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Our final project resulted in a fully-playable port of QUAKE by Id software on the provided 

Xilinx Virtex II-Pro development board from Digilent including support for networked multiplayer 

over a local area network.  Game sound effects are mixed and rendered to the on-board AC97 audio 

codec.  User input is achieved through the PS/2 keyboard and output graphics are rendered to the VGA 

controller.  All maps from the original game are playable in our implementation since the game data is 

almost entirely unaltered.  Additionally, network clients may play with other clients of any platform 

since the original quake protocol is also preserved.

Quake Background

The Quake engine, released under an open-source license in 1999, is freely available online. 

There are many ports and modifications developed by the community, but we will be focusing on the 

original release from iD software. This is a large code base with (over 100 KLOC) including several 

features we neither want nor need for this project:

– OpenGL support

– Windows support

– Optimized x86 assembly

Thankfully, the Quake engine is very modular and well-designed, making it easily modified.  Most 

notably, all drivers (sound, network, graphics, input, and “system”) exist in separate .c files exposing a 

common interface.  There exists in the code base a “null” driver for each device, included to aid 

porting.  These null drivers have been the launching points for our efforts.

Breakdown of Initial tasks

Task: Get engine to compile and run as-is



The quake engine comes ready to build in the Visual Studio environment under Windows.  The 

Game runs and is playable once the appropriate game data (PAK/WAD files) have been provided.

Task: Get engine to compile and run without OpenGL

The project file for the game includes separate build targets for both hardware (OpenGL) and 

software renderers so this was trivial.

Task: Remove all x86 specific code

As a first implementation as well as to aid porters, C versions of all assembly functions are 

included. Once all of this code was replaced, we confirmed that the game still compiled and ran.

Task: Begin removing Windows-specific code

Given that we are building a target called “WinQuake” there is bound to be a lot of Windows 

specific code.  Because of the pluggable driver system, all Windows code exists in the Windows 

version of each driver.  All such drivers were replaced by their null counterparts, which allowed the 

code to compile and provided a basis for all future work.

Task: Build under GCC

Using all of the stub drivers, we were able to compile the game and watch the demos run over 

STDOUT.

Task: Compile with the Xilinx tool chain

We started a new project and successfully compiled all of the relevant source files for the 

PowerPC processor on the Xilinx board.  Quake’s innate portability made this task much easier than it 

could have been.

Task: Run the game demo on the board

The compiled executable (ELF) file is over 1.5 MB, meaning it could not simply be marked to 

“Initialize BRAM.”  SystemACE was pointed out to us as a potential solution and, with a nontrivial 

amount of work, we were able to package the FPGA configuration (bitstream) along with the 

executable file into a .ace file on the CompactFlash card.  SystemACE’s file system operations left 

something to be desired (namely seeking and nonlinear access), so we added a step to the loading 

process wherein all game files are copied to an in-memory file system that provides greater speed and 



random access.  A side benefit of this approach is that the CompactFlash card is not needed after this 

loading completes, allowing the same CF card to be used to boot multiple boards.

Task: Display video to VGA

The game provides a video structure which, among other things, stores the number of rows, 

number of columns shown, number of columns total, and a character buffer. The game stores only color 

indices in its internal buffer, and passes this buffer along with a palette (mapping 8-bit indices to 24-bit 

RGB values) to the video driver.  We store the palette and use it to update the entire frame every time 

the update function is called.

Task: Read input from keyboard

The PS2 controller only provides the last scancode value read from the keyboard, meaning 

Quake’s standard method of polling for input between frames was insufficient.  We therefore 

researched Xilinx’ preferred method of installing interrupt handlers, and created such a handler for the 

PS2 interrupt.  We also wrote a scancode-conversion function to move keys into the character set 

Quake is expecting.  These keypresses are only buffered in the interrupt handler (to keep processing 

there to a minimum); the actions the keys are processed using Quake’s existing procedures, called 

between frames.

