
XilQuake

18-545 Fall 2007

Eric Buehl

Matthew Douglass-Riley

Mitchell Jewell

Our final project resulted in a fully-playable port of QUAKE by Id software on the provided

Xilinx Virtex II-Pro development board from Digilent including support for networked multiplayer

over a local area network. Game sound effects are mixed and rendered to the on-board AC97 audio

codec. User input is achieved through the PS/2 keyboard and output graphics are rendered to the VGA

controller. All maps from the original game are playable in our implementation since the game data is

almost entirely unaltered. Additionally, network clients may play with other clients of any platform

since the original quake protocol is also preserved.

Quake Background

The Quake engine, released under an open-source license in 1999, is freely available online.

There are many ports and modifications developed by the community, but we will be focusing on the

original release from iD software. This is a large code base with (over 100 KLOC) including several

features we neither want nor need for this project:

– OpenGL support

– Windows support

– Optimized x86 assembly

Thankfully, the Quake engine is very modular and well-designed, making it easily modified. Most

notably, all drivers (sound, network, graphics, input, and “system”) exist in separate .c files exposing a

common interface. There exists in the code base a “null” driver for each device, included to aid

porting. These null drivers have been the launching points for our efforts.

Breakdown of Initial tasks

Task: Get engine to compile and run as-is

The quake engine comes ready to build in the Visual Studio environment under Windows. The

Game runs and is playable once the appropriate game data (PAK/WAD files) have been provided.

Task: Get engine to compile and run without OpenGL

The project file for the game includes separate build targets for both hardware (OpenGL) and

software renderers so this was trivial.

Task: Remove all x86 specific code

As a first implementation as well as to aid porters, C versions of all assembly functions are

included. Once all of this code was replaced, we confirmed that the game still compiled and ran.

Task: Begin removing Windows-specific code

Given that we are building a target called “WinQuake” there is bound to be a lot of Windows

specific code. Because of the pluggable driver system, all Windows code exists in the Windows

version of each driver. All such drivers were replaced by their null counterparts, which allowed the

code to compile and provided a basis for all future work.

Task: Build under GCC

Using all of the stub drivers, we were able to compile the game and watch the demos run over

STDOUT.

Task: Compile with the Xilinx tool chain

We started a new project and successfully compiled all of the relevant source files for the

PowerPC processor on the Xilinx board. Quake’s innate portability made this task much easier than it

could have been.

Task: Run the game demo on the board

The compiled executable (ELF) file is over 1.5 MB, meaning it could not simply be marked to

“Initialize BRAM.” SystemACE was pointed out to us as a potential solution and, with a nontrivial

amount of work, we were able to package the FPGA configuration (bitstream) along with the

executable file into a .ace file on the CompactFlash card. SystemACE’s file system operations left

something to be desired (namely seeking and nonlinear access), so we added a step to the loading

process wherein all game files are copied to an in-memory file system that provides greater speed and

random access. A side benefit of this approach is that the CompactFlash card is not needed after this

loading completes, allowing the same CF card to be used to boot multiple boards.

Task: Display video to VGA

The game provides a video structure which, among other things, stores the number of rows,

number of columns shown, number of columns total, and a character buffer. The game stores only color

indices in its internal buffer, and passes this buffer along with a palette (mapping 8-bit indices to 24-bit

RGB values) to the video driver. We store the palette and use it to update the entire frame every time

the update function is called.

Task: Read input from keyboard

The PS2 controller only provides the last scancode value read from the keyboard, meaning

Quake’s standard method of polling for input between frames was insufficient. We therefore

researched Xilinx’ preferred method of installing interrupt handlers, and created such a handler for the

PS2 interrupt. We also wrote a scancode-conversion function to move keys into the character set

Quake is expecting. These keypresses are only buffered in the interrupt handler (to keep processing

there to a minimum); the actions the keys are processed using Quake’s existing procedures, called

between frames.

Task: Profile floating point operations

We’ve counted both the frequency of floating point operations and the approximate number of

cycles for each operation. Based on these data, we know that addition and multiplication are called

much more often than any other operations. We also know that division, which we expected to require

many more cycles than addition or multiplication, is actually only twice as expensive as multiplication,

and only four times as expensive as addition.

