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 Overview  

 

Our capstone design project was to build a Super Nintendo Entertainment System on an FPGA. 

 

 Game Description 

 

The SNES was a popular game console in the early 1990's. Over 40 million units were sold worldwide. 

Popular games available on the console include Super Mario World and The Legend of Zelda: A Link 

to the Past .  

 

The Super Nintendo Entertainment System was a 16-bit video game console designed by the 

Nintendo corporation that was a successor to their original and highly successful Nintendo 

Entertainment System. It contains four chips that run simultaneously to produce the video and sound 

while interfacing to the two controller inputs used by the user of the system and a cartridge providing 

the game data. Two chips control the sound system, a Sony SPC700 processor and a custom designed 

Digital Signal Processing (DSP) chip, which work in tandem with each other and a digital to audio 

converters to generate the stereo sound for the system. These each share a 64kB of SRAM that are 

interfaced by the different clock times associated with each chip. 

 

In parallel to the sound system we have the video cores, which are two nearly identical 

processors that work almost seamlessly (called one unit: the PPU) to produce the video. The PPU has 

64kB of SRAM itself, along with some extra memory specifically for storing sprite data for it's video 

output. The PPU also features several different video Modes (0-7) which can lead to various visual 

effects dependent on design. These units are controlled by a single main CPU which is a Ricoh 5A22 

processor, which is based on a 16-bit 65c816 core and has added DMA/HDMA, parallel I/O 

processing, and hardware multipliers and dividers. It has 128kB of SRAM for it's memory. 

 

The main operation of the SNES comes from the data passed in on an input data bus provided 

by the cartridge inserted into the top of the system. These cartridges contain a variety of chips, and 

when powered interact with the main CPU to provide information to the audio and video units of the 

system. The main CPU is also where the controllers interface to the game, providing a 'central hub' to 

the system that controls both input and processing. Input pins vary from the Japanese PAL design 

compared to the North American design (which we are basing our project off of.) 

 

 Hardware Description 

 

The SNES hardware consists of a cartridge, controllers, and four main cores: the CPU, DSP, SPC700, 

and PPU. 

 

Cartridge & Controllers 
 

As we wanted to use actual SNES cartridges and controllers in our project, we had 
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to deal with interfacing these devices to the FPGA board, which presented us with 

three problems:   

 

 The connectors used aren't just standard parts that can be purchased from an 

electronics supplier.  

 The SNES cartridges and controllers use 5V TTL signaling versus the 3.3V TTL used 

by our FPGA board. 

 The SNES uses a cartridge lock-out system designed to make pirating cartridges or 

consoles more difficult.  Since our project is essentially a pirated console, this 

will have to be dealt with. 

 

The physical connectors were scavenged from a used Super Nintendo console.  These 

were carefully desoldered from the mainboard of the SNES, and then soldered to a 

piece of perfboard (A type of premade PCB with a grid of plated holes on it).  For 

the lock-out system, we scavenged a lockout chip from an old SNES cartridge, as the 

chips found in consoles and cartridges are identical in function, but the console 

one is in a surface-mount package as opposed to the dual inline package used in 

most cartridges. 

 

To deal with the difference in voltage levels, we used Texas Instruments 

SN74LVC245AN 8-bit bidirectional level shifter ICs.  These ICs can accept inputs of 

up to 6.5 volts and output the appropriate logic level, but limited by the voltage 

supply to the IC.  Here, we used the 3.3V DC rail from the FPGA board to power our 

level shifters, and the logic high output was around 3.2V, which will work fine 

with the FPGA board's inputs.  These level shifters were used to shift down the 

voltage of any inputs from the cartridge and controllers to the FPGA board 

(Cartridge data bus and a few control signals, controller data inputs, see 

schematic.), level shifting in the other direction was not necessary, as the 3.3V 

logic high output of the FPGA board is high enough to register as a logic high on 

the older 5V logic. 

 

This circuitry was wired, and connected to the FPGA board using the user I/O 

expansion headers on the board.  The connectors on the board are standard 0.1" 

spaced inline pin headers, we chose to use the same connectors on our interface 

circuit.  During assembly, we checked each new solder joint with a multimeter to 

ensure that the correct connection had been made, and no incorrect connections were 

made.  After the circuit was built, we injected test voltages with a standard bench 

power supply to ensure the proper operation of the level shifter ICs.  Finally, we 

were able to confirm that this circuit works properly, as we were able to read 

valid data from game cartridges and controllers, all without damaging the FPGA 

board, game cartridges, or controllers. 
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CPU 

 
The CPU in the SNES is a modified Ricoh 5A22. We were fortunate to get a synthesizable Verilog 

description of the 65C816 from Western Design Center (WDC), which was used as the core in the 

SNES CPU. We added several peripherals to the CPU. 