Task: Profile floating point operations

We’ve counted both the frequency of floating point operations and the approximate number of 

cycles for each operation.  Based on these data, we know that addition and multiplication are called 

much more often than any other operations.  We also know that division, which we expected to require 

many more cycles than addition or multiplication, is actually only twice as expensive as multiplication, 

and only four times as expensive as addition.

Task: Mix sound and output it to the speaker

Quake includes a sound-mixer library and a generic DMA sound driver that will work with any 

device that uses a circular buffer.  The AC’97 codec on the board uses a FIFO structure, meaning a 

nontrivial intermediary was necessary.  In addition, the AC’97’s FIFO has only 512 entries, which, at 

11 kHz, means the FIFO needs to be replenished at least twenty times per second. Given that Quake 

only “paints” audio between frames, this presented a problem.  Our solution was to take advantage of 

the interrupt line off of the AC’97 module that fires when the FIFO is half-empty.  Our interrupt 



handler replenishes the FIFO from a much larger circular buffer (currently 8192 entries) that Quake 

may,  in turn, treat as a regular DMA device.

Further Discussion

Floating Point and Hardware Implementation

GCC supports an efficient software implementation of floating point operations. This gets 

silently linked in when compiled with the Xilinx tools. On the 300MHz PPC cores, we should expect to 

get something in the ballpark of 1MFLOP with the software emulation. This will likely not be enough 

since most of the graphic code relies heavily on floating point operations.  However, the software 

floating point has consistently exceeded our expectations of a non-hardware solution.

Our attempts to move floating-point operations to the board have to this point been stymied by 

consistently slow bus transactions.  Since any floating point operation requires at least three 

transactions on a 32-bit bus, and each transaction takes on the order of 30 or more CPU cycles on the 

PLB (and more on the OPB), neither of these busses provides acceptable performance for these speed-

critical operations.

Our most recent attempts as of DR3 involved using the On-Chip Memory (OCM) bus, which, 

given its simplistic nature (single-master, no arbitration), shows great promise in speeding up these 

operations.   Early tests show that we should be able to complete a full FP operation in 12 cycles.  Our 

efforts to move FP to the OCM have been hindered, perhaps however, by spotty and inconsistent 

documentation that refers mostly to the Virtex-4 series rather than the Virtex-II.  Eventually, all the 

bugs were worked out and floating point operations take place roughly ten times faster than in 

software.

We have considered the possibility of implementing nontrivial graphics functions in hardware; 

however, few if any of the methods Quake calls take one or two arguments, perform a lot of 

computation, and then return one or two arguments.  Since argument-passing has proven to be the most 

complex and time-consuming aspect of moving methods to hardware, we therefore concluded that 

moving small, very frequently used operations (FP) to hardware remained our best bet.

The low level operations were provided by the Xilinx CoreGen utility provided in ISE.  This 

has several benefits.  First, it allows us to customize parameters of each operation for considerations 

such as latency and FPGA resource consumption.  Each of these parameters were selected to minimize 

latency at the expense of FPGA area and synthesis time.  An additional perk of CoreGen was the 



allowance it gave us to focus on speed since we could ensure that the correctness was always 

preserved.  Lastly, since CoreGen modules are tailored for specific FPGA resources, they are able to 

make explicit use of on-board features such as the 18x18 hardware multipliers present on the Virtex II.

Booting/ELF loading

With the initial help of the TAs, we determined that booting arbitrary sized images should have 

been possible using the onboard SystemACE controller.  The documentation for SystemACE describes 

it as an all-encompassing solution for loading a variety of runtime-selectable options including 

software, board configuration and FPGA bitstreams.  However, this did not work as promised in our 

first attempts.  The solution to this problem countered the original statement in the lab 1 writeup which 

said, “You probably won't need on-chip debugging, so disable it for now.”  Since SystemACE relies on 

the JTAG interface to set up the initial state of the PowerPC core (among other tasks), this was causing 

it to fail.  Once a JTAG IP core was synthesized, SystemACE loading worked.  Since SystemACE takes 

care of core setup and binary loading, this removes our need to rewrite these parts.

