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What we built

Game Description:

Xil_Roids was designed to be a two player version of Asteroids.  In Xil_Roids, players have 
the ability to shoot both asteroids and their opponent, and are rewarded with points 
accordingly.  A player is killed when he collides with either an asteroid or the bullet of 
another player.  Each player begins the game with 6 lives, and the game terminates when 
either player has run out of lives.  The player with the most points when the game terminates 
wins.

System Overview:

Xil_Roids runs primarily on the Virtex-II Pro FPGA board and uses Nintendo Wii remotes to 
obtain user input.  The code which interacts with the Wii remotes is the only code which does 
not run on the FPGA board.  Wii remotes communicate using Bluetooth, hence the code 
which interacts with the Wii remotes runs on a Linux workstation with Bluetooth.  The Linux 
workstation communicates user input to the FPGA board using an Ethernet connection.

Xil_Roids maintaines a software representation of the game state, and updates the state, 
screen and audio output buffer at a regular rate according to the interaction of objects within 
the game state and input from the user.  The representation of the game state which 
Xil_Roids maintains was designed to be both elegant and efficient, so that all timing 
requirements can be met and the complexity of the game can be reasonably increased.  In 
particular, there was motivation to write the software for Xil_Roids in a sufficiently efficient 
manner to allow the game to run entirely in software, preventing added complexity required 
by the incorporation of hardware.

In addition to the core Xil_Roids logic which handled user input, maintains and updates the 
state of the game, and generates audio and video output, additional software creates a finite 
state machine surrounding the game to handle transitions from setup, to game-play, to game-
paused, etc.  The Xil_Roids implementation is also supported by a custom file format which 
facilitated both collision detection and increases the efficiency with which Sprites can be 



painted on the screen.  A file converter was created which runs on Linux and convertes BMP 
files to this custom format.

System Componet Description:

Game Finite State Machine

The game state is an important of the playability of the game. The game state of our 
system is like this. 

To implement this, we used a game state structure to control the game state and also store 
some important configure information of the game, such as whether a player is still alive, 
the game is in multi or single player mode, etc.

Ethernet 

One of the highlight of our system is that we port the Wii Remote controller into our 
system as the user input device. To achieve this, we want to implement a framework as 
following:



We separate this framework to two parts, one is on the PC and the other one is on the 
board. The Wii Remote Driver parts on laptop will be introduced in other sections. This 
section will introduce how the Ethernet works in the FPGA and its interface to our game.

To make the Ethernet work, there are mainly two libraries we can use in Xilinx 
developing system. One is light weight IP (LWIP) and the other one is Xilnet. 

The main benefit of LWIP is that it is a higher level library and is more functional. It 
supports many mechanisms such as interrupt receiving mode. However, when we tried to 
use this library, the hardware configuration is a little bit confusing. After one week’s 
efforts, it is still failed to work.

The Xilnet is a lower level, high efficiency and relative small library than LWIP. But it is 
not functional enough. The checking receiving data and interrupting mechanism is not 
included. And the latest version of Xilinx Developing Platform does not support this 
driver by default. So we modified the MSS and MHS file to port this driver into our 
system. Though there are so many difficulties in porting it, the example program is 
provided in the lab instruction, which accelerate our progress a lot.

Firstly, we implemented a while square drawing demo with a Linux GUI with TCP/IP 
connection. The framework is like this,

Since it is based on the lab provided http 1.0 protocol, each connection is closed 
automatically after echoed by the FPGA server. So it cannot be used directly in our game. 
Our next test demo is as following:



In this demo, the input is collected from the telnet terminal, and the FPGA can receive 
and echo the data it received. Also the connection is a standard continuous TCP/IP 
connection. In this demo, we solved a CPU blocking program by the TCP_accept 
function of the Xilnet library. When there are no TCP data input, this function just keeps 
on waiting. To solve this, we modified the EMAC driver, IP driver and the TCP driver, so 
that when there are no data input, the program will just skip and jump to the following 
part.

Based on this demo, we implemented the game controlling with the keyboard in another 
laptop using the Ethernet. And then the Wii data is also received successfully using this 
module.