 

 Multiplier: An 8-bit multiplier 

 Divider: A fixed-point divider with 16-bit dividend and 8-bit divider 

 Interrupt Module: Gathered interrupts from other devices (e.g., cartridge) to feed into the core 
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 Work RAM (WRAM): A 128KB byte-addressable RAM accessible by the CPU (see “CPU 

Memory Map” below) 

 DMA/HDMA: A module that quickly transfers data from the Cartridge ROM to WRAM, ROM 

to VRAM, WRAM to VRAM, or vice versa. 

 Memory Map registers: A series of registers mapped to locations in memory (see “CPU 

Memory Map” and “Hardware Registers” below) 

 Timers: Timers for vertical and horizontal blanking periods 

 

DMA/HDMA 
 

The DMA/HDMA has 8 channels which can hold information for DMA/HDMA transfers. HDMA is 

prioritized over DMA, and lower channels are prioritized over higher channels. A DMA transfer begins 

when the CPU enables a channel by writing a 1 to the DMA enable register bit corresponding to that 

channel. Execution is suspended in the CPU until the DMA completes. HDMA only transfers 1-4 bits 

on every horizontal blank, which enables certain special effects on the screen. 

 

The source address (usually ROM or WRAM) can either increment or decrement. The destination 

address (usually a PPU register) can be accessed in a pattern determined by the 3-bit bus mode:  

 

DMA: 

000, 010 : B B B B .... 

001 : B B+1 B B+1 B .... 

011 : B B B+1 B+1 B .... 

100 : B B+1 B+2 B+3 B B+1 .... 

 

HDMA: (per line) 

000 : B 

001 : B B+1 

010 : B B 

011 : B B B+1 B+1 

100 : B B+1 B+2 B+3 
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 Hardware Registers 

Address Register name Comment 

0x2100 Screen Display Register 
a000bbbb a: 0=screen on 1=screen off, b = 

brightness 

0x2101 
OAM Size and Data Area 

Designation 

aaabbccc a = Size, b = Name Selection, c = Base 

Selection 

0x2102 Address for Accessing OAM 
 

0x2104 OAM Data Write 
 

0x2105 BG Mode and Tile Size Setting 
abcdefff abcd = BG tile size (4321): 0 = 8x8 1 = 

16x16, e = BG 3 High Priority, f = BG Mode 

0x2106 Mosaic Size and BG Enable aaaabbbb a = Mosaic Size b = Mosaic BG Enable 

0x2107 BG 1 Address and Size 
aaaaaabb a = Screen Base Address (Upper 6-bit), b 

= Screen Size 

0x2108 BG 2 Address and Size 
aaaaaabb a = Screen Base Address (Upper 6-bit), b 

= Screen Size 

0x2109 BG 3 Address and Size 
aaaaaabb a = Screen Base Address (Upper 6-bit), b 

= Screen Size 

0x210A BG 4 Address and Size 
aaaaaabb a = Screen Base Address (Upper 6-bit), b 

= Screen Size 

0x210b BG 1 & 2 Tile Data Designation aaaabbbb a = BG 2 Tile Base Address, b = BG 1 
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Tile Base Address 

0x210c BG 3 & 4 Tile Data Designation 
aaaabbbb a = BG 4 Tile Base Address, b = BG 3 

Tile Base Address 

0x210d BG 1 Horizontal Scroll Offset 

Scroll offset registers are all 16 bits wide. 

0x210e BG 1 Vertical Scroll Offset 

0x210f BG 2 Horizontal Scroll Offset 

0x2110 BG 2 Vertical Scroll Offset 

0x2111 BG 3 Horizontal Scroll Offset 

0x2112 BG 3 Vertical Scroll Offset 

0x2113 BG 4 Horizontal Scroll Offset 

0x2114 BG 4 Vertical Scroll Offset 

0x2115 VRAM Address Increment Value 
 

0x2116 
Address for VRAM Read/Write 

(Low Byte) 

 

0x2117 
Address for VRAM Read/Write 

(High Byte) 

 

0x2118 Data for VRAM Write (Low Byte) 
 

0x2119 Data for VRAM Write (High Byte) 
 

0x211a Initial Setting for Mode 7 
aa0000bc a = Screen Over b = Vertical Flip c = 

Horizontal Flip 

0x211b Mode 7 Matrix Parameter A 

Registers 211b through 2120 are 16 bits wide. 

