18-545: Final Report — Solid State Drive
Winston Wan, Tao Yang, and Timothy Tan
Carnegie Mellon University
{wwanl, taoy, tgt}@Qandrew.cmu.edu
December 9, 2009

Contents
1 Introduction
2 Purpose and Goals
3 System Overview
4 System Setup
4.1 Hardware for SSD components
4.2 Software for SSD componentso
4.3 Software for Virtex-5 Programming
5 Custom-fabricated SODIMM
5.1 Why use the SODIMM slot? e
5.2 Components of the SODIMM
5.3 Voltage issues L e
5.4 Schematic, Layout and other details
6 Host Interface
6.1 Host Components e e
6.2 Board Components
6.3 Command Flow e
6.4 PCI Command Protocol e
7 Flash Translation Layer
7.1 Initialization e e
7.2 Command Flow o
7.3 Address Mapping L
7.4 Block Management L L
7.4.1 Handling Bad Blocks
7.4.2 Finding Free Pages
7.4.3 Erasing Obsolete Pages
7.5 Data Caching
8 DDR2 SDRAM Controller
9 NAND Peripheral

9.1 FSL Communication it e
9.2 Page Buffering
9.3 ECC Calculation and Verification
9.4 NAND Controller Communication

10
10
11
11
11
11
11
12

12

10 NAND Controller

10.1
10.2
10.3
10.4

10.5
10.6

Signal Description L e
Initialization sequence
Protocols
Controller Logic« . e
10.4.1 Read Logic
10.4.2 Write Logic e
10.4.3 Erase Logic« . e
10.4.4 Other Commands e
NAND Chips o o o e e
Verification L

11 State of the System

12 Running the System

12.1

Block Device Driver, PCI Express DMA Kernel Module, Basic FTL

13 Major Decisions and Issues

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

SATA vs. PCle o e
Software vs. Hardware FTL
FTL Design and Algorithms
FTL vs Memory Technology Device (MTD)
FPGA Board Choice e
Motherboard Compatibility
Processor Local Bus vs Fast Simplex Link
NAND controller implementation

14 Unexpected Issues

15 Words of Wisdom

16 Future Work

17 Individual Contributions

17.1
17.2
17.3

Winston Wan 0o
Tao Yang o . e
Timothy Tan e e

18 Class Impressions/Improvements

19 References

A Custom-fabricated SODIMM Design Details

Al
A2
A3
A4
A5
A6

Original Design e
Schematic
Placement L

14
14
14
15
16
16
17
17
17
18
18

19

20
20

20
20
21
21
21
21
22
22
22

22

23

24

24
24
25
25

26

26

A7 End Product/Photos 51

List of Figures

0O UL W

—= o= = = = = O
UL W N~ O

Top level system diagram L L 5
The entire setup - 11 computers and counting 6
SODIMM components block diagram L. 7
PCle Interface block diagram 8
FTL components block diagram 10
Flash page header definition (in undefined bits of page) 11
“Interface FSM” for the NAND Peripheral 13
FSM for NAND commands e 16
FSM for NAND read command 17
FSM for NAND write command 17
FSM for NAND erase command 18
FSM for other NAND commands 18
Frontal view of the custom-fabricated SODIMM 51
Rear view of the custom-fabricated SODIMM 51
Xilinx LX110T board with the custom-fabricated SODIMM installed, inserted into

a PCI Express x1 lane on the Gigabyte GA-G31M-ES2L motherboard 52

List of Tables

QU W N+~

Host DMA communication protocol over PCle 9
NAND Controller - Interface signals 15
NAND Controller - NAND signals, 15
Decision Matrix for Host Interface Protocol 21
Decision Matrix for FTL Implementation 21

1 Introduction

This final report covers the progress that was made on the FPGA-based Solid State Drive (SSD)
project during the Fall 2009 semester. We outline the details of our system, document the decisions
that have been made, provide directions understanding and using the project, and give insights to
future developments that may be made in continuation.

2 Purpose and Goals

The purpose of this project is to create a flexible, extensible platform by adapting an FPGA as a
SSD controller. We hope that the system will facilitate rapid SSD controller research and testing
in the future.

The initial primary goal for the end of this semester was to be able to connect the FPGA to
a host computer via Serial ATA, mount the SSD on a computer and verify reads and writes to the
drive. Midway through the project, due to time constraints, the implementation of the Serial ATA
interface was dropped in favor of one using the PCI Express interface and a custom-written block
device driver.

As of the end of the Fall 2009 semester, the PCI Express and block device driver host inter-
face, the custom SODIMM, and a rudimentary FTL was complete. The NAND chip controller
and FSL connection to the FTL was fully implemented and simulated, but encountered issues with
deployment to real hardware. However, a demostration of the drive capabilities from the host
perspective was possible by using DRAM on the custom SODIMM as temporary storage in place
of the permanent Flash storage.

3 System Overview
The FPGA-based SSD can be viewed as four major subsystems:

1. the PCle host interface with the PC and a customized block device driver

2. the Flash Translation Layer (FTL) that provides the hard disk abstraction and management
of the flash NAND chips

3. the DDR2 DRAM memory chip on the custom-fabricated SODIMM and the modified con-
troller required to access it

4. the NAND Flash storage on the custom-fabricated SODIMM and the peripheral and controller
needed to access it

Figure 1 below shows a diagram of these subsystems. These four major subsystems are imple-
mented in a combination of three methods - physical hardware, programmed hardware (FPGA)
and software.

PCle Block
Driver Driver

{ Host (PC) ’

—— Virtex 5
PCle MicroBlaze NAND Peripheral
Interface > LBA Erase
(DMA) Translation || Manager

SIS

T
-
B(— FTL Control < FSL > NAND Interface FSM
s
1L
DDR I_J) ;g ~~
Controller ™} Cache || Bad Block NAND Controller FSM
Control Manager
DIMM o V! N
DRAM p—p NAND NAND NAND NAND
Chip Chip Chip Chip Chip

Figure 1: Top level system diagram

4 System Setup

4.1 Hardware for SSD components
e Xilinx Virtex-5 LX110T FPGA
e Gigabyte GA-G31M-ES2L motherboard
e Intel Core 2 Duo processor (LGATT75)
e 2GB DDR2 SDRAM
e Custom-fabricated SODIMM (with NAND chips and DDR2 SDRAM)
e (optional) 48-pin TSOP socket for testing a single NAND chip.

4.2 Software for SSD components
e Ubuntu Linux running kernel version 2.6.28.16

e Modified PCI Express DMA kernel device driver

e Custom block device driver

4.3 Software for Virtex-5 Programming
e Windows XP (downloading a bitstream in Windows Vista/7 doesn’t seem to work right)
e Xilinx ISE, EDK and XPS 11.3

Figure 2: The entire setup - 11 computers and counting

5 Custom-fabricated SODIMM

The SODIMM that was custom-fabricated for this project consisted of an array of four 16 Gb Micron
NAND Flash chips for storage, one 256 Mb DDR2 DRAM chip, and a Complex Programmable
Logic Device (CPLD) for voltage translation between the flash chips and the FPGA. All these
elements share the 122 usable signal pins on the SODIMM.

5.1 Why use the SODIMM slot?

The SODIMM slot was chosen to be used as expansion header for our NAND and DDR2 SDRAM
chips due to the large number of pins available for data and signal transfer, and because the signal
routing for the SODIMM pins are known to be able to tolerate a 266 MHz clock. Unfortunately the
XGI expansion headers on the LX110T have no published maximum signal speed rating, as far as
we could tell. As our NAND chips can be clocked as fast as 50 MHz, signal integrity is important
and we thus went with the safer option of using the SODIMM slot.

5.2 Components of the SODIMM
e NAND Flash - 4 x 16 Gbit Micron MT29F16G0OSDAAWDP

e DDR2 SDRAM - 256 Mbit Micron MT47H32MS8-37E
e CPLD - Xilinx CoolRunner-II XC2C256 (FT256)

e JTAG header - Digikey: S6009-07-ND

e 4-pin power header - Digikey: A30513-ND

e 2-pin power header - 2 x Digikey: A30511-ND

e Several sets of capacitors for decoupling, according to the Qimonda DDR2 Design Guide
(refer to Appendix A.1 for more information)

DDR2 DIMM (200-pin)

NAND NAND NAND NAND
Flash Chip Flash Chip Flash Chip Flash Chip
(2 GB) (2 GB) (2 GB) (2 GB)

33V \\ f/

CFLD
(Voltage Translation)

/ / O\ \ (32)

\ DIMM pins v

Figure 3: SODIMM components block diagram

Our design called for each NAND chip to be wired up through the CPLD to the FPGA indepen-
dently (as opposed to chaining them together like a RAID-0 setup). This allows for the greatest
flexibility in routing signals, at the expense of being able to squeeze one or two more chips into the
custom SODIMM for a larger overall capacity (we trade more control signals for fewer data buses).
Also, the DDR2 SDRAM chip had to be appropriately wired up, as there were some restrictions
on the FPGA pins (and thus SODIMM pins) it can connect to.

The CPLD has two main banks - they are configured to run at 1.8V (LVCMOS18 IOSTANDARD)
and 3.3V (LVCMOS33 IOSTANDARD) respectively. Signals were carefully routed to the banks
running at their respective voltage levels. Also, all remaining signal pins on the SODIMM that did
not have a signal assigned were still connected to the CPLD as spares.

Last but not least, as the SODIMM slot did not provide 3.3V rails, power headers were mounted
on the custom SODIMM, allowing us to connect an external 3.3V source to it. Additional power
headers were also provided for the various 1.8V rails, just in case the need arose.

5.3 Voltage issues

Since DDR2 specifies a voltage of 1.8V but the NAND flash chips operate at 3.3V, voltage transla-
tion is required. Instead of going with traditional voltage translation devices, a CPLD was used to

perform the said translation as it was of a much more compact size and suited our space restrictions
well. The DDR2 DRAM chip runs natively at 1.8V, and so does not pass through the CPLD.

5.4 Schematic, Layout and other details

The schematic, layout, pictures, and other details of the Custom-fabricated SODIMM can be found
in Appendix A.

6 Host Interface

The host interface that was decided to be the most effective and simple to implement was the direct
PCle connection between the PC host and the Virtex 5 FPGA board. Since read/write commands
sent to the drive must be translated to a format that can be sent and interpreted over a PCle
interface, a block device driver was developed to handle the abstraction for the operating system,
a protocol for data transfer was defined for communication over PCle, and code was adapted to

facilitate the use of the PCle port. The figure below shows the layered structure of the host
interface, where the block device abstraction is built on top of the character device abstraction of
the PCI device. The physical data transfer is implemented by the operating system through Direct
Memory Access (DMA).

Host (PC)

| System Call Interface |

| Block (HD) Device driver |

PCle Block
| DMA Driver | Device Kemel
Module

| PCI Char Device driver |

software
hardware |

Kernel Memaory |

— o

PCle Hardware

DMA Control DMA Data
Registers Buffer

hardware

software

Figure 4: PCle Interface block diagram

6.1 Host Components

The host, commonly the PC, side of the PCle connection has all of the hardware in place, and
much of the software stack is provided by the operating system. In Linux, PCI devices are char-
acter devices that stream data, whereas a disk is a randomly addressable block device. A block
device driver is needed to provide a block layer on top of the existing PCI functionality. Code was
adapted from a previous project by Eric Chung that implemented the PCI drivers for the Virtex
5 LX110T FPGA. These existing components are shown as the highlighted blocks in the figure
above. To adapt the code for our purposes, the “DMA Driver” code that was implemented in user
space by Chung was moved into kernel space by removing the memory mappings to user space and
removing the need to open the PCI device with a file descriptor. In the first implementation of the
new kernel module, we attempted to merge the block device driver into the existing code to create
a single module. We ran inconsistent crashing of the kernel using this design, which may have been
caused by the fact that the module was trying to act as a PCI driver and a block device driver at
the same time. After exporting the read/write function symbols in the PCI portion of the module,
the block device driver was split into a separate module which called the PCI read/writes.

