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Project Description 
 

 Our project involved supporting playable versions of the early 1980’s classic arcade 

games, Joust, Robotron, Stargate and Defender. Defender and Stargate were both side-scrolling 

shooters that used only the simplest hardware and differed only by their memory-mapping 

schemes.  Joust and Robotron, however, were rather different.  Though both used a new DMA 

chip to speed up graphics routines, Joust provided simultaneous two-player support, in a game in 

which riders attempted to knock their opponents off flying ostriches, while Robotron was a 

single-player only game in which both joysticks were used for movement and shooting.   

 Despite the apparent differences, there were enough similarities in the architecture to 

make a multigame implementation feasible.  Defender’s memory mapping was the largest 

difference, due to it being Williams Electronics’ first arcade game.  Stargate, Joust and Robotron 

shared the same memory setup, with Joust and Robotron only being ROM swaps, and only the 

inclusion of the DMA chip differentiated the game.   

 Our plan was to use the PowerPC to display a menu, as well as selectively enable/disable 

hardware in order to support the games without the need to reflash, a problem that other groups, 

such as the NES of the past three years, had ran into.  On startup, the menu would let the user 

cycle through the game, and then load the necessary ROMs into the correct location before 

allowing our processor to run.   
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Design Overview/Partitioning 
 

MPU:  The main processing unit, this processor runs the main game code and controls all of the 

other devices via memory-mpaped I/O attached to the single data bus. 

 --Design:  Sean Coleman 

 --Testing:  Sean Coleman & Thomas Tzou 

 

Memory Map:  This unit translates the CPU address into the correct format for accessing the 

EDK BRAMs, as well as muxing in the PIAs and sound ―bus‖ as necessary.   

 --Design:  Sean Coleman 

 --Testing:  Sean Coleman & Thomas Tzou 

 

Video Translation Layer:  This piece of software scans the Williams framebuffer and generates 

a converted version for display on the VGA screen. 

 --Design:  Joon Ho Cho 

 --Testing:  Joon Ho Cho 

 

CRT Timing/Pixel Gun:  Williams was able to access the actual values of the pixel guns in 

order to generate interrupts based on the Y-coordinate.  This module replicates the necessary 

hardware.   

 --Design:  Sean Coleman & Thomas Tzou 

 --Testing:  Sean Coleman & Thomas Tzou 

 

Special Chip:  A custom DMA unit designed by Williams, this device allows for rapid memory 

movement and some specific functions. 

 --Design:  Thomas Tzou 

 --Testing:  Thomas Tzou (Incomplete) 
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Sound/Input PIAs:  These devices handle asynchronous data transfer as well as provide 

memory-mapped I/O.   

 --Design:  Thomas Tzou 

 --Testing:  Thomas Tzou 

User Input:  Custom fabricated arcade control panel with Digilent Expansion Port-compatible 

interface.   

 --Design:  Sean Coleman 

 --Implementation/Testing:  Thomas Tzou & Joon Ho Cho 

 

Sound CoProcessor:  The original hardware design uses a 6802 processor to dynamically 

generate the sound effects.  We replace this device using the PowerPC core.   

 --Design:  Sean Coleman & Joon Ho Cho 

 --Testing:  Sean Coleman 

 

BRAM:  This module stores the program code, internal framebuffer, and scrtachpad RAM.  

While Williams only uses 96kB of ROM+RAM, we generate a 128kB block due to Xilinx’s 

restrictions.   

 --Design:  Sean Coleman 

 --Testing:  Sean Coleman & Thomas Tzou 

 

Glue Verilog:  Assorted modules that linked everything together and provided extra custom 

muxing and other features as needed.   

 --Design:  Sean Coleman & Thomas Tzou 

 --Testing:  Sean Coleman & Thomas Tzou 
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System Overview 
 Our design uses a custom peripheral, which wraps up the M6809E, memory banking, 

interrupt generators, several 6821 PIA equivalents, and, if the game requires it, the Special Chip 

(SC01).  We interface to the PowerPC through the OPB bus, as well as a shared 128kB BRAM 

block.  The hardware listing that follows provides more details about each component.   
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MPU (M6809E) 

The heart of the standard Williams machine architecture is the Motorola 6809E.  A CISC 

chip with a 1 MHz clock rate, the device provides programmers with 59 opcodes, as well as over 

10 addressing modes, resulting in 1464 possible instructions.  The architecture of the M6809 is 

fairly simple.  The design uses 8-bit data connections, though provides 16-bit operations over a 

pair of cycles.  The M6809E provides 10 registers, with two reserved-the Program Counter and 

Condition Code Register.  Of the remainder, there are two 8-bit accumulator registers, two 16-bit 

indexing registers, two stack pointers, the Direct Page register, and the Interrupt Register.   