Wii Remote Interface

After the data of Wii is received, we implemented a data structure to store it. The 
Ethernet connection is checked at the same time as the repaint screen, so it runs at about 
30Hz. However, the Wii driver may send data over 100 times per second. So we may 
receive more than one datagram each run. To keep the system input up-to-date, we only 
keep the latest X-Y coordinate input from the Wii driver. But for the button input, this 
will miss many valid data. So we implement a mechanism that iterate each data frame to 
check whether there is a button input and keep it in a buffer. And after all the date frames 
are checked, we send the buffered button input to the game.

Audio Driver

Basically, the audio module is a separate part of the game. We use a global structure to 
store the data need to be transferred between the game state and the audio driver. It is 
consists of the pointer to each sound effect wave file, the length of those sounds, the 
current state of each sound and a 8-bit triggering flag for those sound effects.



If the main game program wants to play a sound, it only needs to just set the 
corresponding bit to 1. And the audio driver will check the triggering bits 500 times per 
second. If a triggering signal is found, the sound will be mixed automatically with the 
current playing sound. 

Another feature of this mechanism is that the triggering bits only need to be set once, and 
the sound will be played till end. So that the game codes do not need to worry about an 
out of date triggering block the new playing command. Our 6 bits flags are set as 
following:

1st bit: Background Music

2nd bit: Shooting Sound

3rd bit: Moving Sound

4th bit: Sound when the ship is hit by other objects

5th bit: Sound for game start

6th bit: Sound for game end 

We use the programmable interrupt timer to control refresh rate of the audio module. To 
achieve the best audio quality we set the sample rate to 44.1k, and the bit rate is 
1411kbps. In Xilinx audio driver, the FIFO size is only 512byts, which means we at least 
need to refill the FIFO about 400 times to keep the audio output continuously. Based on 
this, we build a FIFO feeder runs at 500Hz.

When we test this module separately without the game state, it works quite well. 
However, when we begin to porting it into our main program, we found that the FIFO 
writing is much slower than we expected. It even takes longer time than the repaint 
functions. By analyzing the codes in the Xilinx audio library, we found that this is caused 
by the default FIFO writing mechanism. When a new byte need to be put into FIFO, the 
driver will check the FIFO status, if it is full, then the driver will block the CPU to wait 
until the earlier data is pulled by the decoding module. To make the system runs 
smoothly, we tried to modify the module and change it from the waiting mechanism to a 
checking mechanism. When the FIFO is full, the driver will just return a full signal to 



notify the upper layer codes, and then the game codes will no longer try to write data to 
FIFO in this run of interrupt handler.

This modification is successful. The audio driver only takes a neglectable time to feed the 
FIFO which does not influence the main game program at all. And our calculation of the 
bit rate is also correct. The average bytes number written to the FIFO is 470, just less 
than 512, which keeps our audio driver runs at the highest efficiency.

System Time and Refresh Rate Control

There is only one programmable interrupt timer in the PowerPC core. As mentioned in 
the Audio Driver section, we use it for writing the FIFO. So to keep the screen repaint in 
a constant rate, we build another timing system based on the systemTime functions of 
PowerPC core.

We mainly utilize two functions in the Xilinx PowerPC library, setSystemTime() and 
GetSystemTime(). As shown in the diagram, in each while loop, the current system time 
is checked first. If it exceeds a threshold, which represents the expected interval between 
two repainting, then the repaint codes will be run. Otherwise, it will just skip the repaint 
codes. Through this mechanism, though there might be many interrupts happened 
between two intervals, the screen repaint rate will keeps constant.

Representation of Sprites and Game State

The representation of the game state was designed to allow for efficient collision 
detection and rendering, as these were determined to be the two most computationally 
intensive tasks associated with the game.  Collision detection for every pair of objects on 
the screen was determined to be an unacceptable solution, given that each player had the 



ability to add an arbitrary number of bullets to the screen.  Likewise, blindly re-
calculating each pixel every time a new frame was rendered required too many memory 
instructions.  Hence, our representation of the game was designed to minimize the 
amount of calculation required for collision detection, and to minimize the number of 
pixels which were updated when a sprite changed position. 

As mentioned above, the simplest way to detect collisions would have been to check 
every pair of objects on the screen to see if they have collided.  Unfortunately, the 
number of object pairs on the screen is proportional to the square of the number of 
objects.  This means that as the number of objects on the screen grew, the number of 
comparisons became prohibitively large.  Several methods to reduce the total number of 
collisions were considered, including making comparisons only between certain types of 
objects (ie. bullets and ships, not bullets and bullets) and various hardware accelerations.  
Ultimately, we decided that the most robust strategy would be restricting comparisons 
based on location.