It is important to note that these drivers are highly dependent on the kernel version 2.6.28. Between
Linux 2.6.28 and 2.6.31, the block subsystem went through many changes in respect to the eleva-
tor and request architectures. Currently, we use the old and simplest form of the request system.
A point of future progress would be to remove the use of the request and directly use the block
input /output structure, the bio. This will reduce overhead because a solid state drive has no need

for queuing and consolidating requests like a physical disk does, and efficiency optimizations should
be primarily placed in the Flash Transition Layer, or any specialized solid state drive management
system, whether onboard or on the host.

6.2 Board Components

The hardware required on the FPGA side of the PCI interface consists of a large 8 KB data buffer
and a set of control registers. This memory space allows DMA transactions between the PC and
the board. A controller that is part of the FTL on the FPGA board manages the signaling. The
data buffer is treated like an address mapped queue by the MicroBlaze code, which can make read
and writes to the queue. It is important that the size of each data transfer match both on the
MicroBlaze and the host.

The code on the MicroBlaze simply waits to read one synchronization byte, which then lets a
constant loop of receiving and responding to requests. The command protocol that was defined
is described below. The code also performs any necessary initialization of the MicroBlaze caches
pre-synchronization and runs the FTL initialization of the drive.

6.3 Command Flow

A read or write command is issued by the kernel driver when reads are needed or when the kernel
data caches run out of space. These calls are mapped in a device struct to functions in the kernel
module. These functions then complete the action by setting the DMA control registers to signal
the device. Table 1 describes these steps in detail.

’ Step \ Read command \ Write command
1 | Reset the device control register (DCR) Reset the DCR
2 Determine values for size and count registers | Copy data into data buffer
3 Store address into read address register Determine values for size and count registers
4 Signal read command register Store address into read address register
5 Wait for response in status register Signal write command register
6 Copy data out of data buffer Wait for count register to empty

Table 1: Host DMA communication protocol over PCle

6.4 PCI Command Protocol

The simple protocol currently implemented for communication over PCle is as follows:
1. Send 8-byte header with logical block address and command type

2. Send or read a full page of data associated with that logical block address

7 Flash Translation Layer

The Flash Translation Layer receives commands and data through the PCle interface, and outputs
translated commands with the data to the NAND chip controller. At the host interface, the FTL
must provide the logical block abstraction for the disk drivers to treat the device as a disk. At

the storage interface, the FTL must maintain the health of the NAND chips. Lastly, the FTL
implements caching to improve performance. Each operation in the FTL must be transactionally
safe, which means that power loss to the system at any point in any data transfer should not
corrupt the system.

Priority Address
Queve Mapping Cache -?;%T:
'l v 7%
RAM Controllg ‘ ‘
PCle v W v \/ hAND Controlies
Erase LBA Cache ;;ZZ
Manager Translate Control Finder
= . Y a
g cmd
5 | Register
TR
=
4
m init() Block/
read() < FTL Centrol Page
write() Header
= Parser
b
5
fis] S L
o T Data
8 Queues

Figure 5: FTL components block diagram

7.1 Initialization

When the drive is started, the FTL immediately begins to probe the header block of each page in
order to set up the necessary data structures in memory. Although initialization is slow, storing all
drive metadata on each page allows simpler algorithms and eliminates the concern about certain
table pages receiving high write loads.

If two pages are discovered to contain the same Logical Block Address (this can only occur due to
an improper shutdown), the page with the higher physical address will be invalidated. Pages found
to have invalid LBAs will also be likewise invalidated.

7.2 Command Flow

The FTL listens to the DMA registers for new commands. When a command is received, the logical
block address known by the host must be translated into the physical address of a page on one of
the Flash chips using the mapping tables. In the case of a read, data is forwarded from the chips
to the DMA data buffer. In the case of a write, a free page must be found to write the data to.
The new page is assigned the same logical block address as the old page that used to hold the
page being written. Finally, the old page is invalidated and updates to the erase priority queue are
made. With a cache-suppported system, which is not currently implemented, the logical address
will be searched for in the cache, thus eleiminating the need to access the Flash chips.

10

7.3 Address Mapping

A Logical Block Address to Physical Address mapping is maintained by the FTL through a one-
level page table. During each read or write, these tables will be accessed to achieve the translation.
The tables are loaded into memory during initialization of the drive by reading the headers for each
page. When a new page is written, first all the data is copied to the new page. Then, the headers
are set with the same logical block address as the old page. Finally, the old page can be invalidated
and the in-memory table can be updated.

7.4 Block Management

Blocks and pages on the storage chips are subject to a number of states, such as free vs. used, valid
vs. invalid, or bad. This information is used by the Block Management system to determine the
location of the next free page. Block management is maintained in memory and implemented as a
software algorithm, but the backing metadata is transactionally persistent in the headers for each
page. Wear leveling is a block management algorithm that determines when to erase pages, and
which pages to erase. Repeated use of the same pages is avoided by neglecting to erase pages with
heavy use.

40 19

w
(=]

Logical Block Address [40:20] Wear Leveling Counter [19:3]

Frae/Used
Bad Block

Valid/Obsolete

Figure 6: Flash page header definition (in undefined bits of page)

7.4.1 Handling Bad Blocks

During initialization, a block is found to be bad if the bad block bit in any page is set to 1. These
bits will be stored in a bit array that acts as a bad block table in memory. When searching for
free pages, this bit array will be indexed into by the block number in the physical page address.
This feature is not currently implemented since the demonstration version runs on DRAM storage,
which has no risk for bad blocks.

7.4.2 Finding Free Pages

Free physical blocks will be maintained in an implicit list. A new free block is not needed until
the previous one is completely allocated. Free pages in storage will be allocated sequentially from
a physical block, since pages are mapped to logical blocks anyway. The current implementation of
this feature is to consecutively issue free pages, without consideration for the block number, since
erases have not been completed. Clearly, should the target of the next free page were to extend
past the end of the capacity of the drive, a fatal error will arise.

7.4.3 Erasing Obsolete Pages

When a page is marked obsolete, or found as obsolete during initialization, the block it belongs to
is stored into a priority queue sorted by the priority of the block being erased. This priority will

11

be determined by a formula that accounts for the block’s wear count and number of obsolete pages
it contains. The more obsolete pages in a block, the more effecient the block erasure will be to free
pages. The higher the wear count, the less advantangeous it is to further progress that count, since
at some point we risk losing blocks due to lifetime. This operation is the most critical operation
for an effective solid state drive, and therefore deserves additional attention and consideration. In
the future, many strategies for optimizing erases should be compared.

7.5 Data Caching

Caching pages as they are read is a common way to drastically improve performance in transaction-
intensive systems. There is currently no caching implemented in the system, but there are many
ways in which our design supports caching. Function prototypes for cached reads and writes have
been included in the FTL code, and the DDR2 controller is already in place. By caching data into
RAM, better performance is expected, since the DDR2 reads are slightly faster than the NAND
reads. However, caching introduces many transaction and consistency issues that will need to be
designed against.

8 DDR2 SDRAM Controller

The default DDR2 SDRAM controller that comes with the Xilinx LX110T board that we are using
is meant to be used with a 256MB DDR2 SDRAM SODIMM (with four 512 Mb chips on it).
However, since we are interfacing our custom-fabricated SODIMM which only contains one 256 Mb
DDR2 SDRAM chip, there is thus has a very different routing and signalling scheme compared to
the original SODIMM module, and so the controller must be modified.

With reference to the Xilinx Multi-Port Memory Controller (MPMC) Data Sheet, there are steps
to be followed to use Xilinx’s Core Generator (Coregen) tool to prepare a new MPMC core that is
tailored to our single DDR2 SDRAM chip. Once a new core is generated, the Universal Constraints
File (UCF) has to be modified to reflect the specific SODIMM pins (and thus FPGA pins) that
we will be routing our signals through. Once this is done, the UCF file is verified to be correct
using Coregen, and converted to work with the existing PCle project we started with. Unfortu-
nately things (as usual) didn’t go as per Xilinx’s plan, and there were many perplexing synthesis
error messages that resulted from the drop from 256MB to 32MB of DDR2 SDRAM - errors that
consumed yet more time to guess and attempt to resolve.

Nonetheless, a working DDR2 SDRAM controller was eventually synthesized correctly, and tests
for accuracy passed.

9 NAND Peripheral

The NAND Peripheral is connected to the MicroBlaze via bi-directional Fast Simplex Links (FSL).
The peripheral also contains a Block RAM (BRAM) buffer, an Error Correcting Code (ECC)
module and the NAND Controller module. The peripheral is driven by an “interface FSM” as
shown in Figure 7.

12

CMD==RESE

CMD==READ

Figure 7: “Interface FSM” for the NAND Peripheral

9.1 FSL Communication

The FSL was selected over the PLB due to its higher data transfer rate achieved during character-
ization tests.

Any request is always enacted from the Microblaze, and so the interface FSM in the Nand Pe-
ripheral idles in the “In_Control” state. When the Microblaze sends a request to the peripheral,
it first sends a two-dword long header (each transfer is 1 dword in width), giving the command,
size of the request (if any) and the address to perform the request on. In the case of a Write,
the interface FSM will continue reading in the specified number of bytes into a local BRAM page
buffer. For Reads and Erases, control is passed to the NAND controller.

13

9.2 Page Buffering

Data is buffered in the BRAM page buffer in order to facilitate the calculation of ECC checksums
(in the case of a write) and the verification of data read from the NAND controller (in the case of
a read). Since the data is buffered, corrections to bit errors are easy.

9.3 ECC Calculation and Verification

A ECC module was written to do process 32 bits at an instance, to perform realtime calculation of
the checksum as the data is streamed in. The ECC algorithm allows for Single Error Correction,
Double Error Detection (SECDED). The interface FSM calculates and verifies ECC during each
read or write of 4096 bytes (one logical block), and tags it to the ECC checksum to the end of the
page (pages are 4314 bytes). As such, this whole process and the extra bytes for ECC are totally
transparent to the host system.

9.4 NAND Controller Communication

To initiate a transaction, the host will first signal the address and command to the NAND controller,
and give a start signal in the status register. The interface FSM will also be watching the status
registers for signs from the NAND controller that it is sending data out, so that the data can be
buffered and then verified.

10 NAND Controller

The interface FSM and the controller will communicate through a custom designed protocol. On
the other end the nand controller will be issuing commands to the flash chip through the nand
interface, which will be mapped to the pins on the SODIMM slot.

10.1 Signal Description

Table 2 contains the descriptions for all the top level ports of the NAND controller module hand-
shaking with the NAND peripheral FSM, and Table 3 contains the descriptions of the the top level
ports connected to the physical NAND chips.

Note: Signals 4, o, dir are merged into a single bidirectional IO bus at the top level. The reason
they are separate here is because the Virtex 5 does not support tri-state buffers except at the top
level driving external ports.

10.2 Initialization sequence

According to the Micron datasheet, the NAND chip requires at least 100 ns after Vdd reaches 2.5V
to stabilize. Therefore, upon receiving a reset from the interface logic, the controller will count up
to 16384 before start accepting commands (assuming the clock cycle is at least 10ns). Once that
is completed, the controller will signal DONE so the interface FSM can start issuing commands.
Though not explicitly designed, the first two commands from the interface FSM must be RESET
commands to both chips, according to the datasheets. After both resets are done, the NAND chips
are available for normal usage.