 

The prior figure is the architectural layout of the M6809E.  Our design is cycle-accurate 

by using an FSM to cycle through any necessary padding states, and the design also matches the 

expected bus output cycle-for-cycle.  Due to the large amount of technical documentation, we are 

able to match the M6809E’s interrupt flow precisely.  Interrupts are latched each instruction 
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fetch cycle and are only serviced if the mask bit is not set.  Due to the variable length of certain 

instructions, it may take up to 20 cycles before an interrupt is serviced, however, under most 

cases, interrupts are serviced with 5 cycles.  From Williams’ hardware documentation, we can 

find that IRQ pulses are held for extremely long periods of time, at a minimum, 100 cycles, 

which allows for interrupts to always be caught regardless of the current instruction being 

processed.  Servicing consists of pushing the current state onto the stack, then vectoring to one of 

several locations based on two consecutive bytes of memory ranging from FFF0-FFFF.  The 

interrupts consist of IRQ/FIRQ, both of which can be masked by CC register bits, NMI, SWI, 

SWI2, and SWI3, all of which are reserved opcodes, RESET, and a reserved custom Motorola 

interrupt.  Of these, we support IRQ, SWI, SWI2, and SWI3, as FIRQ, NMI, and RESET are all 

tied high in the arcade schematics.   

   

The primary differences between our design and that of Motorola lie in our moving the 

PC and CC registers outside of the register file, primarily for convenience’s sake due to this style 

matching that of a MIPS processor.  Additionally, instead of a quadrature clocking scheme to 

handle latching data coming in on the bus, we instead use a single 1 MHz clock and a 

combinatorial bus.  As a result, we clock our synchronous RAM at a 4x rate relative to the MPU 

in order to keep the processors functionally identical.  Furthermore, several of the output control 

signals, such as the BUSY output, are left floating in the Williams design—we omit these signals 

in our design.  Finally, our design is 16-bit internally with 8-bit and single-bit masking support, 

in contrast to the M6809E 8-bit design with extra cycles for 16-bit operations. 
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MPU Memory Map 

 The M6809E provides a 64kB address space; however, Williams packs in 100kB (48k 

RAM, 48k ROM, 4k I/O) via bank switching, as depicted below.  Screen RAM is the same as the 

RAM below, but provides a better idea of the framebuffer size if depicted independently.  

 

Key Addresses:   

 _0000-_8FFF:    Bank-Switched RAM/ROM 

 09000-0BFFF:    Always RAM 

 00000-097FF:   Screen RAM 

 0C000-0CBFF:   Game I/O 

 0C804-0C807:   6821 PIA (Input) 

 0C80C-0C80F:   6821 PIA (Sound) 

 0CA00-0CA07:   Blitter Chips 

 0CC00-0CFFF:   Game Configuration CMOS RAM 

 0D000-0FFFF: Always ROM 

The majority of the RAM is dedicated to the video framebuffer, and Williams uses some 

extra hardware to provide high performance.  While a swap between RAM and ROM can be 

trigged by a write at $C900, all writes are transparently handled and sent to RAM if ROM is 

active.  This allows the MPU to read from ROM and write to RAM more efficiently.  For our 

design, a custom Verilog module provides address translation and routing amongst all I/O 

devices, as well as an interface to the main RAM on the FPGA board itself.  This allows for 

shared memory to the software for Video Translation.  Noticeably absent from the above map is 

any RAM/ROM dedicated for sound, despite the presence of the sound PIA.  In the Williams 

architecture, sound uses its own coprocessor, and as such, has a separate memory space with 

RAM/ROM allocation.  This memory map can be found under the sound subsection.   
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Video Processing:  

Video Translation Layer 

 

 The Williams architecture provides no dedicated chips for video processing, other than 

the blitter, explained in the next section.  Physically, the game screen displays an 8-bit, 292x240 

picture at 60 Hz.  Internally, however, the framebuffer is extremely different.  The system 

actually has a 304x256 pixel framebuffer, with each pixel represented as a nibble.  Each nibble 

represents an offset into a 16-color palette, stored at $C000-$C00F.  These 8-bit colors are split 

into a 3-3-2 format:   

 Pal[7:6] = Blue 

 Pal[5:3] = Green 

 Pal[2:0] = Red 

In order to display video through the Xilinx framebuffer, we implemented a video 

translation layer that reads the Williams frame from memory, performs a conversion, and then 

writes to the Xilinx framebuffer.  The process, based on the MAME source code, is notated in 

greater detail below: 

1. Read from color palette and cache the colors into an array. 

2. Read the 304 x 256 pixels from memory location 0000 to 97FF. 

3. Convert each pixel into 8-bit color using the cached color palette array. 

4. Translate from 8-bit color into 24-bit color.  

5. Interpolate each pixel into four pixels. 

6. Store the translated 24-bit color into the correct locations in the frame buffer. 

 Due to the PowerPC being limited to 300 MHz, while MAME benefits from much faster 

processors, our translation routines are optimized, using some convenient properties of the screen 

layout in order to perform the actual translation faster.   
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Video Hardware: 

CRT Emulation – Pixel Gun Position 

 The Williams architecture reserves a specific memory address, CB00, to contain 

six bits of the video address.  Since these arcade machines used CRT monitors, pixel guns were 

required to paint the image onto the screen.  As the same designers programmed the machine, 

their code is wrapped extremely tightly around the ability to know the y-coordinate of the pixel 

gun at any given cycle.  Additionally, the interrupts are generated based on the position of the 

screen – the first interrupt is based on the 11
th

 bit of the 16-bit video address, which translates 

into a 4 ms interrupt.  The second interrupt is triggered whenever bits 14-11 are all high, which 

translates into the y-coordinate being greater than 24010.  Under the original system, a 4 MHz 

clock is used with a 16-bit counter.  Our implementation instead uses a 1 MHz and 14-bit 

counter.  The design counts up from zero until it overflows.  On the first overflow, the value then 

sets itself back to 16,12810 in order to stretch out the timing to 16.6 mSec (60 Hz)   