In order to prevent comparisons of objects which were not remotely adjacent, it was 
necessary to maintain some sorting of the objects based on location.  This lead to the 
Board data structure shown below.  The Board consisted of a matrix of linked lists which 
store the various objects on the screen according to a hash of their current location.  
Objects in neighboring linked lists in the matrix are also neighboring on the screen.  
CANARY_TOP_INIT and CANARY_BOTTOM_INIT had no bearing on the functionality of 
the board, and existed for debugging and defensive programming purposes.  Similarly,  
obj_count tracked the total number of objects on the board, but was not directly 
needed for the functionality of the board.

Found in board.h:

typedef struct board_struct {

 CANARY_TOP_INIT

 int obj_count;

 LinkedList board_data[BLOCKS_HIGH][BLOCKS_WIDE];

 CANARY_BOTTOM_INIT



} Board;

Each linked list node of the Board matrix included a pointer to the Sprite it represented.  
The Sprite struct was used to represent all objects on the screen, and is shown below.  A 
Sprite struct was required to have pointers to the following functions:

clear: remove all pixels associated with the Sprite from a frame buffer

render: draw the Sprite on a new frame buffer

update_state: update the state (generally position and direction) of the Sprite

collision_detect: detect a collision between the Sprite and another Sprite

collision_notify: notify Sprite of a collision with another Sprite

get_rdrimg: get the RDR image currently representing the Sprite

Each Sprite was also expected to contain position and size data, a tag indicating which 
type of Sprite the Sprite is, and a union containing data specific to different types of 
Sprites.  The complete Sprite struct is shown below, along with the structs which contain 
the data unique to each different type of Sprite.

Found in sprite.h

typedef struct sprite_struct {

 CANARY_TOP_INIT

 int type;

 short height;

 short width;

 short x_pos[NUM_FRAMES];

 short y_pos[NUM_FRAMES];

 short radius;

 short live;

 SpriteUnique unique;

 void (*clear)(struct sprite_struct *sprite, int buf);



 int (*update_state)(LinkedListNode *self);

 void (*render)(struct sprite_struct *sprite);

 int (*collision_detect)(struct sprite_struct *self, struct 
sprite_struct *other);

 void (*collision_notify)(LinkedListNode *self, LinkedListNode 
*other);

 int (*destroy)(struct sprite_struct *sprite);

 struct RDRimg_struct *(*get_rdrimg)(struct sprite_struct *sprite);

 CANARY_BOTTOM_INIT

} Sprite;

enum {

 ASTEROID_TYPE = 1 << 0,

 BULLET_TYPE = 1 << 1,

 PLAYER_TYPE = 1 << 2,

 SCORE_TYPE = 1 << 3

};

typedef union sprite_unique {

 Asteroid asteroid;

 Bullet bullet;

 Player player;

 Score score;

} SpriteUnique;

typedef struct asteroid_struct {

 short x_vel;

 short y_vel;



 int angle;

 int destruct;

} Asteroid;

typedef struct player_struct {

 short x_vel;

 short y_vel;

 int destruct;

 int angle;

 int lives;

 int score;

} Player;

typedef struct bullet_struct {

 short x_origin;

 short y_origin;

 struct sprite_struct *owner;

 int distance;

 int angle;

 int speed;

} Bullet;

typedef struct score_struct {

 struct sprite_struct **player;

} Score;



By representing Sprites as a union with several properties unique to each Sprite, and 
several properties common to all Sprites, we were able to place distinct objects on the 
screen while treating them uniformly as necessary.  For example, this representation 
allowed for refreshing the screen by simply iterating through all objects on the screen and 
asking them to clear and render themselves.  This rendering technique also minimized the 
number of pixels which needed to be written to render a new frame buffer.  The use of a 
unique rendering function for each Sprite also allowed for easy implementation of 
behavior such as spinning and exploding for each Sprite, and the Sprite was able to 
render itself according to its own, internal state.