14

Signal Type ‘ Description
clk 1 Clock, should be between 20-100 Mhz
reset 1 On posedge, resets the NAND controller
DONE (0] Signals the end of a transaction to the interface FSM
DATA _DONE (0] Signals the byte has been written, ready to receive new data
DATA_READY | O Signals the byte read from the NAND chip is in DATA_OUT
Status[7:0] (0] Stores the results of a read status commands
DATA_OUTI[7:0] | O Stores the byte read from the NAND chip, only valid after DATA_READY
DATA_IN[7:0] I On a write, interface FSM will put the data into DATA_IN
ADDRJ31:0] I Indicates the target address
ADDR[31]: chip select within the device
ADDR]I30:19]: block address within a chip
ADDR][18:13]:page address within a block
ADDRJ[12:0]: column address within a page
CMD|[2:0] I Indicates the CMD
0: Reset 1:Read status 2:Block erase
3: Program page 5:Read Page
DATA _LOADED | 1 Indicate the data to be written is in DATA_IN
CMD_LOADED |1 Indicate the next command is in CMD
LEN[12:0] Indicate the number of bytes to be read/written

Table 2: NAND Controller - Interface signals

’ Signal ‘ Type ‘ Description

n_cel_l

Chip enable for the first chip

n_ce2_1

Chip enable for the second chip

n_ale

Address latch enable, indicate the address is being latched

n_cle

Command latch enable, indicate commands are being latched

Read enable, strobe to transfer data from NAND chip to controller

n_we_l

Write enable, strobe to transfer data from controller to NAND chip

n_o[7:0]

Data output from FPGA to NAND chip

n_i[7:0]

Data input from NAND to FPGA

dir

Indicate direction of CPLD data,tied directly to re_l

n_rbl.1

Ready/Busy from chip 1

0
O
0O
0O
n_re_l 0]
O
O
I
0
I
I

n_rb2.1

Ready/Busy from chip 2

10.3 Protocols

To initiate a transaction, the host will first put commands into CMD, and assert CMD_LOADED.
For a read/write/erase operation, address should also be put in ADDR, length into LEN before
CMD_LOADED is asserted. CMD_LOADED and CMD can be de-asserted in the following cycle.
However LEN and ADDR [31] need to be held throughout the transaction. Once the CMD is

Table 3: NAND Controller - NAND signals

received, the controller will move to different states depending on the command.

Read:

15

The controller will move to the read state, issue the instruction to the nand chip, and start reading
data from the NAND chip by strobing re_l. Then it will put the data in DATA_OUT and signals
DATA_READY. Note the controller does not require another explicit handshake at this point, it
will move on to read the next byte, therefore the controller must pick up the data in DATA_OUT
within 2 cycles of DATA_READY being asserted. The controller will continue to read data until its
internal count reaches LEN. Note the NAND controller does not implement page bounds checking.
In which case it will signal DONE after the last DATA_READY to conclude the transaction.

Write:

Similar to a read, the interface FSM will first put out CMD, ADDR, LEN and signals CMD_LOADED.
Note that CMD and LEN can be de-asserted after 12 cycles. Then the interface FSM can start
putting out data to be written into DATA_IN. After DATA _LOADED is asserted and de-asserted in
the following cycle, the interface FSM will wait for DATA_DONE to be asserted by the controller.
After the last DATA_DONE, the controller will assert DONE to conclude the transaction. Note
similar to READ, bounds checking are not implemented.

Other commands:

The controller will put command into CMD and assert CMD_LOADED and then wait for DONE.
In the case of Read status, the result of status will be put into the status port when DONE is
asserted.

10.4 Controller Logic

The controller will be waiting in the start states until it sees rising edge of CMD_LOADED. As
shown below:

/.ﬂ"_ B
f REEE[\'
'{\ nand)

/Fatch. f’Readx\
(g 3
\, Emor /-' \ Status

)

- L L e

Figure 8: FSM for NAND commands

10.4.1 Read Logic

To execute a read command, the controller first latches the command, followed by 5 cycles of
address. After another cycle of command, it will wait for the nand chip to toggle the R/B line.
After that data can be read out sequentially by toggling re_l line.

16

niCnt==g e,

 Laich % Cmad==raad ."-' “-,
| command | in-'bd - .
hooom S | \ P Bﬂ':’). inCntt=0
o S . e
o ——
' W
I f 1
l 1 : start | | |
W !
4 ik At T Wt fﬁr\l
|l[.'|'.nh address) l.'_R:E higl'i_-l
'_||I 5eycles | inkCnt=={ o
h |
\1-. -
_1 Pt S
¢ Latgh ; \
(commana } it for RB)
inBCnal =0 \ 30 J | okw
" . o

Figure 9: FSM for NAND read command

10.4.2 Write Logic

¢ Lateh Cmdssmrit | status [\ high
| command |+ e o
%, a4} ./.'
- |) Bl
|: I_. slari I|] I\. AB krw _.I
* S, i
1 k Crt==0
L abc) inlCnt==
__fLatch address)
| Scycles |
M A meCtl=0
e) | . o
’ " Ve
¢ npat ¢ Lateh
"{ et |+— —sf commangd —
neCnEI=0 Ny ; '\.\ 16k
inbCat==0

Figure 10: FSM for NAND write command

The write logic is similar, after the address is latched in, the controller will start sending out the
data to the data registers on the nand chip by toggling the we_l lines. After a command cycle to
signal the data transfer is done, the controller will wait for the nand chip to finish programming
(250 us). A read status command is needed at the end of verify the integrity of the page written
to. The write command will fail (status [0] == 0) if the controller is writing to a used page.

10.4.3 Erase Logic

Since erase can only be done at the block granularity, only 3 address cycles will be needed. Upon
sending the address, the controller will wait for the nand chip to signal done by toggling R/B lines
(700 us). Like write, a read status command is needed at the end to verify the integrity of the

page.

10.4.4 Other Commands

The other commands (reset, read status) do not require address or data cycles. The controller
simply issues the command and wait for the reply from the nand chips. Read status is mostly used

17

s S e,
."/ L?Ilt-h\ Cmid==erase ,

| command f’ ;:ﬁl‘::; |
L Nl -
— /,.-’-__ _::._ !
{ \)
| slart JI| ke
. Iy Mo S it for
i \ o | RB migh
{ == ¢ A
(Lateh :|ddrex5\| inCnt==0 i SRR
deycles |
A" ;
o -
— J_
L /.--—--.\ ———
‘.:;f,:ff]'; n‘|—.[{"-fa|l tar')
i= Y d DOR .\F{B law |
intCriti=0 i N

Figure 11: FSM for NAND erase command

Cmd==10x
Latch
command

N

intCnt==

Wait for
RB low

Figure 12: FSM for other NAND commands

to verify if a transaction is successful.

10.5 NAND Chips

10.6 Verification

Each NAND chip constains 16Gb of storage and is operated through a 17 pin interface, driven by
the NAND controller. Each device consists of 2 dies, each with 8192 blocks, and each block contains
64 page. Each page can store 4314 bytes of data. Typically, this is segmented into the first 4096
bytes for actual data, 194 bytes for book keeping and as spare space, and the remaining 24 bytes
for storing a Single Error Correct, Double Error Detect (SECDED) Error Correcting Code (ECC).

The details of the pins and bus timing diagram will not be shown due to non-disclosure agree-

The design is verified through simulation. Courtesy of Micron, we have an unsynthesizable verilog
model for the NAND chip that we are using. Through simulation, we have verified the protocols
and more importantly, that all the timing constraints are met. We have also modeled a CPLD

18

module after the NAND controller but before the NAND chip verilog model, to ensure that the
extra delay through the CPLD will not cause our design to fail. We are still in the process of
verifying the NAND controller with real NAND chip.

11 State of the System

PCI Express DMA Kernel Module:
This module was modified and is fully functional, and provided to the other SSD team to aid their
MTD development.

Block Device Driver, Basic FTL, DDR2 Controller, 32MB DDR2 SDRAM:
These subsystems are fully operational and tested. The lab demonstration showed the capabilities
of these parts to appear as a block drive and write data to temporary storage.

CPLD:
The CPLD module was written and the RTL schematic generated by ISE matches our intent for

the device. However, more concrete tests should be run. This module was provided to the other
SSD team.

NAND Peripheral FSM, Fast Simplex Link, Buffer:

These subsystems, while tested to work in simulation, have worked in hardware when standing by
itself. However, hooking the NAND controller to it has not been successful yet. These subsystems
are provided to the other SSD team.

NAND Controller:

The NAND controller was tested with the specific Micron simulation model for the chip we are
utilizing, and it was successful. However, the controller has not been successfully integrated into
hardware at this point. Currently, if the controller is run at a 50MHz clock, we do see the NAND
chip responding to the reset commands given to both dies (ready/busy line goes down, then back
up, deterministically). However, the NAND chip does not seem to be responding to any additional
commands. One possibly to be explored is that the CPLD may not be passing signals to the NAND
controller truthfully, especially on the bidirectional data bus. This is work in progress.

This component was worked on by both SSD teams.

ECC module:
The ECC module was verified to be working in simulation, but has not been integrated into actual
hardware yet.

Custom SODIMM:
The custom SODIMM was completely designed, fabricated, and tested. There were two identical
parts produced, to be shared between the SSD teams.

19

12 Running the System
12.1 Block Device Driver, PCI Express DMA Kernel Module, Basic FTL
1. Load the Xilinx XPS project “pcie04”.

2. Insert the Xilinx LX110T FPGA board onto the Gigabyte motherboard. Connect the serial
cable to a computer to monitor debug messages.

3. Power on the Xilinx LX110T board and download the bitstream to the board before turning
the computer on. Once downloaded and the processor started, there should be some output
on the serial port regarding the initialization of the drive.

4. Turn on the computer.
5. If the driver is not compiled, run “make”.
6. Install the PCI Express DMA kernel device driver. (“sudo insmod ssd_dma.ko”)
7. Load the custom block device driver. (“sudo ./ssd-block_load”)
8. The debug console should show that a synchronization byte was received.
9. Build a filesystem on the drive (“mkfs -t ext2 /dev/ssd_blocka”)
10. Mount device to a mount point (“sudo mount /dev/ssd_blocka drive”);
11. Create files on mounted device.

12. One good test is to reboot the system while the FPGA is still running. When the drive is
remounted after reboot, the files created earlier should still exist. This ensures that you will
not be reading data cached by the OS.

13 Major Decisions and Issues

At this point in the project, there have been some major design decisions that have been made, as
well as some tricky issues of note.

13.1 SATA vs. PCle

The decision of how the drive interfaced with the host computer was a choice between a direct PCle
x1 connection and a SATA connection. The benefit of SATA was that it would not require any
special driver code and should work on any computer and operating system with SATA support.
Unfortunately, the SATA network layers were deemed to complex to implement a hardware driver
for, especially since we did not have access to any suitable debugging tools, like a SATA protocol
analyser.

However, the rest of the system was nonetheless designed with the possibility of swapping the
PCI express controller with a SATA controller in the future.

20

’ Option \ Pros \ Cons

SATA | Plugs into any computer Complex design
Implements error checking Hardware implementation
Communication protocol predefined | No suitable debug tools

PCle | Existing DMA code Must write custom block device driver
Mostly software Must find/define documentation

Table 4: Decision Matrix for Host Interface Protocol

13.2 Software vs. Hardware FTL

The decision to implement FTL logic in software was due to ease in development and debugging.
System performance of this design is not dependant on the FTL, so the slower software FTL
implementation is irrelevant. Also, since the algorithms behind the FTL management have not
been completely decided upon, it is important to maintain some flexibility in the implementation.

’ Option ‘Pros ‘Cons

Software | Easier to implement Processor and Bus are slow
Can change algorithms quickly

Hardware | Faster performance Harder to implement
FSM is appropriate

Table 5: Decision Matrix for FTL Implementation

13.3 FTL Design and Algorithms

The design details of the FTL are the least finalized portion of the overall system. Initial imple-
mentation will begin with the design and algorithms outlined in Section 4. However, more research
will be conducted in this area and the FTL may change as we discover or design more possible
solutions.