Task: Mix sound and output it to the speaker

Quake includes a sound-mixer library and a generic DMA sound driver that will work with any

device that uses a circular buffer. The AC’97 codec on the board uses a FIFO structure, meaning a

nontrivial intermediary was necessary. In addition, the AC’97’s FIFO has only 512 entries, which, at

11 kHz, means the FIFO needs to be replenished at least twenty times per second. Given that Quake

only “paints” audio between frames, this presented a problem. Our solution was to take advantage of

the interrupt line off of the AC’97 module that fires when the FIFO is half-empty. Our interrupt

handler replenishes the FIFO from a much larger circular buffer (currently 8192 entries) that Quake

may, in turn, treat as a regular DMA device.

Further Discussion

Floating Point and Hardware Implementation

GCC supports an efficient software implementation of floating point operations. This gets

silently linked in when compiled with the Xilinx tools. On the 300MHz PPC cores, we should expect to

get something in the ballpark of 1MFLOP with the software emulation. This will likely not be enough

since most of the graphic code relies heavily on floating point operations. However, the software

floating point has consistently exceeded our expectations of a non-hardware solution.

Our attempts to move floating-point operations to the board have to this point been stymied by

consistently slow bus transactions. Since any floating point operation requires at least three

transactions on a 32-bit bus, and each transaction takes on the order of 30 or more CPU cycles on the

PLB (and more on the OPB), neither of these busses provides acceptable performance for these speed-

critical operations.

Our most recent attempts as of DR3 involved using the On-Chip Memory (OCM) bus, which,

given its simplistic nature (single-master, no arbitration), shows great promise in speeding up these

operations. Early tests show that we should be able to complete a full FP operation in 12 cycles. Our

efforts to move FP to the OCM have been hindered, perhaps however, by spotty and inconsistent

documentation that refers mostly to the Virtex-4 series rather than the Virtex-II. Eventually, all the

bugs were worked out and floating point operations take place roughly ten times faster than in

software.

We have considered the possibility of implementing nontrivial graphics functions in hardware;

however, few if any of the methods Quake calls take one or two arguments, perform a lot of

computation, and then return one or two arguments. Since argument-passing has proven to be the most

complex and time-consuming aspect of moving methods to hardware, we therefore concluded that

moving small, very frequently used operations (FP) to hardware remained our best bet.

The low level operations were provided by the Xilinx CoreGen utility provided in ISE. This

has several benefits. First, it allows us to customize parameters of each operation for considerations

such as latency and FPGA resource consumption. Each of these parameters were selected to minimize

latency at the expense of FPGA area and synthesis time. An additional perk of CoreGen was the

allowance it gave us to focus on speed since we could ensure that the correctness was always

preserved. Lastly, since CoreGen modules are tailored for specific FPGA resources, they are able to

make explicit use of on-board features such as the 18x18 hardware multipliers present on the Virtex II.

Booting/ELF loading

With the initial help of the TAs, we determined that booting arbitrary sized images should have

been possible using the onboard SystemACE controller. The documentation for SystemACE describes

it as an all-encompassing solution for loading a variety of runtime-selectable options including

software, board configuration and FPGA bitstreams. However, this did not work as promised in our

first attempts. The solution to this problem countered the original statement in the lab 1 writeup which

said, “You probably won't need on-chip debugging, so disable it for now.” Since SystemACE relies on

the JTAG interface to set up the initial state of the PowerPC core (among other tasks), this was causing

it to fail. Once a JTAG IP core was synthesized, SystemACE loading worked. Since SystemACE takes

care of core setup and binary loading, this removes our need to rewrite these parts.

Audio

The original Quake game used small wave data (stored in the PAK files with other game data)

for in-game sound effects. Game music was stored as CD audio on the the game CD which obviously

required that the CD be inserted during gameplay. Ideally, we would like to encode this music into

MP3 or another compressed format and store it on the CF card. Either a hardware or software

implementation to decode these data will be needed. Specific hardware decoders exist that are

relatively simple to interface with. If the resources are available, a software decoding routine will

likely be the simplest to implement as there are several integer versions of audio codecs. In either case,

game music will still need to be mixed with the other in-game effects, so if decoding is done on

auxiliary hardware, it will need to be fed back to the FPGA for mixing.

Quake supports 8- or 16-bit, mono or stereo audio. We have chosen 16-bit stereo audio since it

matches most closely the particular format expected by the AC’97 codec.

Networking

Xilinx provides two networking libraries: Xilnet and, more recently, lwIP (“lightweight” IP).

The latter is an open-source library that supports TCP and UDP along with a number of other

potentially useful IP protocols. For example, lwIP supports DHCP, which could be used to provide IP

addresses to several boards in anticipation of a several-board multiplayer match. lwIP only requires

that a data-link (layer 2) driver be provided to enable its functionality; such a driver for Xilinx’ Ethernet

IP is already available.

