a working PPU, as the testing we did showed accurate object and

background data manipulation based on false input we provided.

 Towards the conclusion of the project the majority of my time was spent debugging the main

CPU wrapper and the DMA to try and get data moving from cartridge interface -> main CPU -> PPU -

> monitor. Unfortunately we were unsuccessful with getting this to work however we were fairly

confident all of our chips were working. We think if we had an extra month of work we would have

gotten it working, but sadly we ran out of time.

18

 For the class, there were several areas I enjoyed while I feel that there are some things that

could use a bit of work. I enjoyed the freedom and the “go do something” attitude that the course staff

took towards our projects, and the lab and technology provided to us was great. Mandatory lab I feel is

necessary, but I feel that more instructor and staff involvement would be useful for feedback on

progress the group is making. In the same sense, I feel a meeting once or twice a year with the

professor as groups privately would be beneficial for future semesters, as a more direct contact from

the professor to the groups on how the pace for the groups is going I feel is vital for the project to be a

success. Reflecting on the course, I feel our project was a bit beyond the intended scope of the class, as

there is a large leap from the NES hardware and the SNES hardware, which we thought we could

manage successfully. Feedback early on about this difference could have led to different choices being

made on project ideas; however we were pretty adamant about doing it so the staff likely couldn’t have

convinced us otherwise anyway.

 Overall I enjoyed the class, and obviously I wish our project could have been more complete by

demo time, but I put in a lot of long nights over the course of the semester and I am pleased we got as

far as we did given the complexity of the system we were dealing with. We hope that a group in a

future semester can take our work and creating a working version of the SNES on an FPGA. Hopefully

this report will provide enough documentation so that they further our work and make this project a

success.

Dustin

Although our group spent a lot of time working together on this project, as individuals we spent

a lot of time working on the different sub-components of the overall system. After deciding that we

were going to build the SNES, we first spent a lot of time researching what all was going to be required

to build it. We spent a week getting a rough idea of what we were going to need.

We made a decision to first start working on the sound module, which included a DSP and an SPC700

processor. Lincoln started the DSP, while Grant and I worked on the SPC700 and how it communicated

with the outside world (memory, CPU, data registers, etc) We spent a week or so researching and then

3-4 weeks coding it. Because of the lack of documentation, there were many things we found out as we

went and needed to go back and change. In the end, however, we did get a working SPC700. I ran a

quite a few tests that tested the majority of the op codes to make sure they worked how we believed

they worked base on documentation. But, as with everything in this project, it could not be completely

tested until then entire system was running together.

We then moved to the PPU to begin getting video on the screen. Once again, due to spotty

documentation, our time researching at the beginning was basically useless as we rediscovered a lot of

things working differently then we initially thought. It was around this time when I started putting in

25-30 hours a week in lab. I worked mainly to get background data working. The tests I made

successfully read in information from the registers and then I was able to create a background complete

with scrolling. Again, I was not able to completely finish this because testing is impossible without

seeing the actual data coming from the CPU. So after understanding this module almost perfectly, I was

again stuck and couldn't move forward to clean up the last few things until I was getting actual data

from the CPU.

In the final few weeks, I switched over to help with the CPU. After Lincoln had created the working

cartridge reader, we were faced with the problem of getting the cartridge to correctly talk to the CPU,

which turned out to be much more difficult then we initially thought. We had many timing issues and

were putting in at least 40 or 50 hours per week trying to get the CPU from infinite looping incorrectly.

19

My overall impression from our project was this. The way we had decided to implement the cartridge

reader and actual controllers was an awesome idea, but ended up delaying the testing of the system by

at least a few weeks. And even after we had the thing built, we spent even more time getting the timing

to work. Since each component of the system was completely customized and not completely

documented, we had no way to test anything other than “the big bang theory” of throwing everything

together and seeing what happened. An idea that is sometimes necessary, but when it is, it's nice to get

to this stage prior to only having a week or two left to debug the entire system. As far as going back

and doing it again, we definitely should have concentrated first on the main CPU and cartridge

interface, but this was pretty much impossible since we didn't get the code for the CPU until after 3 or 4

weeks, at this point we were in the middle of building other things so even then we didn’t start working

on it right away. Also, I felt like I was constrained more than I initially thought since instead of just

“making it work” we were confined to “making it work” as long as the CPU and cartridge timing

agreed, which put a lot of limits on what we could do.

This was really the first open ended project class I had ever taken. Going in, I was excited to have such

a wide variety of options and a minimal amount of restrictions. I never particularly enjoyed the strict

set of boundaries that needed to be followed in projects in other courses, as I'm sure no one does, and

was eager to have complete control over the SNES. The class itself was a great idea but I do have a few

complaints. The additional reading and labs that we had to do with 0 feedback seemed like a waste of

time, whether they were or not. Also, the status updates were never responded to. It seems like a short

reply each week to the group as a whole would be helpful. Also, I felt like we had a lot of problems

with Xilinx that no one really knew how to fix and that led to a lot of wasted time in the beginning of

the project.

20

Accomplishments

At the demo we showed off our working cartridge and the DSP. Although we accomplished much more

than that, and have 5000+ lines of Verilog that works in simulation to show for that, it was not flashy

enough to demo.

Overall Class Impressions

We enjoyed the flexibility of the capstone, in that we could choose something interesting to work on for

the semester, whether it be a game or a research project. The project we chose was challenging, and we

liked how the project played to our strengths (all our members had a computer architecture

background).

Our only reservations about 545 were the lack of preparation to work with the toolset and the lack of

feedback. Xilinx has a complicated toolset with cryptic documentation at best. Also, none of us had

touched an FPGA since 18-240, and the Spartan-3's capabilities pale in comparison with the Virtex-5

we used in 545. An early hands-on workshop on the FPGA, the toolset, and how to use them would

have been useful for this class. In addition, although we had status reports