13.4 FTL vs Memory Technology Device (MTD)

The MTD is a generic Linux subsystem created specifically for Flash memory devices that was
very recently introduced. It is neither a block nor a character device. Although going the route
of implementing the MTD is easier, as all the necessary Flash management features are already
implemented in the software stack, we decided to stick with implementing a traditional FTL for
our SSD as that would give us the flexibility to swap out the PCI express controller and replace it
with a SATA controller in the future, as per the original plan.

13.5 FPGA Board Choice

The decision to use the Virtex 5 LX110T FPGA over the Virtex 5 FX was primarily based on
the fact that the existing PCle interface code was written for the LX. Other considerations were
that the MicroBlaze processor on the LX board was fast enough to power the FTL, rendering the
PowerPC on the FX unnecessary. The MicroBlaze offers better support for faster connections to
memory and the NAND controller via the Fast Simplex Link.

21

13.6 Motherboard Compatibility

Inserting the the Virtex 5 LX110T board into the x16 lane slot on the lab’s Dell Precision’s moth-
erboard caused it to fail to boot, after the FPGA and MicroBlaze processor was initialized. When
inserted into the Dell’s x8 lane slot on the motherboard, the Virtex 5 LX110T was detected as an
invalid Network Interface Card. One suspected cause of this issue is that lane width negotiation on
the PCle bus did not succeed. When we moved to the motherboard (Gigabyte GA-G31M-ES2L)
that Eric Chung used for development of the PCle Interface code, the Virtex 5 LX was detected in
the PCle x1 slot.

13.7 Processor Local Bus vs Fast Simplex Link

Initially we were planning to use Processor Local Bus (PLB) to communicate between PowerPC
core and our controller logic. However after further study and characterization experiments, we
realized that the PLB is very slow. Both DRAM and SRAM requests go through the PLB, and
the maximum observed throughput under 15MB/s. Characterization tests for the Fast Simplex
Link (FSL) that connects the Microblaze directly to the peripheral show maximum throughput at
approximately 35MB/s.

Since the PLB is likely to be a performance bottleneck, we chose to use the FSL instead. The
downside is by that time, we already designed the protocols for the controller module using PLB
and memory mapped registers (probably no longer feasible given the speed of PLB anyway). Rather,
we need to write a interface FSM to send/receive data packets from the FSL, decode them and
issue commands to the controller. This unexpected increase in design complexity set our schedule
back considerably. However, this being an ongoing research project, we decided to optimize for
better performance(we believe this will become the performance bottleneck), at the cost of ease of
implementation.

13.8 NAND controller implementation

We have access to another NAND controller with ECC integrated into it, from Micron. While it was
designed for an older generation of NAND chips, for the Spartan IIT board, we were hoping to be able
to reuse the code there for our newer chips. Unfortunately, after further study we found out that
there were pretty significant differences between the two chips. While the protocols were similar,
the timing constraints are significantly different. It did not help that the NAND controller came
with relatively limited documentation. Although we know that the NAND controller implemented
an SRAM interface to the Microblaze host, we could not find any examples or documentation on
how the embedded core is supposed to communicate via the interface. As such, in order to make
it work, significant modifications are needed. As the module is also written in VHDL, none of us
had any experience in it. In order to reduce the risk of introducing new bugs due to the general
lack of familiarity with VHDL constructs, we decided to rewrite the NAND controller from scratch
in Verilog.

14 Unexpected Issues

1. Nobody had expected that the Xilinx provided template file used by the Base System Builder
for the Xilinx LX110T boards that we were using had errors and generated a project that did
not synthesize. It took some time to debug before the root cause of the issues were found.
Xilinx code can’t always be trusted.

22

15

. We had severely underestimated the amount of time needed to get the custom-fabricated

SODIMM design correct - selecting the right components and verifying all the connections
took ages. Sending the SODIMM out for layout and fabrication also took longer than ex-
pected, due to the company requiring us to verify their work after every stage.

. After following all of Xilinx’s steps in their specifications sheet on how to modify and replace

the Multi-Port Memory Controller (MPMC) very closely, it was a major surprise that there
were countless error messages that appeared on synthesis, requiring plenty

. The standard 14-pin Xilinx JTAG cable configuration is defined as having 7 pins connected

to ground, 1 pin connected to Vref (typically 1.5V - 5V), 4 pins connected to signals, and
2 pins unconnected. Being the first time wiring up a JTAG connector to a device, we did
not realise that the Vref line is an input to both the CPLD as well as the USB programming
dongle - neither drove a voltage on the line. It took us a while to figure out what was wrong,
and then come up with a quick hack to supply a voltage on the Vref line.

. In the latest versions of the Linux Kernel (; 2.6.28), the block device subsystem in the kernel

was rewritten and the APIs were completely changed. Unfortunately, none of the online
documentation for writing a block device driver explained any of the new changes as they
were still based on the older kernels. As such, much time was spent on trying to figure out
the differences in the API and how they are used.

“ERROR:MapLib:824 - Tri-state buffers are not supported in Virtex5. Block nand_01_0/nand_01_0/n_io

kM

must be removed from the design.” This error drove us nuts for a good week, seemingly in-
dicating that there is no way we could interface our FPGA with the NAND flash chips, as
the data bus are bi-directional. Google wasn’t too kind either, as most responses from people
were just as cryptic. Turns out that specifying the port as “inout” in the port list in the
module is not sufficient - in fact, in addition to the original inout port, there must also be
a corresponding in, out, and direction port(s) of the same width. Only by editing the MPD
file of the peripheral can you specify that in, our and direction ports actually drive an inout
port, and tell XST to use a tri-state buffer.

Many other issues too numerous to remember - however, one thing is for sure - with Xilinx,
something that is unexpected will happen, always.

Words of Wisdom

. While ChipScope may seem utterly terrible to use initially, it is an excellent tool for debugging.

Learn it very early in the semester. Learn to use the triggers judiciously.

. Xilinx’s example code often isn’t written in the best way (especially if it’s a Verilog example).

If you think there’s a better way, there probably is.

. Know that Xilinx’s code and instructions often cannot be taken for granted. It is highly likely

that you will encounter bugs.

. Verilog and VHDL are treated very differently by Xilinx, even though they’re both popular

hardware description languages - something that works on VHDL may not be supported in
Verilog, or vice versa.

23

5. You can never delay something by one day from your schedule and think you can make up
for it later.

6. When the going gets tough, it might be a good idea to consider pushing your fellow teammates
along.

7. One can very readily get burnt out - so keep a look out for it coming!

8. Do not change the (SO)DIMM on the FPGA - doing so may cause the memory controller,
and thus the entire project, to fail.

9. If you are intending to use the DDR2 SDRAM, make sure you are not overwriting mem-
ory containing your program. The default address to store a program when initializing the
Microblaze can be set under the Application’s settings.

16 Future Work

There are plans to carry on this project as a part of a research project under Professor Ken Mai.
The main issues to work out is to firstly verify that the CPLD is working as we expect it to, and
secondly, to find out why the NAND flash chips are not responding to the commands and signals
sent to it. After basic functionality is achieved, the remaining components, like the ECC and AES
modules should be put into place.

The current implementation of the FTL is also somewhat inefficient and not highly robust. Fixes
for these shortcomings would be necessary for the drive to be a long lasting device. Caching by
the FTL has not been done, and could provide a speed-up. As always, new algorithms for wear
leveling and erase management are welcome updates.

The block device driver could be updated to not use the request and elevator systems, thus making
it more flexible across kernel versions, as well as removing unhelpful overheads.

17 Individual Contributions

17.1 Winston Wan

During the first weeks of the project, I primarily focused on learning about the SATA protocol and
the requirements to making a SATA compliant drive. In the meanwhile, I tried to organize the top
level design of the project and create a wiki for our own note-taking purposes. We worked closely
with the other group and Professor Mai to determine that SATA was going to be too major of an
undertaking, and decided on using the PCle port. In the following weeks, I worked on familiarizing
myself with Eric Chung’s existing codebase, and running his basic tests on his machine with much
help from Tim and Will. Also during this time, I tried to solidify all the interfaces between each
of the subsystems. The majority of the semester was spent trying to adapt Eric’s user space code
into the kernel, as well as adapting the generic block device driver into the system. Due to major
misunderstandings of the capabilities of the loadable kernel modules and trouble with different
kernel versions on different computers of ours, this work took very long. In parallel, I began
developing a simple FTL in user space. This rudimentary FTL was very easily inserted for use on
the Microblaze. After completing the block driver and PCI driver as kernel modules with Tim’s
help, I spent some time aiding the other group with similar struggles that plagued us earlier as

24

they attempted to build their MTD module. In the last week of class, I prepared the demo code
and the demo poster to allow Tim and Tao to focus on the NAND controller issues. I think each
member of our group did a great job of balancing out the amount of work and helping each other
when needed. Tim was especially helpful in all parts of the project.

17.2 Tao Yang

During the first two months, I helped Will and Tim designed the DIMM (3 weeks). We created
the initial schematics (in excel) using the flash chip and CPLD we picked. We also finished the
labs (2 weeks), collectively came up with the overall architecture, refined our design, and made
various design decisions such as PCI Express/Serial ATA, FX boards/LX boards etc (a month).
Around mid to late October, I started working on the NAND controller (joined by Myyk 2 weeks
later). To verify my understanding of the bus protocols, I first modeled and tested the controller
through unsynthesizable verilog, and later converted it into a FSM design. After the FSM was fully
implemented and simulated against the test bench I wrote, we ran into some synthesizability issues,
which set us back for about a week. However, even though we finished testing our module around
mid November, we could not test it against real chip since we need to interface it through micro
blaze. Though we decided the protocols a while ago, implementing and testing the FSL interface
module (by Tim) turned out to be a much more difficult job then we envisioned. While helping
Tim writing and debugging the interface logic, I also implemented and tested the ECC module
(though it was never integrated into the system due to lack of time). Around thanksgiving, we
(we and Tim) finally finished our initial implementation of the FSL interface module and started
testing our controller against the real chip (note the DIMM arrived the day before Thanksgiving,
surface mount sockets and spare flash chips a few days before that). We spent the rest of the time
debugging and eventually got some response and the NAND chip (the reset commands works, at
least we think).

17.3 Timothy Tan

The initial few weeks of the project was spent trying to study various interface options for the vari-
ous chips we needed connected to the FPGA (didn’t want to settle for the SODIMM slot initially),
and to figure out what devices and chips we needed, and the differences between all of them. I also
jumped into picking up the SATA specification and protocols, to get an understand of the type
of FSM we would need to write - it being my second task at that stage of the project. At the
same time, one of the immediate issues faced was that in order to use the Virtex-5 LX110T boards
provided by Professor Ken Mai, the Xilinx software had to be reinstalled, and licenses located for
version 11.

Unfortunately, just as I had created a SATA RocketlO core and convinced myself that writing
the SATA controller FSM was doable, I received a dose of reality, that it was very unlikely that
the SATA controller could be completed without the use of more sophisticated analysis tools. PCI
Express had much greater odds of success, and so it was - dropping everything SATA and picking
up books on kernel device drivers. The next stage of the SODIMM design was to create a schematic
that contained our design, which could be sent out for a company to do the layout and fabrication.
Unfortunately we ran into major issues with the design tools available in the school and wasted a
great deal of time working things out with the department I'T admins. While the schematic, layout
and fabrication work was eventually outsourced to Cirexx to do, it still involved many rounds of
checking and rechecking by Will, Tao and I to make sure we did not misread any datasheets or

25

leave out a crucial wire between components. And it was a good thing we labored on, as we soon
discovered several problems which required some rethinking.