Since the interrupt structure was already in place, and Quake's modular driver architecture

simplified this process, the final implementation of networking took only a few days. Then we

performed a lot of tedious first-hand testing.

Personal Notes for Eric

The majority of my time spent on this project revolved around performance. At the core of this

was the various implementations of floating point hardware. Before we began any actual

implementation, most of my work could be approximated as research. I began by compiling a stripped-

down version of the game engine under linux on an x86 workstation. This proved to be extremely

useful later on as well. The first major challenge in this endeavor was correctly linking against the libc

software floating point emulation routines. In order to not need the true software implementation

(since most libc distributions do not include this support), I created a series of wrapper functions which

would compile into true hardware operations. The advantage of this was the ability we now had to

profile at the granularity of single floating point operations as opposed to boarders on function calls. It

did not give an accurate measure of time, but it gave us an approximate count of each operation. Also,

it exposed the best way for which we could patch the code compiled from GCC to use our future

custom hardware. We simply implemented the relevant softfloat functions to interface with our

hardware and GCC took care of linking. Initial profiling consumed about the first third of my time on

this project.

FPU

While the actual implementation of the floating point operations was mostly provided through

CoreGen, there was still a need for support infrastructure. The first incarnation of our floating point

hardware operated on the OPB bus. With a single operation, the latency was so high that this made no

measurable increase in speed. In fact, one of the first implementations actually slowed down the game

framerate. From here, I quickly transitioned our hardware to the PLB bus but found that this was no

better. We now had two options – using the DCR bus or the OCM bus. Both were fast and simple, yet

neither were well documented. After several stumbling blocks, I was finally able to get a reliable

floating point point core operating on the OCM bus that played nicely with all other hardware and

software routines. This portion was ongoing throughout the project and constituted the remaining time

spent.

Speedups

In the final weeks of the project, I had also discovered the ability of the the processor cores to

run 30% faster (up to 400MHz). This ended up being a relatively minor change, but added a significant

performance boost. Coupled with the floating point hardware, our framerate was increased several

times that of the original pure-software version. I was also able to get on-board profiling working in

the last week of the project, however, this did not prove useful in the time remaining.

Hindsight

My first vision of this class was that it was something I would not enjoy. Rather, I was

delightfully surprised that it was exactly something that I wanted to do. A big part of this came from

our choice in projects. I had no particular interest in the actual implementation of a game from scratch

and I was glad that the rest of my group agreed with this mentality. Another perk was our “group

dynamics”. Both Mitch and Matt's backgrounds are in software and since much of our work involved

software, they were right at home. Consequently, I was able to focus on more low-level tasks.

We were very lucky in that our projected paralleled extremely well. Especially once we got a

second workstation, we could work much more efficiently. Also, being able to use remote desktop on

the lab machines saved lots of time by not having to necessarily be physically in lab.

One thing that Matt and I discussed several times was the over-all disdain for Xilinx and how

the name “Xilinx” became the scapegoat of every problem. While it is true that there are some

deficiencies in their software, it is not the swiss cheese that the course staff makes it out to be. There

were several instances of “bugs” which I would automatically attribute to some sort of broken Xilinx

code but later found that it was, instead, a misconfiguration that was illuminated by a different piece of

documentation. This brings about another point. The Xilinx documentation, as a whole, is good.

However, it is very sporadic and not well organized. I have found that no Xilinx system is described by

a single “Rosetta stone” PDF. Instead, it involves a lot of searching to find the answers.

The best part about the class as a whole, was the relaxed atmosphere and total focus on the

projects. As it became clear that the labs were only there to server a functional purpose, that burden

was released leaving more time to focus on the project itself. Since the labs were also useful as a

reference, I think it might be more useful to have more of them, yet not necessarily required. Perhaps if

they were viewed more as a series of tutorials for which people could reference.

Personal Notes for Mitch

I began by working on the video driver once SysACE and the memory file system started

working. I went through the Quake source code to find that it provides us with a palette of 256 rgb

values and a video buffer which stores indexes into this palette. When Quake changes the palette, I

copy the new palette’s contents into our saved palette. Between every frame, VID_Update is called, in

which I translate the one byte index from the video buffer into a four byte rgb value. I then place this

value in the appropriate spot in the Xilinx frame buffer. Later, Matt added the ability to account for the

250 pixel offset and centering the picture if it is not full screen. This part of the project took me

approximately 15 hours.