0x211B is also used as the 16-bit multiplicand for 

registers 0x2134-6 (write twice) 

0x211C is also used as the 8-bit multiplier for 

registers 0x2134-6 

0x211c Mode 7 Matrix Parameter B 

0x211d Mode 7 Matrix Parameter C 

0x211e Mode 7 Matrix Parameter D 

0x211f Mode 7 Center Position X 

0x2120 Mode 7 Center Position Y 

0x2121 Address for CG-RAM Write 
 

0x2122 Data for CG-RAM Write 
 

0x2123 BG 1 and 2 Window Mask Settings 
aaaabbbb a = BG 2 Window Settings b = BG 1 

Window Settings 

0x2124 BG 3 and 4 Window Mask Settings 
aaaabbbb a = BG 4 Window Settings b = BG 3 

Window Settings 

0x2125 OBJ and Color Window Settings 
aaaabbbb a = Color Window Settings b = OBJ 

Window Settings 

0x2126 Window 1 Left Position Designation 
 

0x2127 
Window 1 Right Position 

Designation 

 

0x2128 Window 2 Left Postion Designation 
 

0x2129 
Window 2 Right Postion 

Designation 
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0x212a 
BG 1, 2, 3 and 4 Window Logic 

Settings 
aabbccdd a = BG 4 b = BG 3 c = BG 2 d = BG 1 

0x212b 
Color and OBJ Window Logic 

Settings 
0000aabb a = Color Window b = OBJ Window 

0x212c 
Background and Object Enable 

(Main Screen) 

000abcde a = Object b = BG 4 c = BG 3 d = BG 2 e 

= BG 1 

0x212d 
Background and Object Enable (Sub 

Screen) 

000abcde a = Object b = BG 4 c = BG 3 d = BG 2 e 

= BG 1 

0x212e 
Window Mask Designation for Main 

Screen 

000abcde a = Object b = BG 4 c = BG 3 d = BG 2 e 

= BG 1 

0x212f 
Window Mask Designation for Sub 

Screen 

000abcde a = Object b = BG 4 c = BG 3 d = BG 2 e 

= BG 1 

0x2130 Initial Settings for Color Addition 

aabb00cd a = Main Color Window On/Off, b = Sub 

Color Window On/Off, c = Fixed Color 

Add/Subtract Enable, d = Direct Select 

0x2131 Add/Subtract Select and Enable 

abcdefgh a = 0 for Addition, 1 for Subtraction, b = 

1/2 Enable c = Back Enable, d = Object Enable, 

efgh = Enable BG 4, 3, 2, 1 

0x2132 Fixed Color Data 
abcddddd a = Blue b = Green c = Red ddddd = 

Color Data 

0x2133 Screen Initial Settings 

ab00cdef a = External Sync, b = ExtBG Mode, c = 

Pseudo 512 Mode, d = Vertical Size, e = Object-V 

Select, f = Interlace 

0x2134 Multiplication Result (Low Byte) 
 

0x2135 Multiplication Result (Mid Byte) 
 

0x2136 Multiplication Result (High Byte) 
 

0x2137 Software Latch for H/V Counter 
 

0x2138 Read Data from OAM (Low-High) 
 

0x2139 Read Data from VRAM (Low) 
 

0x213a Read Data from VRAM (High) 
 

0x213b 
Read Data from CG-RAM (Low-

High) 

 

0x213c H-Counter Data 
 

0x213d V-Counter Data 
 

 

0x213e 
PPU Status Flag 

 

0x213f 
 

 

0x2140 

APU I/O Port 

 

0x2141 
 

0x2142 
 

0x2143 
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0x4200 NMI, V/H Count, and Joypad Enable 
a0bc000d a = NMI b = V-Count c = H-Count d = 

Joypad 

0x4201 Programmable I/O Port Output 
 

0x4202 Multiplicand A 
 

0x4203 Multplier B 
 

0x4204 Dividend (Low Byte) 
 

0x4205 Dividend (High-Byte) 
 

0x4206 Divisor B 
 

0x4207 H-Count Timer (Upper 8 Bits) 
 

0x4208 H-Count Timer MSB (Bit 0) 
 

0x4209 V-Count Timer (Upper 8 Bits) 
 

0x420a V-Count Timer MSB (Bit 0) 
 

0x420b Regular DMA Channel Enable 
abcdefgh a = Channel 7...h = Channel 0: 1 = 

Enable 0 = Disable 

0x420c H-DMA Channel Enable 
abcdefgh a = Channel 7 .. h = Channel 0: 1 = 

Enable 0 = Disable 

0x420d Cycle Speed Designation 0000000a a: 0 = 2.68 MHz, 1 = 3.58 MHz 

0x4210 NMI Enable 
 

0x4211 IRQ Flag By H/V Count Timer 
 

0x4212 H/V Blank Flags and Joypad Status 
 

0x4213 Programmable I/O Port Input 
 

0x4214 
Quotient of Divide Result (Low 

Byte) 

 

0x4215 
Quotient of Divide Result (High 

Byte) 

 

0x4216 
Product/Remainder Result (Low 

Byte) 

 

0x4217 
Product/Remainder Result (High 

Byte) 

 

 

0x4218 Joypad 1 Data (Low Byte) 

abcd0000 a = Button A b = X c = L d = R 
0x421a Joypad 2 Data (Low Byte) 