RDR File Format and Collision Detection

Lab 1 provided support code for displaying BMP images, and for displaying only a 
portion of a rectangular image through the use of a black and white mask.  Unfortunately, 
the support code applied the mask to the image each time the image was to be displayed.  
This resulted in considerably reduced performance since the rendering of a single pixel 
required two memory references and logic to decide if the pixel should be displayed or 
not.

In order to reduce the amount of computation necessary to render a sprite, a separate file 
format was developed with properties better suited to displaying sprites.  The modified 
format has been given the file extension “rdr”, in honor of the Revolving DooRs.  The 
modified file format improved the BMP display process by storing the location of the 
first pixel of each row and the length of each row of pixels in the header of the file, and 
then storing the actual pixel data in the main data portion of the file.  This eliminated the 
need for a double memory reference necessary to display a single pixel.  In order to allow 
for transparency within a line, an extra byte was padded to the beginning of each 24 bit 
pixel value to indicate transparency.

In addition to improved memory utilization, the RDR file format greatly facilitated 
precise collision detection.  By inherently storing the outline of the image, a pixel perfect 
comparison of two RDR images to determine if they were overlapping was 
computationally feasible.  This operation required careful comparison of the beginning of 



a given line of one image, and the end of the corresponding line (adjusted for screen 
position) of the other image.

As a note regarding BMP files:  There appears to be a wide range of padding schemes 
used in BMP files.  Even BMP files authored by the same program, having the same size, 
did not always have the same number of bytes.  Padding schemes were observed whereby 
each row of pixel information would be terminated by 0, 1 or 2 bytes of zero, and the 
entire file would be terminated by 0 or 2 bytes of zero.  Despite having dissected several 
BMP files in a hex editor, it is not evident to this author that the padding information is 
directly included in the header of the file.  For any future concerned parties, it seems to 
me the best approach is to read the file size and header offset from the header, and work 
backwards to determine the padding scheme which is in use.



How it was built

Data Driven Design

Although the goal of creating a version of Asteroids playable with Wii Remotes was 
relatively constant throughout the life of the project, the implementation changed 
drastically.  

Initially, our team considered a design which involved porting a current implementation 
of Asteroids to the Xilinx board and modifying the implementation to be compatible with 
the Wii remote.  As an initial test of the feasibility, we first modified the Asteroids code to 
run on Linux and receive input from the Wii remote.  The initial Linux implementation 
worked well, but appeared to become less feasible as we moved the design to the board.  

Had we successfully completed the port, there would have been many advantages to this 
approach.  The largest advantage is that we would not have been hindered by our limited 
knowledge of graphics.  Instead, we would have been able to take full advantage of the 
knowledge of the original creators of our game.  Also, we would have been able to take 
advantage of other the other full features of the game, such as multi-player play over a 
network.

As we worked to complete the port, it became increasingly clear that our team was poorly 
matched to the task.  Given that a near-miss on a port would likely produce nothing 
playable, we decided to re-focus our efforts.  As a simple demonstration, a group member 
had written some code which caused bubbles to float around the screen, bouncing off the 
edges.  The code was able to render about 20 frames per second with about 10 bubbles of 
size 48x48 pixels on the screen.  The code was also able to preform collision detection 
between the bubbles, although this lead to a noticeable decrease in performance.

Noting that in principle this simple demonstration contained much of the same 
calculation required to implement our variation of Asteroids, our team decided to depart 
from our original course of action and work towards a more basic, from-scratch 
implementation.  From this point, we began to develop a new game design which utilized 
concepts and skills we had developed through the attempted port to develop a new game 
created from scratch.

Design Partitioning

In an effort to separate the design into separate pieces which could be tackled in pairs or 
individually, rather than as an entire group, the design was partitioned into several sub-
systems.  The key sub-systems which we identified included Audio, Input (Wii remote), 



Ethernet, Game FSM, Graphics and Game Logic.  Ultimately, these sub-systems proved 
to be isolated enough, that we were able to produce progress in some systems though 
there was delay in others.

One difficulty of our game design was that the game was not playable with a Wii remote 
unless there was a working Ethernet connection.  This unfortunately meant that many 
aspects of the game could not be fully tested until a working Ethernet connection was 
established, which proved to be more difficult than would initially seem.