 

Video Address Generation Circuits 

 

Interrupt Generation Circuits 
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Video Hardware: 

Special Chip (SC1) 

  The Williams Arcade Machines incorporated a Special Chip in the games that 

followed Defender and Stargate. These special chips, also known as the blitter chips, were used 

to move blocks of memory without the assistance of the MPU. They operated with just the 

source address, destination address, width of the block, and height of the block. Running at an 

approximated 4 MHz, a blitter chip can move around 1 million bytes per second, which is a lot 

faster than relying on the MPU to move the block. These chips were generally used for quick 

movements of images on the screen such as a shift of an image by just one pixel, which cut down 

on the amount of ROM memory needed for sprites. The address space used for the blitter chips 

was located at memory location $CA00-CA07. These locations contained the following 

information: 

$CA00 – Triggers the blit and provides the following control signals for the operation: 

- CA00[0]: Indicates either linear or screen format, in reference to the source 

data’s representation.  Linear mode refers to packed data, whereas screen 

format has pixel pairs separated by 256 bytes 

- CA00[1]: Indicates which of the previous formats the destination data is laid 

out in 

- CA00[2]: Indicates if the X coordinate wraps around 

- CA00[3]: Only blit the foreground (Transparency Mode) 

- CA00[4]: Blit using the color mask (Solid Mode) 

- CA00[5]: Rotate one pixel right.  This mode shifts the image one pixel to the 

right and the pixel pushed off screen is written to the left. 

- CA00[6]: Blit even pixels of the block 

- CA00[7]: Blit odd pixels of the block 

 $CA01 – Blit Mask. Usually $FF perform high-speed move of a block 

 $CA02 – Source Address Upper Byte 

 $CA03 – Source Address Lower Byte 

 $CA04 – Destination Address Upper Byte 

 $CA05 – Destination Address Lower Byte 
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 $CA06 – Data Block Width 

 $CA07 – Data Block Height 

 

The blitter chips will only blit when the MPU writes to address $CA00. Once triggered, 

the chip asserts HALT on the MPU while it blits the indicated block. Once the blit is done, 

HALT is deasserted, and processing resumes.  Physically, each Williams game used two blitters, 

each operating in parallel on a single pixel (4 bits); however, our implementation follows the 

techniques used in the MAME source code, as well as general knowledge of what can be feasibly 

implemented and thus combines the chips to a single 8-bit device.   

 

 

Blitter Test Showing Custom Operations 
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6821 PIA 

 The Peripheral Interface Adapter (PIA) provides an interface for any form of peripheral 

equipment to communicate with the 680x series of Motorola processors.  This particular chip, the 

6821 PIA, is used to interface with both the sound coprocessor and our controller inputs. The 

general use of the PIA is to transfer data through a handshake from one of the peripherals, A or 

B, to or from the data bus connected to the MPU. The PIA also supports the generation of 

interrupts under certain situations, specifically for triggering sound routines on the coprocessor.  

There are three registers per peripheral to execute the handshake, the peripheral register, data 

direction register, and control register. The peripheral register acts as a temporary buffer for data 

passed in by the peripheral port. The data direction register handles the bidirectional 

communication – a one indicates the given bit is an output, and vice-versa for input.  The control 

register provides overall control of the device, including interrupt generation.  The block diagram 

of the PIA and its internal registers are below:  

 

Internal Diagram of 6821 PIA 
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 The PIA would either take the PIA A (PA) port or the PIA B (PB) port and communicate 

it with the Data Bus where the direction of communication (input or output) is determined by the 

Data Direction Register (DDR). The Control Register (CR) is used to change whether the data 

bus is communicating with the DDR or the PA. It is also used to generate the interrupts, CA2, 

and CB2 bits. These signals were dependent on the value of certain wires and their transitions to 

the values.  

When trying to hook up our Verilog version of the PIA, we ran into some issues 

synthesizing inouts at the top level.  Old Usenet postings indicated that designers usually 

replaced PIAs with sampling registers once they were used to interfacing the chips.  As a result, 

we rewrote our version of the PIA only operate as an input, with a separate dedicated register 

handling the necessary operations on a write to the PIA to swap player controls.  Due to the need 

for separate functionality by the Sound and Input PIAs, we wrote two custom versions.  For 

input, we only needed PA and PB, as well as the control register B, as CB2 is used to select the 

current player’s controls.  Due to our sound implementation primarily relying on the PowerPC 

and AC97 IP core, we were able to strip out all the registers except for the inputs.  On the Sound 

PIA, no muxes for controls exist, so we could further reduce the design to only containing two 

registers. Our version was tested in simulation and was verified physically working when we ran 

into the operator check screen, where we could test the advance button. 
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User Input (Arcade Controls) 

 

 In order to provide a good user experience, as well as provide a set of controls for future 

projects, we are having a full 2-player controller made by the ECE machine shop.  Our design 

uses a pair of Mag-Stik Plus joysticks (capable of being switched between 4- and 8-way mode 

without opening the panel), along with standard pushbuttons to replicate the feel of an arcade 

machine.   