0x421c Joypad 3 Data (Low Byte) 

0x421e Joypad 4 Data (Low Byte) 
 

0x4219 Joypad 1 Data (High Byte) 

abcdefgh a = B b = Y c = Select d = Start efgh = 

Up/Dn/Lt/Rt 

0x421b Joypad 2 Data (High Byte) 

0x421d Joypad 3 Data (High Byte) 

0x421f Joypad 4 Data (High Byte) 
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 DMA Registers 

'X' being from 0 to 7: 

Address Register name Comment 

0x43X0 Parameters for DMA Transfer 
ab0cdeee a = Direction b = Type c = Inc/Dec d = 

Auto/Fixed e = Word Size Select 

0x43X1 B Address 
 

0x43X2 A Address (Low Byte) 
 

0x43X3 A Address (High Byte) 
 

0x43X4 A Address Bank 
 

0x43X5 
Number Bytes to Transfer (Low 

Byte) (DMA) 

 

0x43X6 
Number Bytes to Transfer (High 

Byte) (DMA) 

 

0x43X7 Data Bank (H-DMA) 
 

0x43X8 A2 Table Address (Low Byte) 
 

0x43X9 A2 Table Address (High Byte) 
 

0x43Xa 
Number of Lines to Transfer (H-

DMA) 

 

 

 

DSP 

 
When compiling data on the DSP, we had been fortunate to come to the realization that people have, in 

the past, modeled the DSP on FPGA's before. Long after the time of the SNES, many 

independent technophiles came up with a format for the sound binary file associated with the cartridges 

called an .SPC file. This, when pushed into a software-designed parser, can play the sounds associated 

with whichever game the .SPC file was created from. There were some ambitious graduate students at 

various universities that wrote the actual DSP hardware to generate the sound on an FPGA already, and 

while it was done in VHDL, it allowed us to have a fairly good idea on how the DSP should be 

designed. This code, along with several documents explaining how the different parts of the DSP 

worked, allowed us to design it properly. 

 

In brief, the DSP is a highly customized and advanced 8-voice audio processor that outputs 16- 

bit stereo sound at 32 KHz. It decompresses and processes audio samples as opposed to actually 

generating audio signals with oscillators. These samples are stored in the SPC700/DSP shared 

memory, and the SPC700 sets various control registers inside the DSP to point it to the correct source 

of samples for each voice. 

 

What we noticed about the DSP, as opposed to the SPC700 was that it was much more modular 

a design. There are several major subsystems to the DSP, many of which we were able to implement 

and test as individual Verilog modules: 
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 Sample decoder: Converts compressed audio samples to raw digital audio 

 Pitch Modulator: Adjusts the pitch of each voice by a selectable value, and for voices 1 

through 7 by the output value of the previous voice. 

 Noise Generator: Generates a pseudorandom noise signal that can be substituted for the 

output of each of the 8 voices by setting a bit in a control register. 

 Envelope Generator: Generates a volume envelope for each channel. Supports ADSR (Attack, 

Decay, Sustain, Release), simple direct gain, and simple variable gain. 

 Echo system: Produces an echo effect with selectable delay. 

 Per-channel and master volume control. 

 

The DSP follows a very rigid 32-step process to generate each stereo output sample. Within 

each 32-step block, an output sample is generated for each voice that is keyed on. Then, these samples 

are combined along with the sample generated by the echo system (if enabled), the master volume is 

applied, and the samples are output. In the original SNES, two 16-bit samples, left and right, are output 

to a serial DAC; our implementation behaves similarly, but outputs to the AC'97 control logic. Because 

of this rigid behavior, our DSP's control logic is a simple hard-coded finite state machine that has a 

maximum of 24 states for each of the 32 steps. 

 

SPC700 
 

The SPC700 is an 8-bit CISC CPU core that was originally manufactured by Sony.  Upon initial review 

we were skeptical that all 256 op-codes in the chip were actually used by the games that were played 

on the console, but according to the documentation that we eventually read all of the codes could have 

been used by the cartridges.  o avoid having to return to the chip and spend more time implementing 

ops at the end, we decided to include all of the opcodes into our design.  The SPC700 is large in scope, 

but following basic processor design priciples we were taught in 18-447 we were able to model the 

core with a standard data path and FSM. 

 

As we had no layout diagram of the core itself, we reversed engineered the core from several ISA 

models we had found that were being used by emulator designers to provide the sound emulation for 

their various SNES ROM emulators.  Our design consists of a decode stage which upon the collection 

for the opcode form memory decides the further actions taken by the chip for that operation cycle.  In 

all of the ISA diagrams we were given the amount of cycles each operation needed to take, so ha gave 

us a fairly solid base to work from when designing the interactions needed in the decode stage of our 

chip. 