Audio

The original Quake game used small wave data (stored in the PAK files with other game data) 

for in-game sound effects. Game music was stored as CD audio on the the game CD which obviously 

required that the CD be inserted during gameplay.  Ideally, we would like to encode this music into 

MP3 or another compressed format and store it on the CF card.  Either a hardware or software 

implementation to decode these data will be needed. Specific hardware decoders exist that are 

relatively simple to interface with.  If the resources are available, a software decoding routine will 

likely be the simplest to implement as there are several integer versions of audio codecs.  In either case, 

game music will still need to be mixed with the other in-game effects, so if decoding is done on 

auxiliary hardware, it will need to be fed back to the FPGA for mixing.

Quake supports 8- or 16-bit, mono or stereo audio.  We have chosen 16-bit stereo audio since it 

matches most closely the particular format expected by the AC’97 codec.

Networking

Xilinx provides two networking libraries: Xilnet and, more recently, lwIP (“lightweight” IP). 

The latter is an  open-source library that supports TCP and UDP along with a number of other 

potentially useful IP protocols.  For example, lwIP supports DHCP, which could be used to provide IP 

addresses to several boards in anticipation of a several-board multiplayer match.  lwIP only requires 



that a data-link (layer 2) driver be provided to enable its functionality; such a driver for Xilinx’ Ethernet 

IP is already available.

Since the interrupt structure was already in place, and Quake's modular driver architecture 

simplified this process, the final implementation of networking took only a few days.  Then we 

performed a lot of tedious first-hand testing.



Personal Notes for Eric

The majority of my time spent on this project revolved around performance.  At the core of this 

was the various implementations of floating point hardware.  Before we began any actual 

implementation, most of my work could be approximated as research.  I began by compiling a stripped-

down version of the game engine under linux on an x86 workstation.  This proved to be extremely 

useful later on as well.  The first major challenge in this endeavor was correctly linking against the libc 

software floating point emulation routines.  In order to not need the true software implementation 

(since most libc distributions do not include this support), I created a series of wrapper functions which 

would compile into true hardware operations.  The advantage of this was the ability we now had to 

profile at the granularity of single floating point operations as opposed to boarders on function calls.  It 

did not give an accurate measure of time, but it gave us an approximate count of each operation.  Also, 

it exposed the best way for which we could patch the code compiled from GCC to use our future 

custom hardware.  We simply implemented the relevant softfloat functions to interface with our 

hardware and GCC took care of linking.  Initial profiling consumed about the first third of my time on 

this project.

FPU

While the actual implementation of the floating point operations was mostly provided through 

CoreGen, there was still a need for support infrastructure.  The first incarnation of our floating point 

hardware operated on the OPB bus.  With a single operation, the latency was so high that this made no 

measurable increase in speed.  In fact, one of the first implementations actually slowed down the game 

framerate.  From here, I quickly transitioned our hardware to the PLB bus but found that this was no 

better.  We now had two options – using the DCR bus or the OCM bus.  Both were fast and simple, yet 

neither were well documented.  After several stumbling blocks, I was finally able to get a reliable 

floating point point core operating on the OCM bus that played nicely with all other hardware and 

software routines.  This portion was ongoing throughout the project and constituted the remaining time 

spent.

Speedups

In the final weeks of the project, I had also discovered the ability of the the processor cores to 

run 30% faster (up to 400MHz).  This ended up being a relatively minor change, but added a significant 



performance boost.  Coupled with the floating point hardware, our framerate was increased several 

times that of the original pure-software version.  I was also able to get on-board profiling working in 

the last week of the project, however, this did not prove useful in the time remaining.