 

 

 

These controls are quite simple to implement. Every input for the joystick and 

pushbuttons is hooked up to a switch. These wires are pinned into a pair of headers, which 

connect to the left and right Digilent expansion ports on the Virtex-II Pro.  Debouncing circuitry 

was found necessary.  Controls are then passed to a set of multiplexers, which set up the PIA 

inputs to match each game at runtime. 
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Sound 

 A 680x (0/2/8) processor handles the generation of sound.  The processor is interrupted 

by a PIA, which then calls the sound processing routine.  After the processor generates the 

necessary tone, the PIA routes the resulting 8-bit data to a MC1408 DAC.  The MC1408 uses a 

weighted 8-bit multiply/sum operator to generate a linear-slope voltage.   As previously 

mentioned, the sound system has a separate memory map, as depicted below: 

 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

Program 

RAM 

Yamaha 

2151 

N/A 6821 

PIA 

N/A HC5516 

DAC 

Bank 

I/O 

Speech + Sound 

ROM 

  

This memory map is much more complicated than that used in any of our games.  The 

Yamaha chip is a synthesizer used in later games for background music, while the HC5516 DAC 

is used for voice generation in Sinistar.  Furthermore, our sound ROM is only from $F000-

$FFFF.  The $B000-$EFFF memory area is occupied by Sinistar voice support.   

As writing a second full processor that supported nearly as many operations as the 

M6809 but with entirely different cycle counts would have been far too time-consuming for our 

group, we instead decided to use the AC97 codec.  Though we do not get the exact sound, our 

approximation works plenty well.  When the M6809E writes to the sound PIA, we expose the 

written six bits over the OPB bus to the PowerPC core.  Inside our main loop, we retrieve the 

value and then look up the value against a table containing pointers to prerecorded WAV files.  

These files have been recorded from MAME, and the sound data values are matched against 

MAME’s debugger values to ensure that the correct sounds are played.  Furthermore, we 

technically support mixing sounds, instead of the cut-off playback of the original game.  The 

AC97 codec, under the standalone system, locks the buses, preventing screen refresh while 

sound is being played back.  As such, the system needs to be swapped out for xil_kernel in order 

to fully support simultaneous sound and video.  Sound is disabled for Stargate, as we boot this 

game the furthest.   
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Additional Software – Menu/ROM Loading 

 

On initialization, our system displays a simple bitmap-based menu system that allows the 

user to cycle through games.  Our first function polls the GPIO bus to check joystick status and 

swaps bitmaps on screen to inform the player of controls.  When the player presses start, the 

menu returns the number of the game selected.  At this point, rom_load(GAME) is called, which 

mounts the Compact Flash card, selects the appropriate set of decoder PROMs, 12 program 

ROMs, and a sound ROM, and then loads the data into the shared BRAM.  The software then 

enters a loop, where it checks for sounds to play and then sleeps.  Every thirteen milliseconds, 

the design also calls draw_screen(), which copies from the EDK BRAMs, deciphers the internal 

framebuffer, and draws it to the screen.  On every loop, the GPIO is also polled to check for the 

pressing of the restart button.  At this point, the custom M6809E IP is reset, the shared BRAMs 

are cleared, and the processor returns to the menu loop, allowing the user to select a new game.   
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EDK BRAM 

 Probably the most unique portion of our project is our incorporation of a shared EDK 

BRAM.  The following section provides a technical overview of how the EDK fits into the 

architecture, as well as provides the additional detail that the TAs had requested for use next 

year.  In our system, the BRAMs serve as the ROM and RAM.  Instead of the traditional 

approach of initializing the BRAMs during synthesis, we instead wanted the flexibility of 

loading the ROMs on the fly from a menu.  The FPGA primitive abstracted by the BRAM IP 

provides a dual-port synchronous interface.  As such, we can expose one side to the PLB bus 

using a Xilinx IP.  In order to hook up the other side; however, requires diving into several 

different files.  First, by examining the MPD, we find the necessary PORTs that need to be 

exposed via the MHS file.  In our design, the first port, Port A, is connected to the PLB Bus 

Interface, while Port B’s internal connections are exposed: 

BEGIN bram_block 

PARAMETER INSTANCE = RAM 

PARAMETER HW_VER = 1.00.a 

BUS_INTERFACE PORTA = RAM_CNTRL_PORTA 

PORT BRAM_Rst_B = mem_rst 

PORT BRAM_Clk_B = mem_clk_bram 

PORT BRAM_EN_B = mem_en 

PORT BRAM_WEN_B = mem_wen 

PORT BRAM_Addr_B = mem_addr 

PORT BRAM_Din_B = mem_din 

PORT BRAM_Dout_B = mem_dout 

END 

In our custom IP, we expose the respective lines from the correct modules as top-level ports, and 

then wire the modules together.  At this point, the modules are hooked up; however, there are 

still several more key details that Xilinx’s documentation does not mention.  First, the width of 

the BRAM bus, normally user selectable, is overridden to 64 bits as soon as any bus interface is 

connected to either port.  The address bus, likewise, becomes 32 bits.  The data bus then behaves 
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logically – for a single byte write, the user’s IP should replicate the byte 8 times, then mask out 

the byte to its correct respective location.   