 

We knew here was no easy way to get around the 256 ops needed by the chip, so we designed the 

decode around a large case-stamen that sets the various control signals throughout the code.  there were 

some similarities in ops that shortened our codebase, but a lot of the operations required very unique 

control throughout the chip, leading to our decoder being very large (in terms of lines of Verilog.)  Our 

ALU is fairly straight forward, taking in two line inputs and producing an output based on a signal 

generated from the decoder. 

 

Once the decoder and ALU were finished, depending on a given op, there may be aneed for memory 

access.  As at this point we were unaware as to whether or not our memory coudl be designed as 

synchronous or asynchronous, we decided to play it safe and model the system as a synchronous 
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read/write hat will return or finalize writing on the next clock cycle.  This made our cycle conditions 

fairly tricky, as before we were without the need to wait for memory and were able to perform all ops 

in one cycle (decoder -> alu -> register/memory all in one cycle was feasible by our design.)  With 

reading from memory being a one cycle operation, it brought our minimum cycles per op to two, while 

giving us added cycles to any op that required memory operations.  After reviewing this we decided we 

had sufficient cycles, even with the cycles for reads and writes, to have our design work. 

 

PPU 
 

We started building the PPU about a month and a half into the project.  On the actual system, the PPU 

is comprised of two closely integrated ICs.  In our design, however, we decided to make it just one 

system.  It works by monitoring a number of registers and then translating that data into the video.  The 

registers are address locations 0x002100 to 0x00213F.  These are memory mapped from the CPU and 

are stored in the PPU itself.  The 8-bit address bus "Bus B" controls which register is updated or read 

from by two additional control lines, read and write.  All of these are handled by the CPU wrapper.   

 

The registers' purposes are listed above and many of them seem self explanatory.  It is important to note 

that it doesnt not matter how the data is getting to these registers, whether the CPU is using the DMA 

channels or just updating a single register at a time, it is all viewed the same by the PPU.  The main 

data transfer occurs in registers 2116, 2117, 2118, and 2119.  Everytime the address is updated 

{2117,2116} the PPU reads the data from {2119,2118} and writes it to the appropriate location and 

then increments by the value in register 2115.  The CPU then writes new data and this continues, 

copying data into the PPUs VRAM, which is 64kB in size.  Color data is stored in a 256x15 bit 

separate RAM and the sprite data is stored into yet another 544 bytes, called the OAM.  These locations 

are written to much the same way as VRAM, just in different registers.  Any writing to the PPU 

memory occurs only on vertical blanks.   

 

After data is loaded into memory, it is time to put a picture to the screen.  This uses almost all of the 

other registers to create the picture.  A few of the important registers are the BG Mode register which 

sets the possible different sprite sizes and background resolutions are to be used.  Modes 0-6 are pretty 

much the same, but Mode 7 uses a lot of complicated Matrix multiplication that we never got to.  This 

was only used in later games.  At any given time, there are four backgrounds that can be overlapped on 

the screen.  The sizes of them in memory are actually much larger than the actual screen resolution 

itself and can be scrolled all over the screen.  This also depends on the mode and a few other settings. 

 As I stated earlier, most of the register purposes are self explanatory such as the window masks and 

window positions. 

 

Again, we never got to fully test the PPU.  We were able to load information through a various number 

of tests and then produce backgrounds and scroll them with buttons.  We were confident that if we 

loaded the correct information, we could create a picture close to what was created by the original 

system pending some debugging.  But seeing as the CPU never got out of its loading stage, we could 

never get enough information from the cartridge to test it with actual SNES video. 
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 Approach 

We knew from the beginning that this was a large project, and we wanted to make as few errors as 

possible in the design. Therefore we began with thorough research in available documentation and 

write-ups about the SNES. Most of the documentation we found was programmer-side interface detail 

written by members of the large SNES fan base. We were fortunate enough to find a manual from 

Nintendo that detailed the CPU and PPU components. Unfortunately our search did not bring very 

many documents about the sound system, however. We also tracked down Western Design Center 

(WDC), the company that designed the actual CPU core for Nintendo, and managed to get in contact 

with them about potentially using their product in our SNES emulation. They agreed to send us their 

Verilog after we signed a confidentiality agreement. 

 

Due to the large size of the sound system (2 cores) and the strong push this year to get sound in the 

games, we focused our first efforts on the SPC700 and the DSP. Due to the limited documentation and 

the complexity of the chips, the SPC700 took until after mid-semester to complete, with the DSP an on-

going effort throughout the semester.  

 

At mid-semester, our team grew, which allowed us to tackle more pieces of the design at once. We 

finally obtained a synthesizable core from WDC, which allowed us to work on the CPU. We also 

started building the physical system, cartridge and controllers from a real SNES. 

 

After completing the SPC700, we moved on to the PPU. With two weeks to go until demo, we began 

integrating the CPU and PPU with the working cartridge. 