Tools and Design Methodology

Our source code was largely written using the development environment provided by the 
Xilinx tool chain.  Although we made some attempt at using version control, this met 
with varying degrees of success.  This was partially due to lack of familiarity with the 
Windows Subversion interface and with version control in general.  However, the single  
most significant factor was that several critical aspects of the design were not easily kept 
under Subversion (ie. hardware configuration files), and so ultimately a messier system of 
“zip” files had to be used anyway.

In general, design decisions were made by consensus of at least 2 team members.  There 
were very few decisions which were made by the entire team, but this was ultimately not 
necessary.  Given the size of the team, involving the entire team in a design decision 
often involved greater complication than reward



Personal Report
Junqing Wei

Though it took us quite a long time to finish the project, this course is interesting and useful 
for me. I learned lots of skills of using FPGA, implementing hardware, software projects 
and integrating them together. I also learned how to balance and tradeoff the objective 
with our time and ability restriction from the game developing progress.

There are many parts I tried but failed which are not included in the main report:

1) Dual-core

I spend two weeks on this, and I almost succeed. Basically, we need two Bram controller and 
some additional Bram blocks to implement this.

2) IWIP

I think that the 9.1 XPS will support IWIP well, but I don’t know where I made some mistake 
and I have to give up using IWIP since our time is limited.

3) C++

The Xilinx SDK support C++, but in our program, we give up using it just because no one in 
our group is familiar with the eclipse developing platform.

4) Laser Tracking

In my opinion, this is still a great idea for user input, but our team decide to use Wii Remote, 
so I just give up trying to implement it.

And here are the works I have done in this project:

1) Testing Laser Tracking Algorithm in MATLAB                                                  5h

2) Finishing lab1, lab2, lab3                                                                                     20h

3) Implementing the first animation and audio demo and integrate them together    5h

4) Implementing the Ethernet connection using http1.0 protocol                             15h



5) Modifying the Ethernet codes and building the demo for DR3                            15h

6) Build the first version infrastructure of our game                                                 10h

7) Testing on Dual-core                                                                                             10h

8) Porting audio module into the game and build the software interface                  10h

9) Porting Ethernet module into the game                                                                   5h 

10) Game State                                                                                                              5h

11) Testing the Game and debug                                                                                 10h



Personal Report
Brad Miller

Work Summary

Subversion and Doxygen         5hrs

• set up repository

• arranged commit emails

• compiled and created Doxygen configuration file

Labs 0, 1, 4          15hrs

Selection of initial project        10hrs

• development of initial possible game concepts

• selection of concept to implement in group meetings

• research as to the feasibility of different ideas

• reading old project reports

Wii Remote driver         10hrs

• finding suitable open-source driver

• compiling driver

Simple DirectMedia Layer        25hrs

• familiarization with code base, compiling for Linux

• modifying to include Wii Remote input over Ethernet

• moving into Xilinx build environment 

Maelstrom modification        15hrs

• handle Wii Remote events, in addition to existing input forms

Planning of Xil_Roids implementation      10hrs

General Xil_Roids game state and logic      15hrs



Development of individual Sprites for Xil_Roids     15hrs

Implementation of image sequences for spinning, explosion, etc.   5hrs

BMP decoding: picking apart hex dump to determine format   10hrs

Collision detection         5hrs

RDR images          20hrs

• Linux file converter

• batch converting BMP images

• software to display RDR image on game screen, including on screen edge 

Integration of entire Xil_Roids game       15hrs

Design of Wii Remote user interface (calibration)     5hrs

Report writing and presentation creation and preparation    25hrs

• Final report/presentation

• DR1 report/presentation

• Personal weekly reports

Feedback regarding the course:

I definitely enjoyed taking 18-545.  I think the opportunity to write software and design 
hardware to better support the software is fantastic, and we had opportunity to do that in this 
course.

I think one of the most challenging aspects of the course is the wide skill range of the class, 
and the group nature of the project.  Some people in the class had more of a hardware skill 
set, while other had a stronger software skill set.  Successfully engaging this diverse skill set 
in a single project can be difficult.



I think one way to improve the class would be to have a heavier focus on the group aspect, 
possibly through group dynamics discussions in the lectures and a heavier focus on project 
management techniques.

I would like to thank Dr. Ken Mai and Dr. William Nace for teaching this class, supervising 
the projects, planning a public presentation and supplying us with all the hardware we 
needed.