The address port, however, is much more complicated.  First, all addresses must be 8-

byte aligned.  As a result, on a read, the entire line of eight addresses is returned, and the user IP 

must mux out the correct byte.  For writes, the lowest three bits of the user address select the 

write enable signal, while the data is replicated 8 times, as previously mentioned.  Due to bit 

flipping depending on the endianness of the user-design, our muxing schemes have been omitted; 

however, the code is clearly laid out in our custom pcore in the attached zip file.  The address 

bus, however, has yet another quirk, one that no documentation ever seems to mention.  If the 

user browses into the <PROJECT_FOLDER>\hdl\elaborate folder, there should be a folder for 

each BRAM block added to the design.  At the bottom of each of these directories, there is a 

Verilog file containing the actual code for the primitives.  If a User IP connects to the address 

bus solely by padding the address with leading zeros, the design will likely not work.  Upon 

examining the file, the user should find the bit slice form the address port used internally.   In the 

case of a 128 kB BRAM block, the address is defined as BRAM_ADDR_B[15:28].  Unlike the 

data ports in the design, which internally are swapped from [0:63] to [63:0], the address port is 

left alone.   

The elaborate file also points out the primary caveat of using BRAMs in this manner, 

especially on the Virtex-II Pro.  Due to architectural limitations, each BRAM block only holds a 

single bit of data, and the design replicates 64 RAMB16 blocks, leading to an extremely high 

cost due to the need for single-byte access while still connecting to the 64-bit PLB bus.  With the 

move to the new Virtex-5 boards, however, some of this cost may be mitigated due to 

architectural changes to the BRAMs.   



21 

 

Testing Procedure 
 

MPU: 

Since writing machine code by hand would take far too long to test the processor, the first 

goal was to find an assembler.  While GCC6809, at http://www.oddchange.com/gcc6809/, 

looked promising, especially since we could write more complex C code, the project’s makefile 

was broken.  This was replaced with the AS6809 Assembler, one of several assemblers in the 

ASXXXX Cross-Assembler Project, a project run by the physics department at Kent State.  

Initial tests were then written that used a set of custom Perl and TCL scripts to generate the 

proper files for readmemh(),  run the simulation, parse the resulting dump, and compare it to 

hand-calculated results.  This process was used for the majority of the operations, with only 

some of the more obscure modes that we could not access through the assembler being done by 

hand and using ModelSim itself to step through the code.  After verifying the majority of the 

modes and operations, testing continued by running both our simulation, using a custom-

assembled version of Stargate’s ROM files, and the debugger in MAME.  The process primarily 

consisted of tracing the code by hand on paper, finding loops where the code would return, then 

setting breakpoints at these loops and comparing memory and register values.  This was a bit 

tricky at first since we did not use the memory completely the same way MAME had used it. 

Once we got the processor to the boot screen, we moved to a combined synthesis/simulation 

debugging method, where we would usually have a build of the code running on the board with 

ChipScope to probe the values, and simulation running to check fixes.  After we thought we had 

a new working version, we would synthesize the version and continue the debug under 

simulation.  Our final bug, which took over 15 million cycles, eventually resulted in us finding 

out that the MPU was completely working, but the interrupt timings were off.   

 

Video: 

As the Williams format for the framebuffer is documented, we first wrote a simple set 

memory dump file that contained a series of rectangles.  Once the parser could correctly draw 

this to the screen, Sean modified the MAME source code in order to get access to the hidden 

framebuffer.  Dumps from different games at different points were then used to verify that the 

http://www.oddchange.com/gcc6809/
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video translation layer could indeed handle the Williams framebuffer format, as our rectangle 

test may have been wrong.   

 

Other Chips: 

Most of our other chips had datasheets with signal timings and documented operation.  After 

designing the Verilog, ModelSim simulations were first used to verify proper operation, after 

which a simple synthesis with some form of testing with ChipScope would then be used to verify 

the design.   

 

BRAMs: 

Since the BRAMs were a rather odd portion of the design, we first did some initial testing to 

make sure that we could use the BRAMs as a shared buffer.  The test consisted of a four state 

FSM that would do a RESET-WRITE-NOP-READ at address 0, while the PowerPC would poll 

address 0.  When the PowerPC finally caught the correct value, and ChipScope verified that the 

value was being written, we then moved on to test other portions of the design.  We returned to 

the BRAM testing when the full-system testing was broken, where we managed to eventually 

find the elaborated BRAMs file after ChipScope verified that we were passing in our processor 

address (in the incorrect format).   
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Results & Conclusions 
 

 Our hardware currently boots into the operator menu with ROM ERROR 11 displayed on 

the screen.  After the design passes all the tests, it enters several cycles that are dependent on the 

interrupts and y-coordinate to be exactly right in order to continue.  At one of these points, our 

pixel gun fails to match MAMEs due to some timing issue that we never managed to have time 

to fix.  As such, the game then detects a problem and falls out to the menu.  The menu, however, 

does show that we have the ability to detect controls, as we can cycle through some of the 

operator tests.  Future work would therefore most likely lie in fixing this timing issue, which is 

mostly due to an enable line that traces all over the schematic before ending at the video address 

generator.  Further future work would be the integration of the VGA framebuffer into our custom 

module, thereby excluding the PowerPC.  This is rather possible, and could result in a much 

more accurate display, as the h/v-syncs as well as VBLANKs could then be tuned to work 

perfectly.  Sound would also require the integration of a second processor, although the 

replacement of standalone with xil_kernel would be much more logical.   