Next, I worked on the keyboard driver. Matt set Xilinx to fire an interrupt whenever there were

data on the PS2 controller and call a handler function when this happens. In that function, I add the

value on the controller to a rotating buffer of scancodes. Between every frame, Quake calls

Sys_SendKeyEvents, in which I remove each scancode from the queue, decode it, and call the Quake

function Key_Event on it. If the scancode is 0xF0, I send the next decoded scancode to Key_Events

and tell it that the key was released. If the scancode is anything else, I call Key_Events for the decoded

scancode and tell it that the key is being pressed. In order to save time, I store which keys are pressed

every frame so that holding down a key does not result in a large number of identical Key_Events calls.

I also wrote the table that translates scancodes to keys. This part of the project took approximately 15

hours.

After input and video were finished, I wasted a good deal of time playing Quake. I still

managed to find time to work on sound though. Unfortunately, despite spending a great deal of time

debugging my and Matt’s audio code and searching through Quake and Xilinx code for audio specific

functionality, very little of the final audio code is mine. Quake provides functions to read sounds from

memory, mix sounds, and write them to a DMA buffer. I wrote the simple initialize function, and I

designed the SNDDMA_GetDMAPos[ition] function, although I did not actually write it. I gave some

input to Matt’s writing of the handler, and debugged it at times, but the majority of my time here was

spent trying to understand what the code wants and what was wrong with our code [turns out it wasn’t

ours that was a problem, it was Quake’s]. Despite not providing much of the final code for audio, I still

spent approximately 30 hours on it.

Finally, my last task was the network driver, specifically the UDP driver. Again, Matt set up the

interrupt to fire when a packet is received. Quake uses a proprietary sockets protocol, built on top of an

UDP or TCP driver. We chose the UDP driver, and using lwIP (Lightweight IP) UDP functions, I

implemented all of the UDP driver functions, many of which seem more like sockets functions. I also

set up the function that is called whenever a packet arrives, using another circular buffer to save the

packets being received. I spent around 25 hours coding and debugging this part.

As for my impression of the class, I greatly enjoyed it. By the end of the semester, it was my

one class for which I wanted to do work. While I believe I learned a lot from this project, especially

reading other people’s poorly commented code, I would have preferred a project where we would have

to create most of the code ourselves, especially programming the FPGA. I obviously do not hold this

against the class, because my group partners and I agreed on this project. Retrospectively, I would have

preferred to spend more time programming and debugging and less time researching.

Personal Notes for Matt

Contributions

By and large, most of my (successful) work was done in game infrastructure.

SystemACE

The first problem I tackled was getting our executable to run on the board. Compiling to

PowerPC was no issue, but since our codebase is very large, the resulting executable was far too large

to run from block RAM. We needed a method of loading the ELF into main memory and setting up the

processor to run it. Originally, we thought we might have to write our own custom boot loader and put

it in block RAM. Thankfully, that proved not to be the case.

Some research showed that SystemACE, Xilinx’ technology for specifying a full “start

configuration” for the board (including hardware bitstream and loaded executable code, was available

and would suit our needs very well. This left the problem of getting it working. It took on the order of

eight hours in lab to figure out how to create a system.ace file properly targeted to our board, and, in

turn, to prepare the board to receive it and use it correctly. The general lack of experience with this

technology (among students and TA’s alike), along with a few very costly “cost-cutting” assumptions I

took from the first lab, made this a difficult task. However, once I took the time to read through the

Xilinx documentation and experiment, I eventually came on the solution: add the JTAG IP to the design

such that the SystemACE controller could communicate with and initialize the PowerPC.

Memory File System

After the executable was running on the board, it became obvious that the file system

capabilities provided by the “Standalone” BSP (Board Support Package) would not be sufficient for

Quake’s needs. Specifically, Quake required random access to files, whereas the XilFAT driver for the

CompactFlash file system only supported sequential access (so far as we could see). Xilinx’ Memory

File System (MFS) library provided functions that would allow random access, but required that we

copy files from the CF card into main memory before running the game. This proved an acceptable

tradeoff, and, in fact, provided an added benefit: we are able to remove the media after the copy stage,

meaning multiple boards can be booted off of the same card.

I wrote the code to create the in-memory file system and populate it with files from the CF card.

I added a progress bar to make loading time more bearable, and a measure of transfer speed to

determine effects of moving the MFS around in memory and enabling caching. All told, ten hours of

code analysis, coding, and testing probably went into this task.