Hindsight

My first vision of this class was that it was something I would not enjoy.  Rather, I was 

delightfully surprised that it was exactly something that I wanted to do.  A big part of this came from 

our choice in projects.  I had no particular interest in the actual implementation of a game from scratch 

and I was glad that the rest of my group agreed with this mentality.  Another perk was our “group 

dynamics”.  Both Mitch and Matt's backgrounds are in software and since much of our work involved 

software, they were right at home.  Consequently, I was able to focus on more low-level tasks.

We were very lucky in that our projected paralleled extremely well.  Especially once we got a 

second workstation, we could work much more efficiently.  Also, being able to use remote desktop on 

the lab machines saved lots of time by not having to necessarily be physically in lab.

One thing that Matt and I discussed several times was the over-all disdain for Xilinx and how 

the name “Xilinx” became the scapegoat of every problem.  While it is true that there are some 

deficiencies in their software, it is not the swiss cheese that the course staff makes it out to be.  There 

were several instances of “bugs” which I would automatically attribute to some sort of broken Xilinx 

code but later found that it was, instead, a misconfiguration that was illuminated by a different piece of 

documentation.  This brings about another point.  The Xilinx documentation, as a whole, is good. 

However, it is very sporadic and not well organized.  I have found that no Xilinx system is described by 

a single “Rosetta stone” PDF.  Instead, it involves a lot of searching to find the answers.

The best part about the class as a whole, was the relaxed atmosphere and total focus on the 

projects.  As it became clear that the labs were only there to server a functional purpose, that burden 

was released leaving more time to focus on the project itself.  Since the labs were also useful as a 

reference, I think it might be more useful to have more of them, yet not necessarily required.  Perhaps if 

they were viewed more as a series of tutorials for which people could reference.



Personal Notes for Mitch

I began by working on the video driver once SysACE and the memory file system started 

working. I went through the Quake source code to find that it provides us with a palette of 256 rgb 

values and a video buffer which stores indexes into this palette. When Quake changes the palette, I 

copy the new palette’s contents into our saved palette. Between every frame, VID_Update is called, in 

which I translate the one byte index from the video buffer into a four byte rgb value. I then place this 

value in the appropriate spot in the Xilinx frame buffer. Later, Matt added the ability to account for the 

250 pixel offset and centering the picture if it is not full screen. This part of the project took me 

approximately 15 hours.

Next, I worked on the keyboard driver. Matt set Xilinx to fire an interrupt whenever there were 

data on the PS2 controller and call a handler function when this happens. In that function, I add the 

value on the controller to a rotating buffer of scancodes. Between every frame, Quake calls 

Sys_SendKeyEvents, in which I remove each scancode from the queue, decode it, and call the Quake 

function Key_Event on it. If the scancode is 0xF0, I send the next decoded scancode to Key_Events 

and tell it that the key was released. If the scancode is anything else, I call Key_Events for the decoded 

scancode and tell it that the key is being pressed. In order to save time, I store which keys are pressed 

every frame so that holding down a key does not result in a large number of identical Key_Events calls. 

I also wrote the table that translates scancodes to keys. This part of the project took approximately 15 

hours.

After input and video were finished, I wasted a good deal of time playing Quake. I still 

managed to find time to work on sound though. Unfortunately, despite spending a great deal of time 

debugging my and Matt’s audio code and searching through Quake and Xilinx code for audio specific 

functionality, very little of the final audio code is mine. Quake provides functions to read sounds from 

memory, mix sounds, and write them to a DMA buffer. I wrote the simple initialize function, and I 

designed the SNDDMA_GetDMAPos[ition] function, although I did not actually write it. I gave some 

input to Matt’s writing of the handler, and debugged it at times, but the majority of my time here was 

spent trying to understand what the code wants and what was wrong with our code [turns out it wasn’t 

ours that was a problem, it was Quake’s]. Despite not providing much of the final code for audio, I still 

spent approximately 30 hours on it.