 From this project, it becomes clear that a hybrid software/hardware project is not the best 

idea, especially for emulating an arcade system.  Either porting MAME to the FPGA or 

removing the need for a software video layer would have resulted in a project more likely to 

succeed.  Furthermore, if choosing an older game, pick one that does not need the ability to be 

pixel and cycle-accurate.  Cycle-accuracy is easy to meet, and all old games will likely require it, 

but the need to emulate the CRT monitor timings complicates things much further than one 

would expect.   

 Our choice to use the BRAMs, however, seemed to be a rather good idea – it gave us the 

flexibility that groups in the past had previously lacked, as we could successfully swap games.  

In addition, our FSM actually helped us debug since we enumerated a lot of NOP states that we 

could have otherwise combined.  Being able to trace back through the list of states and not 

having the same NOP state repeating made debugging much easier.  Finally, choosing a project 

that had plenty of official and unofficial documentation gave us plenty of sources to always 

compare against when we were either implementing hardware or attempting to find a bug.   
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Individual Reports 
Thomas Tzou 

 Working on this project was a good experience. Although disappointed with our results, I 

am still satisfied with how far we had gotten through our work. At the beginning, we spent a 

good bit of time looking through documents and decoding the schematics. We also spent the first 

two weeks trying to knock out all the labs early so that we could concentrate on just 

implementing our game. Initially, I worked with Sean in implementing the ALU. Afterwards, we 

discussed how to implement the MPU as a whole and then decided that Sean would implement 

the MPU while I wrote the PIA. After the PIA was written, I then wrote the Blitter chip.  Once 

both the chips were written, I went into testing them for their functionality. During the chip 

writing and testing phase, there were a handful of times in which I helped Sean put together an 

excel sheet or copied and pasted code that we used to generate many of the initial blocks of the 

MPU using a Perl script Sean had made. I had tested the PIA and was in the middle of testing the 

blitter chip when I switched over to testing the MPU since that was more important. Also, during 

the time that I was working on the chips, the controls arrived. Thus, we met and assembled it, 

which took a day to do as a group.  

We generally met each week for at least 6 hours. However, there were weeks in which we 

met for more than 12 hours per week.  Generally, whenever we met, we gave each other an 

update of where we were at and worked on integrating portions in Xilinx. For my time spent, I 

worked for about 20 hours per week or more. I mostly partitioned my time for classes where I 

would work on this project mainly during the latter part of the week, usually 3 or 4 days of the 

week initially and the rest of the week was used for my other classes. For the final 3 weeks, the 

hours had picked up. On that mark, the Block RAM was just implemented so that they worked 

and the MPU was ready for constant testing. Once the testing started, I was working for over 50 

hours a week on it. My Thanksgiving break was spent working on this and another project. Of 

those hours, I put in most of my time on working on this project. Once the final week rolled 

around, I had finished everything for my other classes early, so I was working on this project 

every waking moment. It was satisfying when we debugged our processor and was able to see 

output. However, since the processor did all the drawing, we could only draw up to the point that 

the processor breaks. The final weeks were hard, in which we would be taking a few hours just to 
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find where each bug occurred and then fixing the problem. We believe that the processor fully 

works but we could not figure out in time how to generate timed interrupts to occur at the exact 

cycle at which the processor needed.  

I liked the idea of the project of this course and the part of having us manage our own 

time to get us experience in meeting a semester long deadline. However, I felt that the labs had 

useful information but not all of them were relevant to what we wanted to implement and were 

thus not useful. Also, having more documentation on Xilinx tools is always helpful. Overall, this 

course is a nice course to take but much too time consuming to take with any other serious 

courses. I feel like I could not put in the time this course deserved early on with my other course 

work although I was already putting in much more time than any of my other courses.  
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Sean Coleman 

As the team member with the most background with these games, I primarily worked on 

the hardware side; however, I also managed our software toolchains and worked with the Xilinx 

tools to make sure that we had the necessary cores integrated into our project.  I spent the 

majority of the first two months designing and writing the Verilog code for the M6809E core, 

since there only existed a single free implementation that was known to have some bugs and 

lacked the cycle-accuracy feature we needed.  While it was easy to get a small version of the 

core up and running, the multitude of modes that the processor needed to support eventually 

caused the core to exceed over 20,000 lines of code.  After verifying my core against our initial 

set of tests, I worked with Tom to verify the more advanced features of the core, as well as 

extended it to support other needed features, such as HALTs and interrupts.  Our M6809E core 

eventually clocked in at about 20 MHz, which is equivalent to the several thousand-dollar 

M6809 IPs that vendors offer, and ours was cycle-accurate as well.  As we approached the end, I 

worked with Tom on debugging our full system under both simulation and ChipScope.   

Throughout the first two months, I also worked on the software side to get a functioning 

assembler up and running, eventually resulting in building the ASXXXX Cross-Assembler for 

our systems.  I also modified the MAME source to expose the internal framebuffer, which 

allowed us to test our translation layer as well as compare memory dumps at key points 

throughout our code during debugging.  I was our primary source on Xilinx’s toolchain, so I also 

familiarized myself with the Xilinx EDK tools, and we made the switch to ISE after I found the 

option to export an EDK project as a Verilog module.  Xilinx’s tools proved to be a giant time-

suck, especially since I spent most of my time outside the hardware on getting the toolchain to 

work correctly.  The fact that custom linker scripts are never covered cost me nearly a week, and 

we never managed to get the DCMs to give us a 32 MHz clock signal for reasons that nobody 

could figure out.  I did however, learn about all the command line switches in map, par, and 

XST, while attempting to fix some bugs in XST regarding tristate synthesis, and eventually 

managed to pack our design with no clock skew issues, which had earlier prevented our core 

from running properly.   