Besides working with Winston on the kernel drivers, I worked on characterizing the speeds of
the various buses and interfaces available on the FPGA - turns out that the FSL was the fastest,
and as such was selected to interface our MicroBlaze and the NAND controller. I initially started
with Xilinx’s example code with an implicit FSM for FSL data transfer, and wrote a transfer test
between the Microblaze and a 4KB buffer - it worked beautifully, and we called it the “interface
FSM”. Not giving it too much though I worked on extending the “interface FSM” to communicate
with the NAND controller. Unfortunately, that is where things went wrong. With the larger “inter-
face FSM”, XST became confused and took 12 hours to synthesize the design! There was no choice
but to immediately rewrite the “interface FSM” explicitly. This cost a few days, but thankfully,
with Tao’s help, the Modelsim simulations eventually gave a green light again. Unfortunately a
green light in simulation translated to no-go in hardware when we used both the surface mount
and the actual SODIMM. Tao and I spent the entire Thanksgiving and most of the days before the
public demo trying to follow every clue, trying every method of debugging and correcting potential
problems before the chip started showing signs of life.

This course has been one of the most memorable one of all in CMU, and I believe that none
of us in the group have ever spent so much time working so intently on a project. It was a thrill
and I certainly learnt a lot from the experience.

18 Class Impressions/Improvements

We thought this class was a unique experience to do a highly independent research and design
project at the undergraduate level. Being immersed in the project and being able to struggle
with problems was educational, but some more guidance would probably have resulted in a more
successful final demonstration. The tools were difficult to use and the labs were too guided and
too short to provide appropriate preparation for the course project. We believe the chance to do
a different project like the Solid State Drive instead of the prescribed video game platform was a
great opportunity, and we hope that there will be more of these alternative project options in the
future.

19 References

Chung, Eric “PCI Express Notes” ProtoFlex Project 2009. Retrieved: Oct 1, 2009.
(http://www.ece.cmu.edu/ protoflex/doku.php?id=internal:pci_express:pci_express_notes)

Chung, Eric “ProtoFlex User Guide” ProtoFlex Project 2009. Retrieved: Oct 1, 2009.
(http://www.ece.cmu.edu/ protoflex/doku.php?id=documentation:userguide)

Corbet, Jonathan, Rubini, Alessandro and Kroah-Hartman, Greg Linux Device Drivers CA:
O.Reilly Media, Inc. 2005.

e Gal, Eran “Algorithms and Data Structures for Flash Memories” 2004. Retrieved: Sep 15,
20009.
(http://www.tau.ac.il/ stoledo/Pubs/flash-survey.pdf)

26

Micron Technology, Inc. “256Mb: x4, x8, x16 DDR2 SDRAM” Product Specification 2009.
Retrieved: Sep 29, 2009.
(http://download.micron.com/pdf/datasheets/dram/ddr2/256MbDDR2.pdf)

Micron Technology, Inc. “8, 16, 32, 64Gb NAND Flash Memory” 2008. Retrieved: Sep 3,
2009.
{ URL not available publicly)

Micron Technology, Inc. “ECC Module for Xilinx Spartan-3” Technical Note TN-29-05 2007.
Retrieved: Oct 2, 2009.
(http://download.micron.com/pdf/technotes /nand/tn2905.pdf)

Micron Technology, Inc. “Hamming Codes for NAND Flash Memory Devices” Technical Note TN-29-08
2007. Retrieved: Sep 15, 2009
(http://download.micron.com/pdf/technotes/nand /tn2908.pdf)

Micron Technology, Inc. “Increasing NAND Flash Performance” Technical Note TN-29-14
2007. Retrieved: Oct 31, 2009.
(http://download.micron.com/pdf/technotes/nand/tn2914.pdf)

Micron Technology, Inc. “ML505/6/7 Block Diagram” ML505/6/7 Virtex-5 Evaluation Platform
2008. Retrieved: Sep 2, 2009.
(http://www.xilinx.com/support/documentation/boards_and_kits/ml50x_schematics.pdf)

Micron Technology, Inc. “NAND Flash 101”7 Technical Note TN-29-19 2006. Retrieved: Oct
1, 2009.
(http://download.micron.com/pdf/technotes /nand/tn2919.pdf)

Micron Technology, Inc. “Wear-Leveling Techniques in NAND Flash Devices” Technical Note TN-29-42
2008. Retrieved Sep 15, 2009.
(http://download.micron.com/pdf/technotes/nand/tn2942_nand_wear_leveling.pdf)

Ng, Mark. “Supporting Multiple SD Devices with CPLDs” Xcell Journal First Quarter 2008.
37-39.

Numonyx, B.V. “Error correction code in single level cell NAND flash memories” Application Note AN1823
2008. Retrieved: Nov 18, 2009.
(http://www.numonyx.com/Documents/Application

Petazzoni, Thomas. “Block Device Drivers” Free Electrons, Embedded Linux Developers
2009. Retrieved: Nov 25, 2009.
(http://free-electrons.com/doc/block_drivers.pdf)

Qimonda AG. “Design Guide for DDR2 Memory Products” Application Note AN_CD035
2008. Retrieved: Sep 30, 2009.
(http://www.qimonda.com/static/download /promopages/AN_CD036_Design_Guide_for DDR2_rev100_x2x.

)

Rajimwale, Abhishek. “Block Management in Solid-State Devices” USENIX 09 2009. Re-
trieved: Nov 26, 2009.
(http://www.usenix.org/events/usenix09/tech/full_papers/rajimwale/rajimwale.pdf)

27

Xilinx, Inc. “Bus Master DMA Performance Demonstration Reference Design for the Xilinx
Endpoint PCI Express Solutions” Application Note XAPP1052 2009. Retrieved: Nov 15,
2009.

(http://www.xilinx.com/support/documentation/application_notes/xappl052.pdf)

Xilinx, Inc. “Connecting Customized IP to the MicroBlaze Soft Processor Using the Fast
Simplex Link (FSL) Channel” Application Note XAPP529 2004. Retrieved: Oct 7, 2009.
(http://www.xilinx.com/support/documentation/application_notes/xapp529.pdf)

Xilinx, Inc. “DDR2 Memory Controller for PowerPC 440 Processors” Product Specification DS567
2009. Retrieved: Oct 18, 2009.
(ftp://ftp.xilinx.com/pub/documentation/misc/ppc440me_ddr2.pdf)

Xilinx, Inc. “High-Performance DDR2 SDRAM Interface in Virtex-5 Devices” Application Note XAPP858
2008. Retrieved: Oct 2, 2009.
(http://www .xilinx.com /support /documentation /application notes/xapp858.pdf)

Xilinx, Inc. “Level Translation Using Xilinx CoolRunner-II CPLDs” Application Note XAPP785
2005. Retrieved: Sep 18, 2009.
(http://www.xilinx.com/support/documentation/application_notes/xapp785.pdf)

Xilinx, Inc. “Multi-Port Memory Controller (MPMC) (v4.02.a)” Product Specification DS643
2008. Retrieved: Oct 7, 2009.
(http://china.xilinx.com/support/documentation/ip_documentation/mpme.pdf)

Xilinx, Inc. “XC2C256 CoolRunner-II CPLD” Product Specification DS094 2007. Retrieved:
Sep 28, 2009.
(http://www.xilinx.com/support/documentation/data_sheets/ds094.pdf)

Xilinx, Inc. “Xilinx Synthesis Technology (XST) User Guide” Xilinx Development System
Retrieved: Nov 29, 2009.
(http://www.xilinx.com/itp/xilinx9/books/docs/xst /xst.pdf)

28

A Custom-fabricated SODIMM Design Details

iginal Design

A.1 Or

990 MO WvHads

SAT #84 vANVN
AT #28Y YaNYN
SAT #84 EANVN
INT #Zad EANYN

BAT #230 vANVN
SAT #30 VANVN
SAT #34 vANYN

sdaY WA Wvyas
#S0Qd_WvHas
HIa YANYN

BAT_LOI” 2ANVN
8AT_901” ZANVYN

BAT_SOI” 2ANVN
BAT ¥OI” 2ANVYN

BAT_€01” 2ANVN

BAT 001" 2ANVN

BAT #230 EANVN
SAT_#30 EANVN
SAT #34 EANVN

IBAT #dM_ZANVYN
BAT #3M ZANVN
8AT IV ZANVN
8AT 901 YONVN 8AT 310 2ANVN
8AT SOI” YANVN SAT #84 2ANVN
YOI YaNYN AT #2aYd ZANYN
YANYN SAT #8d TANVN
VANYN T #2gd TANYN

BAT #230 2aNVN

SAT #dM YANVYN

8AT 2Ol EANVN

8AT 001

BAT #2230 TANVN
8AT #35 TANYN
SAT #34 TANVN

BAT #3IM YANVN
8AT 37V YANVN
8AT 310 vANVYN

SAT #dM EANYN
BAT #3M EANVN
BAT IV EANVN
8AT 310 EANWN

BT #dM_TANVYN
BAT #3M_TANVN
8AT 31V TANVN
8AT 310 TANWN
194005 WIIQ VOd

8AT #230 ¥ANVYN
8AT #30 vANVN|
SAT #34_VANVN|
SAT #84 ANYN
BAT #284 YANVN

8AT_LOI_ EANVN|
8AT 901 EANVN|
8AT_SOI_ EANVN|
8AT YOI EANVN|

8AT €01 EANVN|
8AT_2OI_ EANVN|
8AT_TOI_EANVN,
8AT 001 EANVN|

8AT #dM EANVN
BAT #3M EANVN|
8AT_37V_€ANWN
8AT 310 EANVN

8AT #230_EANVYN
8AT #30 EANVN|

BAT #284 EANVN

8AT_LOI_ ZANVN|
8AT 901 ZANVN|
8AT_SOI_ ZANVN|
8AT YOI ZANVN|

8AT €01 ZANVN|
8AT 2Ol ZANVN|
8AT_TOI 2ANVN|
8AT 001 ZANVN|

ST #dM_ZANYN

8AT 310 2ANVN

BAT #2309 ZANVN
8AT #30 ZANVN|
8AT #34 CANVN|
SAT #84 2ZANVN

BAT #28d 2ONVN|

8AT_LOI_ TANVN|
8AT 901 TANVN|
8AT_SOI_ TANVN|
8AT YOI TANVN|

8AT €01 TANVN|
8AT 2Ol TANVN|
8AT_TOI_ TANVN,
8AT 001" TANVN|

8AT #dM TANVN

8AT 310 TANVN

8AT #230 TANVN
8AT #30 TANVN|
8AT #34_TANVN|
SAT #8d_TANVN
BAT #28d TANVN|

1dD 9G2OZOX XUlliX

leads

EAE #2350 YANYN
EAE #30 YANVN
ENE #34_YANYN
EAETHEY YANYN

EAE #2aY YANYN

ENE #dM EANVN
EAE #IM EANVN
EAE IV_EANVN
EAE F10 EANVN

EAE #230_ EANVN
EAE #30_EANVN
EAE#34 EANVN
EAE #8Y EANVN

EAE #28d EANYN
ENE #dM ZANVN
EAE #IM ZANYN

EAE IV 2ANVYN

EAET310_ZANYN
EAE #230 2ANVN
EAE #30 2ANVN
EAE #34 2ANVN
EAE #8Y 2ANVN

EAE #2aY ZANVN
EAE #dM TANVYN
EAE#IM TANVN

EAE IV TANVN

EAETI10_TANVYN
EAE #230 TANVN
EAE #30 TANVN
EAE #3d TANVN

EAETHEY TANYN
EAE #2aY TANVN

EAE #IM ZANVN
ENE #IM CANVN
EAE 3TV 2ANWN
EAEI10 2aNVN

EAE #230 2aNVN
EAE #30_CANVN|
EAE”#34_ZANVN|
EAE #8Y 2ANVN

EAE #28d 2aNVN|

EAELOI_ TANVN|
€AE 901 TANVN,
EAESOI_ TANVN|
EAE YOI TANVN|

€AE €01 TANVN,
EAE 201 TANVN|

EAE TOI_ TANVN|
EAE 001 TANVN|

EAE #dM TANVN
EAE #IM TANYN
EAE IV TANVN
EAE F10 TANVN

EAE #230_TANVN
EAE #30_ TANVN|
ENE #34_TANVN|
EAET#EY TANVN

EAE #28d TANVN|

SSA 40 NG 8
A LE

SSA 9

ON S€

ON V€

ON €€

€0/ 2e

20/ T

TO/1 08

00/1 62

)