 Design Partitioning 

As alluded to previously, we partitioned the design into the four cores (CPU, PPU, SPC700 and DSP) 

and the physical hardware (cartridge and controllers). We divided the work between the team members 

in the following way: 

 

Rachael: CPU (joined mid-semester) 

Lincoln: DSP, cartridge, controllers 

Dustin, Grant: SPC700, PPU 

 Tools and design methodology 

We used the Xilinx toolset for our work. Our hardware description language of choice was Verilog. 

 

We designed the hardware based on the documentation we found from fans and Nintendo. 

 Testing and verification methodology  

We used a combination of simulation via ModelSim and synthesis in Xilinx ISE to test the cores and 

verify correct operation. 
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 Status and future work 

As of demo day, we have the cores completely implemented in Verilog (minus some instructions in the 

DSP and SPC700) and the physical hardware built and operational. We have a partially integrated 

CPU/PPU/Cartridge which is not quite operational. 

Future work would need to integrate the different cores fully and insert the missing instructions in the 

DSP and SPC700. In the future additional modes could be added to the PPU which could enable a 

greater variety of cartridges. 

 What you learned 

 How to organize (and not organize) a large-scale project 

 How to search for relevant information online 

 Hindsight 

We wish we had a better comprehension of the scope of the project we were taking on. If we had 

known the sound system was going to take so long, we may have organized the project differently.  

 Design Decisions 

 

We made several major design decisions that helped, or in some cases hurt, our project 

 

Real Cartridges 

Our early decision to build a cartridge reader from real SNES parts, as opposed to reading a ROM off 

flash, turned out to be a great idea. The reasoning behind this decision was to enable the use of a 

variety of cartridges (and in a working system to play a variety of games). Allowing the player to 

choose their game made the project much more appealing. 

Although the system did not work as a whole, the cartridge reader worked on the first try. It was an 

accomplishment that gave us not only something to show for our work, but let us use a variety of 

cartridges for debugging purposes. Many people who came to our demo were impressed by the 

cartridge reader we built. 

 

Timing 

We decided to work on the sound system first because it had the least documentation, there was a push 

in class to get sound working on games this year, and it looked easy. These were all the reasons why we 

should have worked on it last (or, at least, not first).  

 

First, the limited documentation meant that we were trying to figure out what went in a black box. After 

feeling around for awhile, we found that the black box was more complicated than we initially thought. 

By that point, weeks had passed.  
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Second, although pushing sound was good in that most groups end up running out of time for it, there 

is a reason why groups leave it until the end. Sound is not critical to game play. If the sound is not 

working, the game can still be played (“It's just muted!”). Without the CPU or video decoder, however, 

game play is impossible. We learned this the hard way when, instead of running out of time on sound, 

we ran out of time on system integration, and ended up losing everything.  

 

Third, a good lesson we learned is that if something looks easy, it probably isn't, especially if there is 

no documentation.  

 

Protocol 

We chose to follow the documentation we had to the letter. This led to unnecessary complications 

during implementation and integration that we could have avoided by figuring out what Nintendo was 

trying to accomplish and making it simpler. For example, timing in the DMA controller was 

unnecessarily complex, due to the latency between ROM accesses and chip responses. Since we were 

building our design on customizable hardware, we probably did not have to incorporate the timing 

switches. 

 

We also found in integration that the CPU-SPC700 communication protocol is very complex, and could 

have possibly been simplified. 

 Advice to Future Groups 

To future 545-ers, we suggest the following: 

 Get started on implementation early! (Corollary: Get started early!) We spent several weeks on 

research before starting to implement our project. There is a sweet spot to the amount of 

research you do (more research to prevent bugs, less research to get more time to debug at the 

end). 

 Be here for Thanksgiving. Unless you have your project done. 

To future groups that attempt the SNES: 

 Read this document carefully to avoid our pitfalls. 
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 Individual Pages 

Rachael 

I joined this team at mid-semester after my first team lost a member and dissolved as a result. So I'd 

like to start with some short advice on choosing your team: Take skill set into account, but also take 

commitment to the class. I was lucky that my teammate dropped early enough that my team could 

disperse into other groups (other teams were not so lucky), but joining a group halfway through the 

class was also a challenge. I had to quickly familiarize myself with their project and group dynamics. 

 

When I joined the SNES team, I began work on the CPU peripherals: the multiplier, divider, and DMA 

(plus some other small units to control interrupts and other signals). The multiplier and divider took 

about a day to complete and debug. The DMA, however, was much more complex. The available 

documentation was written from a programmer's perspective, so it did not include too much 

information about the underlying hardware. There was also the HDMA, which only transferred a few 

bytes of data on horizontal blanks (between scan lines). This mode was even more complex. Over time 

I found that the DMA could have had a much simpler design than implied by the documentation and 

fan observations. Since the DMA's purpose was to transfer data from ROM/RAM to the PPU, the 

timing, for example, could have been done much simpler. 