 It was disappointing to find that something as small as the y-coordinate of the pixel gun 

kept the game from booting to a playable state, especially since the bootcode tests far more 
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operations than the game actually uses but never does anything interesting other than the rug 

screen.  After putting in around 40 hours a week, with 60+ hours common in November, even 

over Thanksgiving break, to only get to the boot screen is disappointing.  The early labs were 

useful in touching on certain ideas, such as the usage of the framebuffer, as well as introducing 

the teams to EDK, but lacked any real depth on the hardware side. It was interesting to find that 

groups that stayed solely in software, both now and in the past, found Xilinx’s documentation 

more than enough, while any group that worked with custom hardware and needed low-level 

information about the FPGA and certain signals had to struggle through forums, documents, and 

in some cases just guess in order to get certain parts to work.  Judging from the Xilinx 11.4 tools, 

some of our more specific problems, such as integrating a hardware/software project into ISE are 

fixed, seeing as how no other groups ran into some of the bugs that I found.  After seeing how 

our choice to do the project as a hardware/software hybrid came back to haunt us repeatedly, I 

would highly recommend that future groups stick to staying on only one side, especially with the 

older, no longer supported, Virtex-II Pros.  The class as a whole is interesting, but as everyone 

else seems to have mentioned, extremely time consuming.   
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Joon Ho Cho 

I, as a member of Williams Multigame Group, mostly worked on the software layer of the 

project. At the beginning of the project, we occasionally met in the lab or a group study room 

and discussed how we were going to implement the M6809, the main processor, and the rest of 

the multigame system. Sean knew more than Tom and me about almost everything, so he was 

mostly the one who explained details that we did not know and drew diagrams so we could 

understand better about how each part are interconnected to become the entire working system. 

We also finished most of the labs very early together. 

After the beginning phase was over, I wrote the VGA part of the system while Tom was working 

on the PIA and Sean was working on the M6809. I first tried to implement the VGA in Verilog 

as hardware, but Sean told me that it would be much easier to simply write the video 

translational layer in C code as software layer similar to the lab 1 we had finished before. I read 

the manuals of games and figured out the hardware specifications I needed to implement the 

translational layer. Since we wanted to use the frame buffer of the Xilinx platform, I had to write 

some mathematical functions that will successfully convert the game screen image format to 24-

bit color format. One day, we met in the lab together and debugged the video translational layer 

to be working as we wanted. 

Another day, we met in the lab and started building a joystick on the metal plate that we got 

fabricated from the machine shop. It took few days of around 10+ hours each to complete 

building the control and got it working inside the hardware. 

Meanwhile, I was researching the sound system of the Williams system and how to implement it 

into our system. Sean was almost complete writing the M6809 processor and he told me that he 

needed the tests to run against the processor in order to find bugs. I started writing tests as I kept 

looking at the sound system. The writing tests were not so easy because I had to fully understand 

how the processor works and results it generates for every instruction and for every addressing 

mode it supports. When Sean was done with the processor, he tested the processor against the 

tests and began to debug it. 
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When I was no more needed to write tests for the processor, I started writing the menu for our 

system. It would support the joystick and images of the games for selecting game to load and 

play. I made images for main menu and wrote the looping sequence for the menu. We later 

debugged it together and got it working with joystick inputs.  

At the end of the project, we decided to write sound also as a software layer because it would be 

much simpler than writing the entire sound coprocessor and more powerful as well since we 

could support mixing multiple sounds that is not supported by the original Williams system. I 

implemented it along with the menu so when menu is done selecting game then it will go into the 

sound loop and play sound whenever it needs to. We play wave files using the AC97 like we did 

in the lab 2. So, I recorded the sounds for games with Windows sound recorder with mix in 

enabled as I played MAME. It was difficult and frustrating for certain sounds because it is cut in 

the middle if any other sound is played while it is playing. I had to try many times to record the 

nice and clean sound files. 

Overall, I liked the course since it was our choice to decide on a project, and the project was 

implementing a game system that is always fun to play with. It was really challenging that we 

had to implement it on the FPGA board with Xilinx platform since I had much more prior 

experience with software programming than hardware programming. Implementing and 

debugging both were not as easy on the hardware as it is much easier on the software side. 

Sometimes it was really frustrating to see breaks of our project when there seem to be no reason 

behind at all. I wish that we had more knowledge and familiarity with Xilinx tools and FPGA 

board prior to the entering to this course. All I had done with the Xilinx and FPGA programming 

prior to this course was one or two confusing labs in 240. It will be really good if there is a 

separate introductory course to the FPGA and Xilinx hardware programming. I think labs were 

very helpful for this course, but I wish there are more explanations to each step than simple 

instructions. Though labs were helpful, they were more software layer than hardware. I wish 

there are more sophisticated labs that covers more about the hardware and familiarizing with 

Xilinx system. 