19N

UL V:13-dMVVA80D9TA6ZLN

[eUONOBIIPIG Mojaq SwuaWaNbaI SUY SIy 1 J1 1ed JUBIBHIP B 85N 01 981) (98} ‘sded ssedAq U 104

(¢S]

suo

s JUBIBY Sey Zuid UIM WINIQ JO apiS

39U Jamod |fe 10} Sped 1581 anea] aseald

10p a10w) 2180 BURNOI BAIX® Pasu saulf (je1ads) uld se10N

U9S WINIQ HAa+aNVN

AT'0F A8'T :Alddns samod 110

200" Wvyas

SO Wvdas

SOQY WA Wvyas

0 parejos| ‘AT'0F A8'T :Alddns samod dQ

¥AA BWYOHLYLIN ¥X vO8d 09 uox:
T Wvdas

iINjaIes 28 “BuIsNJud 80 Ued SEWEU eUBIS aU 0S pasodinda Buieq s1 10is iNEENEESION|

umoq [Ind

Buims ¥aaLin
Bums ¥aaLiA

BUIMS HOALLA
Bums ¥aaLin
Buims ¥aaLin
BUIMS HAALLA
Bums ¥aaLin
Buims ¥aaLin

Buims ¥aaLin
Bums ¥aaLIA
Buims ¥aaLin
Buims ¥aaLin
Bums ¥aaLin
Buims ¥aaLin
BUIMS HOALLA
Bums ¥aaLin
Buims ¥aaLin
BuIMS HAALLA
Buims ¥aaLin
Buims ¥aaLin
Bums ¥aaLIA
Bums ¥aaLin

190
290

990

.2

8 NS @1d0
Lao wvyas

L AS3Y a1dd

£ AS3Y_a1dd
2 ASI a1dd

#30 Wvdas

AN-L0-6009S 4@

d J9pesH OVLrC

*0/1 8sodind [esaush 1oy pasn aq ued suid %09 PUe ¥SD ‘SO
“a|qeud 31vOrIRA = 39Q ‘18521 APIAIP 0[O = 1SHAD 0 [EGOI6 = 309 195/19521 [eGOIB = SO ‘BlgeU INAINO [eqOIB = S19 T
:5310N

TT AS3Y_a1dd
OT_AS3¥_a1d0
6 ASTY_a1dd
87AS3Y_a1dd
LTASTH a1dd

9 AS3Y_a1dd
S ASH_a1dd
v ASTH_a1dd
£7AS3Y_a1dd
2 AS_a1dd
T ASIH @1dd

8AT_LOI ¥ONVN,
8AT 901 ¥ANVN|
8AT_SOI_ YANVN|
8AT vOI” ANVN|

8AT €01 ¥ANVN

8AT #dM YANVN
BAT #3M vONVN|
BAT 31V vANVN
8AT 310 vANVN

SWL OVIl d1dd
0aL ovir a1dd
1017 9VIC 140
MOLTOVIC a1do

EAE_LOI ¥ANYN

EAE 201" YANYN

EAETOI_ YANVN

EAE YOI EANVN

EAE E0I EANVYN

EAE 901" TANYN

EAE SO TANVN

EAE 001" TANVN

€AETLOI 2ANYN
EAE 901 ZANVN
EAESOI_ ZANVN
EAE YOI ZANVN

EAE EOI ZANYN

EAE 001 ZANYN

ENE #dM YANVN
EAE #IM YANYN
EAE 3TV YANVN
EAE I10 YANVYN

EAE IV VANVN|
£AET310 YANYN

EAET#230 ¥ANVYN

EAE #30 YANVN|
EAE #3W YANVYN|

v o]

EAE”LOI_ EANVN]|
EAE 901 EANVN|
€AE SOI_EANVN,
EAE YOI EANVN|

EAE EOI_ EANVN|
€AE 201 EANVN,
EAETOI_ EANVN|
EAE 001" EANVN|

EAE I10 EANVN
EAE #230 EANVN
EAE #3D EANVN|
EAE #34_EANVN|

€

SSA 40 NG 8E
A LE
SSA 98

EAE YOI ZANVN|

€AE €01 2ZANVN,
EAE 201 ZANVN|
EAE TOI” ZANVN|
€AE 001 2ANVN,

30

“£090 10 ZOYO AWS Alleo1dA3 a8 sadA abesoed ‘Bunel [euslew

SAX Ue 8ARY PINOUS pue o)
a1 40 198y42 2 "urd semod auy 1e1e paderd 31 “uid Jemod By PUE BIA BUI USBMISG PuE Bjqissod
se 201nap au3 01 8s0}o padeld aq pinous sioudeden |y “FuA pue aBeljoA Alddns yoea 1oy pasn aq
pINous (du 00T *4d 0t) sded om 1se3] 18 JO *apnjoul pinous siowdeded Buiidnodsap Jo Aesre payiiduis

& “U139U00 $13500 10 a0edS PIe0q 31 *pIEOq AU UO diyd Z¥AA YIEs 10y pareaydnp aq pinoys Buridnosap
10 20uaNbBS SIUL “AND 01 43wA WOy Pade(d Ju 00T Pue 3d 0Lt B UIM Buole ‘ANS 03 DAJA PUE QAA Wil

1omoedes ssedAq 4nOT B PUE '4U Ot *4U0T ‘4U OT '4U2°Z *4d 0L ® JO 1SISU0D PINOM UoNI3I3s 2a1dA1 v/

Ipd"xZX”00TASI 24aa 10§ apINg ubISaa~ 9£0aD | I epuowitb mmm//:dny
1amod

SO PUB SO BSNJUD 03 10U BINS BeL --810N

PU-TTSOEY A _ a .

(1adwnh) ¥aH uid 2

PU-TTSOEY AX1BIQ
(adwinl) ¥aH uld 7

1017 9VLC a1dd|
0aL 9vIC a1dd)
MOL7OvIC a1do
SWL OVLL a1dD)

¥SX 20Y0 HU00T

AN-T-£20€-66€ :AdMIDIQ
¥SX 20Y0 4U00T

AN-T-/20€-66€ :AIDIQ
YSX Z0PO HU00T

AN-T-G80T-60L :AMIDIA
"X 20v0 ddoLy

AN-T-G80T-60L “_wv____n_ I

dLX 2ov0 oLy

¥LX 2ov0 ddosv

AN-ETS0EY :—mv____n_

18peaH semod uid v

EAE”LOI_ YANVN|
€AET901 ¥ANVN,
EAE SOI_ YANVN|
EAE YOI YANVN|

€AETE0I YANVYN,
EAE 201 YANVN|
EAE_TOI_ YANVN|
€AET001 ¥ANVYN,

ENE #dM YANVN

EAE #IM YANVN|

ON ot
ON 6€
SSA 40 NNQ 8€

31

DIMM Package Outline

NOTE: Images not drawn to same scale.

- 67.6 -
- 63.6 £0.1 -
40mm
3
' v
199
et
47.4:0.1
L)
(2.45) " 2.4201 (2.15)
120.1
e | g
-Y 2 200, | ©f \
= y
i o : © T s 30mm
=
o™
S
|
- v
A
2 MIN.
Lamiiae) 10mm
v
Silkscreen:

- power and jumper pin nets
- serial number of DIMM starting at 0
- label nand1 through nand4

32

FRONT (pin 1)
- DDR
- CPLD
- Connector
- Caps

Front clearance
(component thickness
allowable)

- 20mm throughout

REAR (pin 2)
- NAND X 4
- Caps

Rear clearance
(component thickness
allowable)

- 1.2mm for first
30mm height

- Omm for remaining
10mm height

A.2 Schematic

ANNWIJ 4dd+dNVN .,

El 4uooT

10 010

4uooT 4uooT 4uo0T 4uo0T
60 Iﬁl 82 IHI 2 IHI 90

E>ﬁwoo>wnﬁo { eAT"aan Wvuas

4uo0T
£

Iﬁo DOATOVLL a1dD \ene

4uooT 4uooT 4uo0T 4uo0T
"TCT CT T

Iy

@1dD7I1-BUUNYI000™952DZIX

g ON ON L
o =n bt ON ot X
X—g5| N ON
g ON ON g
Xpra ON ON Fer—<
oo ON ON Fm—><
Xzro| N MNirox
gra ON ON [3—X
>z ON ON Fzo—>
Ygrr| N ON 77—
Xy N ON g
STra{ ON ON gz
| ON ON 75X
Y711 ON ON frg—x
20I00A TO0A
20100A [0 o
2OI9OA o7
T ano ZOIDOA oH
7 aNO 2OIDOA [z
S| NS 200D |57
oY ano Z2OI00A e}
5 ano
o] N9 TOIDOA |5y {8AT"QaA Wvaas
B ano TOIOOA T
o-| NO TOIOOA 77y
7| ano TOIOOA [
oI ano TOIOOA BT
5] ANO TOIDOA [
H ano TOIDOA o5
- an TOIDOA -
OTH aNo -~ -
53] ano 20N B8AT OOA Ad10
75 ANO 201
5 ANO 20A
ano 20A
T ano
T3] ANO (OVLOXNVION fg——————0 00N OVIL 1D

otn

00N

E1_AS3Y_a1dO
2T_AS3Y_a1dO
TI_AS3H_Q1d0
0T_AS3Y_a1dD

TASRY a1dD,

HIQYANYN
HIQ_EANYN
HIa_ZANVYN
¥I0_TANYN
LOI_8AT_vANVN,
901 8AT_VANVN,

TOI_8AT_¥ANVN,
001 BAT_ YANVN,
dM_BAT_vaNVYN
IM 8AT YANVN
31V_BAT_vONWN,

84 BAT YANVN
284 8AT_vANVN,
LOI_8AT_EANVN,

OI_BAT_EANVN,
€01 8AT €ANVN,

Q1d0711-13UUNYI00D9520ZOX

>—g{ 9TW9TE 9TNgE
>—gr STNOTE stwed [
Y77 vINOTE YIS |7y
>—gg{ ETNOTE €TINS |oT
X—gg{ ZINoTE 2TNSE |
g{ 1TWOTE TINGE | T
e] 9NBE Lo
BN SWoTE SIS o
sa-| TWote YNBE [
orT| EWOT8 ENBE Ly
e RANCIEC] 288 o
ora] Thote TIEE ey
0 9TNSTE 9TN.E |-
<1 STWSTE STNZE [
1| YINSTE PINLE |-
g5 EINSTE ETNLE |-
T 2INsTE 28 [y
< TINsTE TINZE e
gy 9NSTE 9NLE Ly
Ty SWSTE SWLE g
ot TWSTe e (o
| EwsTa ENLE gy
T Pnste Znzg (o
< TWSTE TLE Lo
oI oTWrTE 9TNOE |y
T SThvTe STIN9E |z
T] PINOE |
T ETNPTE STNOE |y
ST CINrTE 2TN(E90)98 (=
vra-| oWrte 9Nog (7T
FTR-| SWrie SN98 [
£Tg| YArTE PIN(@3409)98 [
tra Enrie ==
FTa| CNrTe 2TN(LSHAD)98 (o
<rg] TWrie T9E g
v 9TRETE 9TNGE |-y
ST STWETE STNSE [y
A] PINGE |7
gra-| ETNETE SINSE |
T ZTnETa 2TNGE |7
<] oneTs IN(0409)58 [
e e SNSE (7
oTg-] PWETE PN(THO9)SE ey
TR EWeTe €S8 Lo
orT{ CWETE 28 (o
<ra-| TWETS TS oy

vin

2OI_8AT_EANVN
TOI_8AT_EANVN
001 8AT_£ANVN
M _8AT_EANVN
IM_BAT_EANVN
3V _BAT_EANVN
310_8AT_€ANVN
230 8AT_EANVYN
30 BAT_EANVN
J4_BAT_EANVN
84_BAT_EANVN
284 8AT_€aNVN
LOI_8AT_2ZANVN
901 8AT_ZANVN
SOI_8AT_2AONVN
¥OI_8AT_ZANVN
€01 8AT_ZANVN
2OI_8AT_2ANVN
TOI_8AT_ZANVN
001 BAT ZANVYN
M _8AT_ZANVN
IM_BAT_ZANVYN
3V _BAT_ZANVN
310_8AT_2ANVN
230 8AT_ZANVYN
30_BAT_ZANVN
U BAT_ZANVN
84 _8AT_ZANVN
284 8AT_ 2aNVN