Interrupt Fabric

When it came time to write the input driver, and we realized that once-per-frame sampling

would not make for a playable game, two options were presented us: find a tight inner loop in which to

sample input (the option favored by the TA’s), or install an interrupt handler (and an interrupt controller

in hardware to drive it). I chose the latter, since it was by far the more elegant, maintainable, and

expandable option.

Eight hours in lab later, I had added the Interrupt Controller (INTC) IP to our board design,

connected its interrupt line to the PowerPC core, connected the PS/2 interrupt lines to the INTC, and

was receiving keystrokes mid-frame. I spent most of that time searching through Xilinx’

documentation finding best practices for using the XIntc driver to install handlers. I was sincerely

impressed that I didn’t have to write a single line of assembly to install that or other handlers in the

system—Xilinx’ driver was very thorough, providing everything down to the assembly stubs. Once

this was done, Mitch wrote code to queue incoming keystrokes, translate the scancodes, and invoke the

proper functions in Quake to register the key state changes.

This investment proved to be a wise one—once the interrupt fabric was in place, we were able

to expand it very easily for sound and networking.

Sound

Mitch was primarily responsible for getting the Quake DMA sound mixing code into our source

tree. However, the AC’97 Codec on the board uses a FIFO rather than DMA, so a nontrivial mediator

was necessary. Simply populating a buffer and flushing it every frame wouldn’t work, since, even at 11

kHz (our audio output frequency), the FIFO would empty more quickly than frames are drawn.

To solve this problem, I connected the AC’97 to the interrupt controller, and trapped the

interrupt that the codec fired when its FIFO is half-empty. The interrupt handler draws from a large

circulating buffer, advancing the read pointer in the process. Quake, in turn, writes mixed audio to this

buffer a sufficient distance ahead of the read pointer, and the sound plays without skipping. This was a

relatively simple coding task; all told, I spent on the order of five hours on it.

Networking

Again, the investment in an interrupt handling framework paid off when it came time to provide

networking to the game. Also, again, I wrote the lower-level delivery code (the “level 0” driver) and

Mitch wrote the higher-level service code (the “level 1” driver)—in this case, I wrote enough code to

communicate with the Ethernet port and to properly initialize and poll the lwIP library. This was

nontrivial because the right polling calls had to be inserted in the right places in the application code—

even though the process of moving frames from the Ethernet IP to an in-memory buffer was interrupt-

driven, the process of moving frames from the buffer to the application is done via polling.

I got the board to the point where it was responding to PING’s; from there, Mitch provided UDP

functionality to Quake through lwIP’s own UDP interface. My part, from resynthesizing with the

Ethernet interrupt enabled to the point where I could ping the board, took on the order of ten hours.

Reflections on the Course

Labs

I get the impression that the labs are panned by every year’s class, and I believe they are

improving. However, in our case in particular, the labs this year almost did more harm than good.

Making sure that we learn about the hardware early is a noble goal; however, to teach us about it by

giving us the “90% case”—really, “here’s how the TA’s understand the material”—is a huge mistake.

In our case, the nuances of the uncommon case proved much, much more important.

I would propose that the labs be much more self-guided, providing a concrete end goal and links

to the relevant Xilinx documentation, and nothing more. Don’t distill the documentation. Most

especially, avoid step-by-step tutorials—they’re not labs, and they’re not worth anyone’s time.

Problems with Xilinx

Despite all our complaints over the course of the year, by and large, the platform, code, and

utilities provided by Xilinx were remarkably robust and useful. I believe the course staff set the wrong

tone from the beginning by giving us the impression that Xilinx is not to be trusted. That sort of

thinking leads to the following problem: I have code I think should work, but it doesn’t, so I blame

Xilinx rather than myself. This line of thinking was very popular among the TA’s, and it often proved

to be incorrect.

The key insight I would hope to impress on everyone involved is: Xilinx’ code is being used by

thousands of people; your code is being used by about three. It’s always possible Xilinx is to blame, in

the same way it’s possible an application is crashing because of a bug in the Linux kernel. Assume it’s

your bug unless you have compelling evidence to the contrary.

In totality

I’d prefer not to end on a sour note because, overall, I really enjoyed this course. I was very

proud of my team’s effort and our ability to describe and detail a feasible idea, work toward it and bring

it to fruition. It was also amazing watching four people play Quake in multiplayer using three boards

running our software. At its core, this course is about systems integration and project planning, both

areas in which I was glad to get more experience. It was a sometimes frustrating, sometimes tiring, but

often rewarding semester, and I know I’m better for it.