Finally, it was really frustrating to finish the course with not completely working system even 

though my team members worked really hard enough, even more than they needed to, probably 
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more than most of others in the class, and definitely more than me. I remember that I said that it 

would be nearly infeasible to implement just the M6809 itself. However, I was truly surprised 

that it was completely implemented and working cycle accurately as well, supporting all 

thousands of instructions. It was almost correct too since it boots up and passes the initial test 

though it fails to play games, and we were talking about a production level processor in few 

months along with other tough courses and crazy workloads. Though other groups might have 

better looking, or more to see, results, I believe this as a true success of my team members, and I 

wish that this course is not only about the result but more about the effort and progress that takes 

place in the middle. I want to thank my partners and I really enjoyed the project. 
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User Controls - Digilent Pinout & UCF Constraints: 
 

The following constraints set up the controls to be a 32-bit signal named CONTROLS: 

####CONTROLS#### 

NET "CONTROLS<0>"   LOC = "V1"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<10>" LOC = "M3"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<11>" LOC = "R9"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<12>" LOC = "N2"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<13>" LOC = "L4"  | IOSTANDARD = LVTTL; 

NET "CONTROLS<14>" LOC = "AA4" | IOSTANDARD = LVTTL;  

NET "CONTROLS<15>" LOC = "Y5"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<16>" LOC = "W6"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<17>" LOC = "AB1" | IOSTANDARD = LVTTL;  

NET "CONTROLS<18>" LOC = "W4"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<19>" LOC = "V8"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<1>"   LOC = "R3"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<20>" LOC = "AA2" | IOSTANDARD = LVTTL;  

NET "CONTROLS<21>" LOC = "V6"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<22>" LOC = "U8"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<23>" LOC = "Y1"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<24>" LOC = "V4"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<25>" LOC = "U9"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<26>" LOC = "W2"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<27>" LOC = "U5"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<28>" LOC = "N5"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<2>"   LOC = "R5"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<3>"   LOC = "T2"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<4>"   LOC = "P4"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<5>"   LOC = "R7"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<6>"   LOC = "P2"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<7>"   LOC = "N3"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<8>"   LOC = "P7"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<9>"   LOC = "P1"  | IOSTANDARD = LVTTL;  

NET "CONTROLS<29>"  LOC = "AH1" | IOSTANDARD = LVTTL; 

NET "CONTROLS<30>"  LOC = "AH2" | IOSTANDARD = LVTTL; 

NET "CONTROLS<31>"  LOC = "AH4" | IOSTANDARD = LVTTL; 



32 

 

 

The following table maps these controls to their physical representations: 

 

 

CONTROLS<0> Player 1 Up 

CONTROLS<1> Player 1 Down 

CONTROLS<2> Player 1 Left 

CONTROLS<3> Player 1 Right 

CONTROLS<4> Player 1 Button 1 

CONTROLS<5> Player 1 Button 2 

CONTROLS<6> Player 1 Button 3 

CONTROLS<7> Player 1 Button 4 

CONTROLS<8> Player 1 Button 5 

CONTROLS<9> Player 1 Button 6 

CONTROLS<10> Player 1 Button 7 

CONTROLS<11> Player 1 COIN 

CONTROLS<12> Player 1 START 

CONTROLS<13> Player 1 META 

CONTROLS<14> Player 2 Up 

CONTROLS<15> Player 2 Down 

CONTROLS<16> Player 2 Left 

CONTROLS<17> Player 2 Right 

CONTROLS<18> Player 2 Button 1 

CONTROLS<19> Player 2 Button 2 

CONTROLS<20> Player 2 Button 3 

CONTROLS<21> Player 2 Button 4 

CONTROLS<22> Player 2 Button 5 

CONTROLS<23> Player 2 Button 6 

CONTROLS<24> Player 2 Button 7 

CONTROLS<25> Player 2 COIN 

CONTROLS<26> Player 2 START 

CONTROLS<27> Player 2 META 

CONTROLS<28> RESET 

CONTROLS<29> N/C 

CONTROLS<30> N/C 

CONTROLS<31> N/C 
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Sources 
 

 We have included all the documentation in our attached zip file.  Below however, are a 

list of sites from which these documents, and other information, were retrieved: 

 

http://www.klov.com       Game Schematics, Owner’s  

         Manuals, Theory of   

         Operation Manuals 

http://mamedev.org/       MAME:  Code and reference  

         implementation 

http://seanriddle.com/willy.html       Reverse Engineering    

         (Blitter), General Hardware  

         Overview 

http://shop-pdp.kent.edu/ashtml/asxxxx.htm    ASXXXX Cross-Assemblers 

http://webpages.charter.net/coinopcauldron/piaarticle.html   6821 PIA Theory &   

         Operation 

http://members.optusnet.com.au/jekent/system09/index.html System09:  VHDL 6809E  

http://www.zimmers.net/anonftp/pub/cbm/documents/chipdata Motorola 6809E   

         Technical Specifications 

http://www.bitsavers.org/pdf/motorola/_dataSheets/   Motorola Datasheets 

http://www.klov.com/
http://mamedev.org/
http://seanriddle.com/willy.html
http://shop-pdp.kent.edu/ashtml/asxxxx.htm
http://webpages.charter.net/coinopcauldron/piaarticle.html
http://members.optusnet.com.au/jekent/system09/index.html
http://www.zimmers.net/anonftp/pub/cbm/documents/chipdata
http://www.bitsavers.org/pdf/motorola/_dataSheets/