Finally, my last task was the network driver, specifically the UDP driver. Again, Matt set up the 

interrupt to fire when a packet is received. Quake uses a proprietary sockets protocol, built on top of an 



UDP or TCP driver. We chose the UDP driver, and using lwIP (Lightweight IP) UDP functions, I 

implemented all of the UDP driver functions, many of which seem more like sockets functions. I also 

set up the function that is called whenever a packet arrives, using another circular buffer to save the 

packets being received. I spent around 25 hours coding and debugging this part.

As for my impression of the class, I greatly enjoyed it. By the end of the semester, it was my 

one class for which I wanted to do work. While I believe I learned a lot from this project, especially 

reading other people’s poorly commented code, I would have preferred a project where we would have 

to create most of the code ourselves, especially programming the FPGA. I obviously do not hold this 

against the class, because my group partners and I agreed on this project. Retrospectively, I would have 

preferred to spend more time programming and debugging and less time researching.



Personal Notes for Matt

Contributions

By and large, most of my (successful) work was done in game infrastructure.

SystemACE

The first problem I tackled was getting our executable to run on the board.  Compiling to 

PowerPC was no issue, but since our codebase is very large, the resulting executable was far too large 

to run from block RAM.  We needed a method of loading the ELF into main memory and setting up the 

processor to run it.  Originally, we thought we might have to write our own custom boot loader and put 

it in block RAM.  Thankfully, that proved not to be the case.

Some research showed that SystemACE, Xilinx’ technology for specifying a full “start 

configuration” for the board (including hardware bitstream and loaded executable code, was available 

and would suit our needs very well.  This left the problem of getting it working.  It took on the order of 

eight hours in lab to figure out how to create a system.ace file properly targeted to our board, and, in 

turn, to prepare the board to receive it and use it correctly.  The general lack of experience with this 

technology (among students and TA’s alike), along with a few very costly “cost-cutting” assumptions I 

took from the first lab, made this a difficult task.  However, once I took the time to read through the 

Xilinx documentation and experiment, I eventually came on the solution: add the JTAG IP to the design 

such that the SystemACE controller could communicate with and initialize the PowerPC.

Memory File System

After the executable was running on the board, it became obvious that the file system 

capabilities provided by the “Standalone” BSP (Board Support Package) would not be sufficient for 

Quake’s needs.  Specifically, Quake required random access to files, whereas the XilFAT driver for the 

CompactFlash file system only supported sequential access (so far as we could see).  Xilinx’ Memory 

File System (MFS) library provided functions that would allow random access, but required that we 

copy files from the CF card into main memory before running the game.  This proved an acceptable 

tradeoff, and, in fact, provided an added benefit: we are able to remove the media after the copy stage, 

meaning multiple boards can be booted off of the same card.

I wrote the code to create the in-memory file system and populate it with files from the CF card. 

I added a progress bar to make loading time more bearable, and a measure of transfer speed to 



determine effects of moving the MFS around in memory and enabling caching.  All told, ten hours of 

code analysis, coding, and testing probably went into this task.

Interrupt Fabric

When it came time to write the input driver, and we realized that once-per-frame sampling 

would not make for a playable game, two options were presented us: find a tight inner loop in which to 

sample input (the option favored by the TA’s), or install an interrupt handler (and an interrupt controller 

in hardware to drive it).  I chose the latter, since it was by far the more elegant, maintainable, and 

expandable option.

Eight hours in lab later, I had added the Interrupt Controller (INTC) IP to our board design, 

connected its interrupt line to the PowerPC core, connected the PS/2 interrupt lines to the INTC, and 

was receiving keystrokes mid-frame.  I spent most of that time searching through Xilinx’ 

documentation finding best practices for using the XIntc driver to install handlers.  I was sincerely 

impressed that I didn’t have to write a single line of assembly to install that or other handlers in the 

system—Xilinx’ driver was very thorough, providing everything down to the assembly stubs.  Once 

this was done, Mitch wrote code to queue incoming keystrokes, translate the scancodes, and invoke the 

proper functions in Quake to register the key state changes. 