 

I also did significant integration work at the end. I spent a solid 60 hours in lab over Thanksgiving 

break working on the Cartridge-CPU interface and getting a response from the controllers. I spent the 

last week of classes in lab debugging the CPU-PPU interface, which did not end up being enough time 

to complete the integration. 

 

Lincoln 

 

I'm Lincoln Roop, and I worked on the following things for our group: 

 

Obtaining 65c816 source from Western Design Center - 4 hours (Time spent includes 

estimated time it took to communicate with WDC and prepare/scan necessary paperwork, 

not time spent waiting on e-mail replies.) 

 

Cartridge & Controller Interface circuit 

        Research (Finding pinouts, parts, etc.) - 14 hours 

        Circuit Design - 4 Hours 

        Assembly/Test - 14 hours 

This work was completed over the course of 2 1/2 weeks 

 

Audio DSP 

        Research - 20 hours 

        Coding/Debugging - More than 40 hours 

 

Other work: 



17 

        Debugging/helping find documentation for the rest of the project. 

 

My impression of the class: 

 

        This class is a nice opportunity to work on something approximating a self-directed 

real world project, but it could use a bit of improvement.  Most importantly, more 

feedback would be nice.  While the in-class feedback from group status reports is 

useful, I think it would be good for students to sit down (maybe once every other 

week) and meet with the professor or a TA to discuss progress, current issues, and 

such. 

 

        In hindsight, I feel that my group would have chosen a different project if we knew 

about some of the issues we ran into later on.   This isn't a fault in the class, 

but it might help to encourage students to do more research into the feasibility of 

their chosen projects in the early stages when a change is still possible. 

Grant 
 

For the SNES on an FPGA project I, along with Dustin Musselman, worked mainly on the 

SPC700 and PPU chips, as well as doing major testing and debugging on all other chips and their 

interconnects.  The first month and a half of work was mainly devoted to building the SPC700 chip.  As 

mentioned, the chip was mainly built by working with ISA’s that had been assembled by various 

emulator developers who worked on creating SNES emulators based on ROM files (the data files 

pulled straight off the cartridges.)  What we thought was going to be a simple design turned out to be a 

nasty 256 opcode processor with a degree of complexity far more advanced than anything we had 

attempted in the past.  After much struggle with overall design, including several re-writes to conform 

to the monstrosity that is Xilinx development tools, Dustin and I created a working and tested version 

of the chip with several opcodes.  We had all of the other opcodes together and ready to be placed in 

our final design file, yet our development towards the end lent to other things being more important. 

 The other major component I worked on, for roughly 3-4 weeks, was the PPU.  A large amount 

of the processor’s workings were mainly unknown to us, so we had to start from scratch developing 

FSMs based on what the software development handbook issued by Nintendo had said.  This was 

moderately difficult, as without any working knowledge of the hardware it was difficult to establish 

what indeed had to be done to get the processor working.  I specifically worked on the sprite pixel 

manipulation module, which when prompted for a specific x and y coordinate would generate a proper 

color address for the CGRAM and a priority so that the over-arching PPU module could decide 

whether or not it was to be displayed over the four different background modules that were to be 

instantiated.  I also wrote major components for input manipulation from the main CPU, as there were 

specific registers that needed various outputs to be changed based on whatever input sent to it by the 

main CPU.  With these, as well as the background logic and other data compiled by Dustin, we had 

what we were confident was a working PPU, as the testing we did showed accurate object and 

background data manipulation based on false input we provided. 

 Towards the conclusion of the project the majority of my time was spent debugging the main 

CPU wrapper and the DMA to try and get data moving from cartridge interface -> main CPU -> PPU -

> monitor.  Unfortunately we were unsuccessful with getting this to work however we were fairly 

confident all of our chips were working.  We think if we had an extra month of work we would have 

gotten it working, but sadly we ran out of time. 
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 For the class, there were several areas I enjoyed while I feel that there are some things that 

could use a bit of work.  I enjoyed the freedom and the “go do something” attitude that the course staff 

took towards our projects, and the lab and technology provided to us was great.  Mandatory lab I feel is 

necessary, but I feel that more instructor and staff involvement would be useful for feedback on 

progress the group is making.  In the same sense, I feel a meeting once or twice a year with the 

professor as groups privately would be beneficial for future semesters, as a more direct contact from 

the professor to the groups on how the pace for the groups is going I feel is vital for the project to be a 

success.  Reflecting on the course, I feel our project was a bit beyond the intended scope of the class, as 

there is a large leap from the NES hardware and the SNES hardware, which we thought we could 

manage successfully.  Feedback early on about this difference could have led to different choices being 

made on project ideas; however we were pretty adamant about doing it so the staff likely couldn’t have 

convinced us otherwise anyway. 