2Ol 8AT_TANYN
TOI_8AT_TANVN
001 BAT_TANYN
M _8AT_TANVN
IM_BAT_TANVYN
3V _BAT_TANVN
310 8AT_TANVN
230 8AT_TANVYN
30_BAT_TANVN
U BAT_TANVN
84 8AT_TANVN
294 8AT TANYN

LOI_vaNVN
90I_¥ANVN
SOI_YANVN
YOI_rONVN
€0I_FANVN
201 vaNVN

£0I_ZANVN
ZOI_¢aNvN

00I_2aNVN
dM_YaNVN
IM_VANYN
JIV_VANVN
310 VANVYN
230 vaNVN
30_YANYN
34 _FANYN
4 yONYN
284 YaNVN
dM_EANVN
IM_EANVN
IIV_EANVN
310_EANYN
230_€aNVN
30_EANVYN
34 EANYN

Q1dO 11-3UUNYI00D 952020X

— e s
7| STNCTE
T YINZIE
— e
| ¢TNCTE
o TTAZTE

9WzT8
szta
yNZTE
enzTg
ZwzTa
eta
9TNTIE
STWTTE
PINTIS
EINTIE
2INTTE
TINTIE
oWTTE
SNTTE
PNTTE
ENTTE
ZNTTE
TWTTE
9TNOTE
STWOTE
yINOTE

13| ETNOTE
g9 ZIHote

TINOTS

g owota
> grg| SWote
e]
55| Enota
g 2ot
——— e]
R
1 s
v rNeE
1] Enea

£TNZE
2TN(TSLO)Z8
onea
SW(0SLO)ed
vz
EN(ESLO)eE
2nza
T(esLO)ea
9TNTE
STWTE
vINTE

A T AT

SWL
oar

1aL
oL

84_EANVYN
284 £aNVN
dM_ZANVN
IM_ZANVN
31V 2NN
10 ZANVN
239_2aNVN
30_2ZANYN

310_TANVN
230 TANVN
30_TANVN
34 _TANVN
4 TANYN
294 TANVN

33

Jaquiny wawnoog

AN 4dd+dNVN

4uoot
0z

JIUNWYHASO:

——

ddozy 3dosy 4uoot
H 810 H L1

4u00T
910

8AT OQAN VA

ddozy ddosy 4uoot
ST H 10 H €10

4u00T
210

SAT QAN Wvdast

8|
v

Y

E%

oV

§<mmww
Wvas,

§<w5mw
WvHas,

§<mnww

2v NvHas,

#SVO

#SO_NV aww

Wvas,

1d0_WvHas,

o)

#SVY |

WYHas,
WvHas,

MO WYHAS)

SOQ WYHAS;

20a WYHas)

00a”WYHas)

100 WYHaS;

sda

#s0a

WvHas)

WvHas)

BAT DAAA WVHAS

8AT OAAA WVHAS

A A
A0OD-BNZEHLYLIN
N e
g N 2V (o1 Ke1v mwvaas
S N Q0A {77
55| SSA 6V [Mm<m§<mom
o5 8Y ¥ by 2V WYHas
o T
SV | Mm<m<‘<mnm
o Y &Y |7 CANTES
7 SSA |1
s 9aA T e Mjﬁ?}.om
o ov o1V g TV WvHaS
al 1
V8 ey MEmHE(mnw
o #50 oV [ove Wvyas
o #svo N o5
5] 100 #3IM | Mum>>\2<mmm
w0 ENGY R ENCEIIS
7 #Sv
aan SSA
mw 0 EEITY w
7 1assA 100N
sda £0a Keda wvuas
mm OsSA OSSA m
o ¢oa v00 | Krda wvaas
5o ©9an OAAN [y
75| 00N 100 |5 K1oa wvaas
5-{ ©aan OAaA (5
£0a sday/ma Ksday wa wvyas
mm OSSA OSSA m
78 SO0 900 g K9da Wvaas
sy 0JaA SSA
gy #500 IN#SOAY K #sday Wvdas
v OSSA AAA |
2n

8AT QGA WVHAS

8AT QGA WVHGS

43UN WYHAS

34

13X00S WNIa

Jaquiny awnoog

ANIG Idd+dNVN .,

NId00Z-L3%00S-WNIQ

ppr{ AdSAAA SSA

EENTN SSA

SFUNWVHASO-

8AT Q0N WvNas

#500” WvHas
TOI_8AT_vANVI
00" 8AT_¥aNVI
3M_8AT_vANYN
IV BAT_¥ONVN
230 8AT_vANVYN
30 BAT_VANVN
3O BAT_EANVN
Y BAT_EANYN
230 8AT_ZANVN
30 8AT_ZANYN
230 8AT_TANYN
307BAT TANVN

6_AS3Y_a1dD,
T AS3H aTdD!

L AS3Y a1dD.
#SO WYHAS

8 AS3Y a1dD.
100 Wvaas

ET_AS3Y_A1dD.
2T AS3Y a1dD
dM_8AT_YONYN
10 BAT_VANVN
34 8AT_YONYN
230 8AT_EANVN
34 BAT_2ZANYN
3478AT TANYN

#IM_NVEAS
#SVD_WVEAS
#SVY WvHAS

¥ AS3Y a1dD.
ENIRIeS

2_AS3Y_a1dD.
€ AST A1dD.
SO_WVHas
#40 WvHas

9 AS3Y a1dD,
TvE_WvHas
ove Wvaas

S AS3Y a1dD,
2Tv_Wvdas
TIV_WVHas
0TY_WvAas

6V_WYHas
8Y_WvdAdS
2V NVHas
9V WYHas
SV_WvHas
PV WvHas
£V WYHaS
2V WvHas
TV_WvHas
0V WvHas

NId00Z-13500S-WNIQ

—
—2
—

F—

d_1sda
[ASIele]
d_9sda
N_9s0a
d_5sda
N_6S0a
d_vsda
N_¥sda
d7£s00a
N_£sda
d_zsda
N"2s0a
d_1sda
N_TSda
d_0sda £500
N"0sda 250a
500
vas 0s0a
108 6v0a
s 8r0a
ovs vda
a_1s 9vda
70 sv0a
vwOa
1100 gels]
oLao 2vda
woa
orda
wa 6£00
9na 8£0a
swa 1800
yWa 9e0a
eNa 5e0a
na vEOA
a ££0a
owa 2e0a
w €00
a_am 0eda
a_svo 6200
a7svd 8200
L20a
IO 920a
03X 5200
v20a
d_DI0 €z0a
NTTHO 2zda
d_030 1200
N0 020a
6100
eve 810a
ve 2100
ove 9100
S10a
¥100
£IV €100
2ty 210a
v 1100
dv/oTY 01d0a
[60a
8y 800
A 10a
9v 90a
sy 50a
I v0a
£v £0a
2y 20a
v 100
ov oda
TEN

HIa_yaNVYN
dIQ"EANYN
20a_WvHas
SO0 NVHAS
dIA_ZANYN
HIG TANYN
90d_WvHAs
yOa_WvHas
£0a_WvHas
100 Wvdas
TI_AS3Y Q1dD

0T_AS3Y a1dD
901 BAT_vaNVN
SOI_BAT_vONVN
£0I_8AT_YANVN
901 BAT_EANVN
YOI BAT_EANVN
vOI_8AT_¥ANVN
20 BAT_VANVN

SOI_8AT_EANVN
2Ol 8AT_EANYN
00I_8AT_EANYN
dM_BAT_EANYN
3V BAT_EANVN
€O 8AT_EANYN
TOI_BAT_EANVN
IM_BAT_EANYN

10" 8AT_EANYN

94_BAT_YONYN

G4_BAT_EANVN
LOI'8AT_ZANYN
SOI_8AT_ZANYN
284 8AT_YaNYN
284 BAT_EANVN
90I_8AT_ZANYN
7OI_8AT_ZANYN
€OI_BAT_ZANVN
TOI8AT_ZANYN
dM_8AT_ZANYN
37V _8AT_ZANVN
2Ol 8AT_ZANYN
00I_8AT_ZANYN
IM_BAT_ZANYN

110 8AT_ZANYN

4_BAT_2ONVN

94_BAT_TANVN
SOI_8AT_TANYN
7OI_8AT_TANYN
284 8AT_ZANYN
284 8AT_TANYN
LOI'8AT_TANYN
90I_8AT_TANYN
TOI_8AT_TANYN
00I_8AT_TANYN
IM_BAT_TANYN