This investment proved to be a wise one—once the interrupt fabric was in place, we were able 

to expand it very easily for sound and networking.

Sound

Mitch was primarily responsible for getting the Quake DMA sound mixing code into our source 

tree.  However, the AC’97 Codec on the board uses a FIFO rather than DMA, so a nontrivial mediator 

was necessary.  Simply populating a buffer and flushing it every frame wouldn’t work, since, even at 11 

kHz (our audio output frequency), the FIFO would empty more quickly than frames are drawn.

To solve this problem, I connected the AC’97 to the interrupt controller, and trapped the 

interrupt that the codec fired when its FIFO is half-empty.  The interrupt handler draws from a large 

circulating buffer, advancing the read pointer in the process.  Quake, in turn, writes mixed audio to this 

buffer a sufficient distance ahead of the read pointer, and the sound plays without skipping.  This was a 

relatively simple coding task; all told, I spent on the order of five hours on it.

Networking

Again, the investment in an interrupt handling framework paid off when it came time to provide 



networking to the game.  Also, again, I wrote the lower-level delivery code (the “level  0” driver) and 

Mitch wrote the higher-level service code (the “level  1” driver)—in this case, I wrote enough code to 

communicate with the Ethernet port and to properly initialize and poll the lwIP library.  This was 

nontrivial because the right polling calls had to be inserted in the right places in the application code—

even though the process of moving frames from the Ethernet IP to an in-memory buffer was interrupt-

driven, the process of moving frames from the buffer to the application is done via polling.

I got the board to the point where it was responding to PING’s; from there, Mitch provided UDP 

functionality to Quake through lwIP’s own UDP interface.  My part, from resynthesizing with the 

Ethernet interrupt enabled to the point where I could ping the board, took on the order of ten hours.

Reflections on the Course

Labs

I get the impression that the labs are panned by every year’s class, and I believe they are 

improving.  However, in our case in particular, the labs this year almost did more harm than good. 

Making sure that we learn about the hardware early is a noble goal; however, to teach us about it by 

giving us the “90% case”—really, “here’s how the TA’s understand the material”—is a huge mistake. 

In our case, the nuances of the uncommon case proved much, much more important.

I would propose that the labs be much more self-guided, providing a concrete end goal and links 

to the relevant Xilinx documentation, and nothing more.  Don’t distill the documentation.  Most 

especially, avoid step-by-step tutorials—they’re not labs, and they’re not worth anyone’s time. 

Problems with Xilinx

Despite all our complaints over the course of the year, by and large, the platform, code, and 

utilities provided by Xilinx were remarkably robust and useful.  I believe the course staff set the wrong 

tone from the beginning by giving us the impression that Xilinx is not to be trusted.  That sort of 

thinking leads to the following problem:  I have code I think should work, but it doesn’t, so I blame 

Xilinx rather than myself.  This line of thinking was very popular among the TA’s, and it often proved 

to be incorrect.

The key insight I would hope to impress on everyone involved is:  Xilinx’ code is being used by 

thousands of people; your code is being used by about three.  It’s always possible Xilinx is to blame, in 

the same way it’s possible an application is crashing because of a bug in the Linux kernel.  Assume it’s 

your bug unless you have compelling evidence to the contrary.



In totality

I’d prefer not to end on a sour note because, overall, I really enjoyed this course.  I was very 

proud of my team’s effort and our ability to describe and detail a feasible idea, work toward it and bring 

it to fruition.  It was also amazing watching four people play Quake in multiplayer using three boards 

running our software.  At its core, this course is about systems integration and project planning, both 

areas in which I was glad to get more experience.  It was a sometimes frustrating, sometimes tiring, but 

often rewarding semester, and I know I’m better for it.