 Overall I enjoyed the class, and obviously I wish our project could have been more complete by 

demo time, but I put in a lot of long nights over the course of the semester and I am pleased we got as 

far as we did given the complexity of the system we were dealing with.  We hope that a group in a 

future semester can take our work and creating a working version of the SNES on an FPGA.  Hopefully 

this report will provide enough documentation so that they further our work and make this project a 

success. 

 

Dustin 

Although our group spent a lot of time working together on this project, as individuals we spent 

a lot of time working on the different sub-components of the overall system. After deciding that we 

were going to build the SNES, we first spent a lot of time researching what all was going to be required 

to build it. We spent a week getting a rough idea of what we were going to need. 

We made a decision to first start working on the sound module, which included a DSP and an SPC700 

processor. Lincoln started the DSP, while Grant and I worked on the SPC700 and how it communicated 

with the outside world ( memory, CPU, data registers, etc) We spent a week or so researching and then 

3-4 weeks coding it. Because of the lack of documentation, there were many things we found out as we 

went and needed to go back and change. In the end, however, we did get a working SPC700. I ran a 

quite a few tests that tested the majority of the op codes to make sure they worked how we believed 

they worked base on documentation. But, as with everything in this project, it could not be completely 

tested until then entire system was running together. 

We then moved to the PPU to begin getting video on the screen. Once again, due to spotty 

documentation, our time researching at the beginning was basically useless as we rediscovered a lot of 

things working differently then we initially thought. It was around this time when I started putting in 

25-30 hours a week in lab. I worked mainly to get background data working. The tests I made 

successfully read in information from the registers and then I was able to create a background complete 

with scrolling. Again, I was not able to completely finish this because testing is impossible without 

seeing the actual data coming from the CPU. So after understanding this module almost perfectly, I was 

again stuck and couldn't move forward to clean up the last few things until I was getting actual data 

from the CPU. 

In the final few weeks, I switched over to help with the CPU. After Lincoln had created the working 

cartridge reader, we were faced with the problem of getting the cartridge to correctly talk to the CPU, 

which turned out to be much more difficult then we initially thought. We had many timing issues and 

were putting in at least 40 or 50 hours per week trying to get the CPU from infinite looping incorrectly. 
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My overall impression from our project was this. The way we had decided to implement the cartridge 

reader and actual controllers was an awesome idea, but ended up delaying the testing of the system by 

at least a few weeks. And even after we had the thing built, we spent even more time getting the timing 

to work. Since each component of the system was completely customized and not completely 

documented, we had no way to test anything other than “the big bang theory” of throwing everything 

together and seeing what happened. An idea that is sometimes necessary, but when it is, it's nice to get 

to this stage prior to only having a week or two left to debug the entire system. As far as going back 

and doing it again, we definitely should have concentrated first on the main CPU and cartridge 

interface, but this was pretty much impossible since we didn't get the code for the CPU until after 3 or 4 

weeks, at this point we were in the middle of building other things so even then we didn’t start working 

on it right away. Also, I felt like I was constrained more than I initially thought since instead of just 

“making it work” we were confined to “making it work” as long as the CPU and cartridge timing 

agreed, which put a lot of limits on what we could do. 

This was really the first open ended project class I had ever taken. Going in, I was excited to have such 

a wide variety of options and a minimal amount of restrictions. I never particularly enjoyed the strict 

set of boundaries that needed to be followed in projects in other courses, as I'm sure no one does, and 

was eager to have complete control over the SNES. The class itself was a great idea but I do have a few 

complaints. The additional reading and labs that we had to do with 0 feedback seemed like a waste of 

time, whether they were or not. Also, the status updates were never responded to. It seems like a short 

reply each week to the group as a whole would be helpful. Also, I felt like we had a lot of problems 

with Xilinx that no one really knew how to fix and that led to a lot of wasted time in the beginning of 

the project. 
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Accomplishments 

At the demo we showed off our working cartridge and the DSP. Although we accomplished much more 

than that, and have 5000+ lines of Verilog that works in simulation to show for that, it was not flashy 

enough to demo. 

 

 

Overall Class Impressions 

We enjoyed the flexibility of the capstone, in that we could choose something interesting to work on for 

the semester, whether it be a game or a research project. The project we chose was challenging, and we 

liked how the project played to our strengths (all our members had a computer architecture 

background). 

Our only reservations about 545 were the lack of preparation to work with the toolset and the lack of 

feedback. Xilinx has a complicated toolset with cryptic documentation at best. Also, none of us had 

touched an FPGA since 18-240, and the Spartan-3's capabilities pale in comparison with the Virtex-5 

we used in 545. An early hands-on workshop on the FPGA, the toolset, and how to use them would 

have been useful for this class. In addition, although we had status reports  