110" 8AT_TANYN
€OI_BAT_TANVN
2Ol 8AT_TANYN
dM_8AT_TANYN
377 8AT TANYN

35

Aewy yseld

Jaquiny wawnoog

AN 4dd+dNVN

4u0oT

820

4u00T

120

3uoot
620

3uoot
920

Emidg B
EAE DOA

_ _ EAE QOA _ . EAEQOA
EAE Q0N = 4 £AETQ0N =
AHOWIW HSV14 aNVYN AHOWIW HSY14 aNVN
>—gz{ Zssnnna ON >—gz{ 25SNNNG ON |z
>—gg{ ON ON fpz—X Y—gg{ ON ON fpr—X
X—77 ON NG |77 X—7g{ ON NG |57
>—ge{ ON ON f7—x >—ge{ ON ON |7
5 00N ON fz—x 52— 00/ ON fr—X
TOI_PANYN ot 1o/ #dM 57 dMYaNYN oe 10N #dM 51 I ZANYN
T Zon #3M |7 IM YANVYN 75 2on #3IM |7 M ZANYN
€01 PANVYN muw.: %w T IV PANYN £01"2ZaNYN T ww_ WMM T 3TV_2ANVN
e 310 PANVYN »—gr 31072ZaNYN
S<—pe{ 2P9NNNG oN JmﬁlA >—gg{ 29onNNG ON Hawlx
S—gg—{ ON ON fpp—x X—gg— ON ON fpr—x
SSA SSA 95| SSA SSA g
75| 007 Q0N |57 5 007 Q0 |27
>—gg{ NG ON [*—gg— NG ON [
>—ge{ 29onNNa T#230 230 PANYN >—gg—{ 222NNNa T#230 230 ZaNYN
B Xy ON #30 30_vANVYN _ Xy N #30 30 ZANVN
7OI_yANYN von #3d 34 _YANVN YOI_ZANVN vOll #3Y 34_2aNVN
e #and B PANYN SOl #ar 9 ZaNVN
9011 TH28/d Z80 vaNVYN 90/1 T#28/d 284 ZANVN
LOI PANVYN Lo/l ON X 01 2ZaNYN Lo/l ON fz—x
>—gp{ ON ON f5—x >—gp{ ON ON |5—x
X—gp— ON ON e gy ON ON X
X—75{ ON ON f7—xX 75 ON ON f—x
gy ZSSNNNG ON —x X—gp{ ¢SSNNNG ON r—x
mn on
U0t U0t 4uo0T ugot
520 720 €20 220
AYOWIW HSV14 ANVYN Emﬁ\ug AHOWIW HSV14 ANVN Egmdg
gz ZSSNNNG ON |7—X gz ZSSNNNG ON f7—X
>—gg{ ON ON fp7—x >—gg{ ON ON |7
g ON NG foo—x g ON NG foo—x
>—gg-{ ON ON |7—X >—gg{ ON ON fr7—X
0o/! ON f7— oo/ ON |z
Ton HAM dM_EANVYN 10/ #M dM_TANYN
zon #3IM IM EANVN zon #IM IM_TANYN
€0 EANVN %_: wﬁw 3TV_EANYN £0I" TANYN ww_ w“w 31V_TANVN
e I EaNVN »—gE 310 TANYN
X—pp| 2ONNNG ON fsr—X X—pp 2ONNNG ON fgr—x
>—gg{ ON ON fpr—x >—gg{ ON ON |5
95— SSA SSA |1 95| SSA SSA g
75 007 Q0N |27 = 007 Q0 |77
>—gg— NG ON | *—ge NG ON [
X—ge—| ZPONNNG 14230 |7 230 EaNVN X—ge— 299NNNG 230 r 230 TANYN
_ gy ON #30 30 _EANVN _ %y N #30 30 _TANVN
YOI EANYN 5 von #3 | 34 EANYN YOI_TANYN o5 von #38 | 3 TANYN
SOI_EANVYN 2 SO/ #ard B4 EANYN 25| S0N #3818 | 4 TANVYN
90I_£EANVYN 52 wm» H»Nmu\m T 294 €ANYN 90I_TANVYN 2 ww\\“ QNw\m T 29y TANVYN
LOI EANVYN . LOI"TANYN bo
g oN ON [—X Y| oN ON |—X
>—gp{ ON ON fp—x >—gp{ ON ON |g—x
%—5{ ON ON f7—x X—5{ ON ON f7—x
X—g—{ ZSSNNNG ON —xX X—gp{ ¢SSNVNNG ON f—x
sn Il
= engoon EAE 00N = = encoon EAEOON =

36

s|ieaq ‘9sIN
Joquiny wewnoq

AN 4dd+dNVN

AN-TTS0EY

m>Hwn_o>w§<mcm.|un@|q|vm>ﬁdon>w§<mnm

v

AN-TTS0EY

w>Hwnc>w§<mnﬂJ@J|V 8AT DA Ad1D

o

|
l

AN-ETS0EV
— - 14
BAT AAA WVHAST
- 7
ENEOIN—T
€r
QN-20-6009S
PT €T
[43 T
1aL T 5
oal T
Sor lovic [2
_ _ SWL ¥ T
DOA OVLL a1dOO T

i

‘\w

37

A.3 Placement

6007 G0:9L:9l ¥0 AON Pap — 99d0-7¢7¢8

Rak] (]

- w07
l-

[+ wwg/'gl

%

wwoo'0z

Lﬁ wwoo'oy

(2]

;_

__ .
I

wwog'Z9

199z

38

6007 80:9L:9L ¥0 AON Papm — qod10-7¢7¢8

39

A.4 Layers

PRELIMINARY

40

TOP SIDE LAYER 1

83232-A.pcb — Fri Nov 06 10:57:20 2009

6007 GZ:LG0L 90 AON 144 — qody—7¢7eg

A ENA]

AdVNINITddd

41

AdVNINITddd

6007 0€:/G:0L 90 AON 144 — qody—7¢70g

¥ ¥43AV7

AdVNINITddd

43

6007 7$:/G:0L 90 AON 144 — gody—7¢7eg

R-ENA]

AdVNINITddd

44

6007 #£:£G0L 90 AON 144 — qody—7¢70g

9 ¥3AV7 30IS KolLlod

AdVNINITddd

45

A.5 Silk

dOL NIFWISHS

4t

oA
=] @l J %, w8 [
Enssinl
[y
2 8
M L]
U U £
Ca
WO g @
U[[O 5 in
szl H_Enu 82C JC Jua 2ol J

2]

o0
c3a
@
C1
C I
Caw
C s

v 90

sl J

s
e
WNIGOS O/1 SEAL ¥0T + ONYN

)
o T o0 o

C

o
oaun w7
o

6007 851460l 90 AON 144 — qody—7¢70g

AdVNINITddd

46

6007 07:LG:0L 90 AON 1414 — qody—7¢70g

KO1108 NIJOSHUS

AdVNINITddd

47

A.6 Final Assembly

6007 CG:LG0L 90 AON 144 — qody—7¢70g

iawos] L 40 L LTIHS | WEV-I628 INVN T xxauo) a1va “asvI T ——
ANAN: 4 Ave NN Q3LSIL ¥OL 38 0L SI QHYOE SIHL 'ELeves
“Y3BNAN_ INIANJOQ XXIUID| 3715 v 48 QB0 0L —/+ SAHO 0G ‘30VAL TNG 39 ® ‘% °C ') SHIAV] SIOVAL JONVOIAAI QI TIONINOD SVH QNYOE SIHL 'zl ++s+
WAIGOS 0/1 S8AI ¥0Q + ONVN iy PN RO i3 'SAVd ¥IAVT HINNI GISANN TIV JAOW3Y UL
NOILYOINEYd % 17180 EN g . TYNINON- / 000"+ 34V STING TIN O TIV "L #»e+
. >m__~. XXXXX AINON LV /,Nxmmﬁ.wa_ “QIMNDIY ONINUYN LSIL TVOINLITT3 <
“LSIMLAN 09S€9dI G3ddNS ONISN SNIAO ONY SLNOHS ¥04 G3LSIL 38 OL 3w Sa¥vod TIv
NOTTN m__om_zm<o SNIMYHO NOILYOINEY ' SSY1 ‘2§9-13-0dl 40 SINITIANT ONY SLNINIWINDIY IHL OL ONIGYOIIY LS3L Q¥VOS 3¥VE %00L
“ANVNOI ELVAl 1531 TVILOTTI ‘6
NMOQ dOL Y4 Q3AIIA S¥IAVT 1TV W800'=/+ XXX 4010 —/+ XX' SIONVHII0L NOILYOEYS 8
"NOLLONAP 30V¥L 0L Ovd
1V 4£00° SI 9NIM ¥VINNNY WANININ "S3ZIS TTOH GIHSINIA 34V SNOISNIWID TT0H TV °Z
wwgo” —
QHHYA 38 0L NOILYA¥OINI 300D 31¥0 ONY 0907 GIAONAdY TN OONIA 9
9 43AY1 30S MOL1108 wwQz ™
9500" Xz "NONININ S00° NIZHDSHIS 40 03¥Y310 38 LSO SAYd €3S0dX3 TIV
. ¢ Y31 Y Y NI AX0d3 JAILONONNONON 3LIHA ‘NIFISHTIS G
o (ZZzz7777774 *S30VHL ONISOAX3 LAOHLIM .£00° SI avd
wwgyo —/+ wury ¥/ 7 43IAVT TVNGILINI wwgg NOY4 ONIY ¥YINNNY WAAIXYH ‘S000° 40 SSINMOIHL WNNININ ‘S3AIS HLO8 (D8ONS)
o I A e wwnz- ¥3dd00 34V8 ¥IAO NVNYIAT0S (Id7)T18VIOVNI-0LOHA QINDIT NITHD :NSYAYIATOS '+
0000 2 ¥3AV1 INYId OND 0¢ 1949IN NDOZ-0G) ¥IAOD 0109 NOE :SHIINIS 0109 (D *wse m
X¢ H/280Ms (8
b B3AVT 30IS dOL “39Y¥IAV YHL 100" LVd ¥3ddOD (¥
7" HLIA G3LYTd 38 TIVHS SIOVAUNS ONILYTd JTOH SONILYTd '€ #wex
dNXJVLS ¥3AV G f-— "WONIXYH HONI/HONI W£OD" LSIAL ONY MO8
SLIVINOD 0109 LIH LON 1SNN ‘0¥Y08 Q191 ¥IAY1 9 ¥ SI SIHL “IY¥NLYN ¥0109 ‘(INILY1d 3w0438)
e < 1l < H m Q o WOINI ¥3dd03™ 70777 WHL Wiy yua " TVRELYA 358 T -
"2 SSV1D 009-0dl ¥3d VIMILIND FINVLIdIOIV
"SININIUINDIY Z SSY10 ‘Z109-0dl 40 NOISIATY NN ¥3d ILVINEVS 'L
142N M00Z-061 ¥IAO 109 NOE :SYIONIS 0109 (€ WL 7] b (031419345 ISIMYIHLO SSTTNN) :STLON
- wwg/ gl
EEoo.TW_ [Wwoo'? o
AL1dN | Z 4 vT'Ly
wwgo'0z
ald| A 8 96'9
wwoo oy AL7dN [X 4 £8°0L
ald| m €06 L
alld| WAS| ALD 371S

aIT

48

6007 C¥:LG0L 90 AON 1414 — qody—7¢70g

viawos] 7 401 13IHS | dV-TeeR sawvN T o) ava R
NM. N M,w < 131va ONI¥IINIONT
HIBHON ININNOOG xxauio| 3218 [110 18 T
WNIGOS 0/1 S8AL ¥0Q + ONVN T R —

d0L ONIMYYQ ATGNISSY L[z ‘

— XXXXX XXXXX
A SHIANNN ATENISSY SYIGNNN LYYd ././.ﬂxx m m;lnw“n
NOTTAN JI9INYYD dOL ATENISSY

“ANYdNOD REINA

NMOQ dO1 NOY4 Q3IMIIA S¥3AVT TV

) :
2 9
Gl [I) Ced)
sy LBG [els]
fel o (&) [€5]
[(5] o (251
[&5] {55}
DEET o
(el
= ad
Ceed)) Cud [e0] Cad
————
" o
a0
a

:31Va[:03A0¥ddY ‘0N 073 alT

— AdVNINIT4dd

| [4 ¢ 12

49

6007 9+:£G:0l 90 AON 144 — qody—7¢7eg

N01109

MYYA ATENISSY g

i awos] 7402 133HS Jeodv-zezee MW T xxauo) awa ‘@svann
78758 I T “ONHTINONT

“YIFANN_ININNDOA XX3¥ID| 3ZIS xx\xx;"w:a A8 QD03

NNIJOS %ﬁ_mw>— d4ad + ANVYN M IR .

|

XXXXX XXXXX

< ‘A “HIANNN_ ATENISSY| “Y3EANN LaVd

XXILD

NOTTIN J193INYVD

*ANYdNOD)

NO1108 AT8W3SSY

A8 N9IS30 <

REEINA

!

+31Va[‘03A0¥ddY 0N 003 1]
04003Y NOISIAZY

9013

n sn
U 9N n ﬁ

R ° °

[P

bEET ININVE A

¢ v G 9

50

A.7 End Product/Photos

Figure 13: Frontal view of the custom-fabricated SODIMM

Figure 14: Rear view of the custom-fabricated SODIMM

51

Figure 15: Xilinx LX110T board with the custom-fabricated SODIMM installed, inserted into a
PCI Express x1 lane on the Gigabyte GA-G31M-ES2L motherboard

52

