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Project Description

The general s pecification  for picking a  p roject  in 18 - 545 was as  follows: s tu den ts  
were to  design a  video ga me.  The ga me was required  to  have the  following:

- Outp u t  to  a  video dis play
- Sound  effects
- User inpu t
- Suppor t  for  m ul tiple simultaneous  players
- Scoring or  victory conditions

Teams  were t hen  to  design and  imple ment  t he  game in a  m a n ner  t ha t  it could  s tan d  
alone on  the  Xilinx Vertex - II Pro FPGA boar d.  To mee t  t hese  s pecifications, tea m  
TNT decided  to  crea te  a  har dware e m ulator  for t he  Nintendo  Enter tain ment  Syste m  
(NES).  The original goal of t he  tea m  was to  crea te a  full ha r dware imple menta tion  of 
an  em ula tor  which could  read  games  in from  a  car t ridge an d  take u ser  inpu t  fro m  
original NES controllers.

The CPU (6502)

The p rocessing for  t he  NES is han dled  by the  8 - bi t  6502 p rocessor.  The p rocessor  
ha d  56  different  ins t ructions, and  13  ad dressing m o des, for  a  to tal of 151 different  
u nique  ins t r uction  /  add res sing m o de  combinations  (see 'Ins t ructions').  The 6502 is 
lit tle - endian, m eaning tha t  da ta  is s tored  leas t - significant  byte firs t.  16 - bit  
add resses  are sent  fro m  the  CPU to  a  m e m ory m a p per  to  de ter mine  the  p hysical 
location  of t he  m e mory a t  t ha t  a rea.  While 16  KB of me mory are add ressable, m a ny 
of t he  ad dresses  are actually m a p pe d  to  t he  sa me location.  The m a p ping of t he  
me m ory is described  below.

MMU (Memory Mapping Unit)

The 16 - bit  CPU ad dresses  are sen t  to  t he  MMU to  de ter mine the  p hysical location  
s pecified by the  ad dress.  The me mory m a p  of t he  ad dress  s pace is as  follows:

$0000 -  $07FF: Internal CPU RAM (mirrored  a t  locations  $0800 - $1FFF)
$2000 -  $2007: PPU I /O Registers  (mirrored  a t  locations  $2008 - $3FFF)
$4000 -  $4017: Internal APU Registers
$4018 -  $5FFF: Cart ridge Expansion  Area
$6000 -  $7FFF: Cart ridge SRAM Area
$8000 -  $FFFF: Cart ridge PRG - ROM Area

The MMU uses  t he  add res s  fro m  the  CPU as  an  index into a  lookup  table, conver ts  
t he  add ress  to  a  differen t  for m  de pen ding on  which region  it m a ps  to, an d  se ts  
con trol signals  (read / wri te) to  various  por tions  of t he  NES, again de pending on  which 
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region  the  ad dress  m a ps  to.

Registers

The CPU has  6  8 - bit  registers  which it u ses  for  various  p u r poses.   They are as  
follows:

PC: The 8 - bi t  p rogra m  coun ter, which s tores  the  ad dress  of t he  ins t ruction  
curren tly being executed.

SP: The 8 - bi t  s tack poin ter, which poin t s  to  t he  bot to m  of t he  s tack.

X: The 8 - bit  X regis ter, u sed  to  offse t  add res ses  for  various  add res sing m o des.

Y: The 8 - bit  Y regis ter, u sed  to  offse t  add res ses  for  various  add res sing m o des.

A: The 8 - bit  accu m ulator  regis ter, u sed  to  perfor m  m a t he matical and  logical 
opera tions  in various  ins t r uctions.

P: The 8 - bit  s ta tu s  regis ter, u sed  to  s tore  various  infor mation  abou t  t he  s ta tu s  
of t he  p rocessor.  The infor mation  in t he  s ta tus  register  is a s  
follows: 

Bit 7: N (set  if t he  resul t  of the  las t  opera tion  is negative)
Bit 6: V (set  if t he  resul t  of  t he  las t  opera tion  overflows)
Bit 5: Unused  (always re tu r ns  0  on  read)
Bit 4: B (Break, indicates  if a  break com ma n d  has  been  executed, causing 

an  IRQ interru p t)
Bit 3: D (Decimal m o de: switches  t he  6502 into and  ou t  of BCD m o de)
Bit 2: I (Interru p t  disable: m asks  IRQ inter rup ts)
Bit 1: Z (set  if t he  result  of  t he  las t  opera tion  is z e ro)
Bit 0: C (set if t he  resul t  of t he  las t  opera tion  has  a  carry - ou t)

Interrupts

The 6502 can  receive an d  han dle t h ree differen t  types  of interru p ts: Non - Maskable 
Interrup t  (NMI), Maskable interru p ts  (IRQ), and  rese t  interrup t s.  They are described  
below.

NMI: Non - Maskable interru p t.  This interru p t  is sent  by the  PPU to  t he  CPU 
when  the  PPU enters  its  VBlank s tage.  While t he  NMI cannot  be m a sked, 
clearing bit  7  of PPU I /O regis ter  $2000 will disable t he  PPU fro m  
sending an  NMI to  t he  CPU on  VBlank.  When the  CPU receives an  NMI, 
t he  current  s t a te  is saved and  execution  ju m p s  to  t he  address  s pecified  
by the  NMI han dler  ad dress.  This ad dress  is t he  value at  ad dress  $FFFA 
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an d  $FFFB in t he  p rogra m.  Execution  continues  t hrough  the  han dler  
u n til an  RTI (return  fro m  inter rup t) ins t ruction  is reached, and  then  the  
p revious  s ta te  of t he  CPU is res tored  an d  execution  continues.

IRQ: Maskable inter ru p t.  IRQ inter rup ts  are  sen t  to  t he  CPU by various  
me m ory m a p pers.  In ad di tion, t he  BRK (break) ins t ruction  will cause  an  
IRQ interru p t  to  be  sen t  to  t he  CPU.  The CPU can  m ask IRQ interru p t s  
by se t ting the  inter rup t  disable flag (bit 2  of regis ter  P).  When an  IRQ is 
received, if interrup t s  are  no t  disabled, t he  CPU saves  t he  current  s ta te  
an d  ju m ps  to  t he  location  s pecified by the  IRQ han dler  ad dress.  This 
add ress  is t he  value a t  add ress  $FFFE an d  $FFFF in t he  p rogra m.  
Execution  con tinues  t h rough  the  han dler  u n til an  RTI is reached, and  
then  the  p revious  s ta te  is res tored  and  execution  continues  as  nor mal.

Reset: Reset  interru p t.  Reset  inter rup ts  are  sen t  to  t he  CPU when  the  syste m  
firs t  s tar t s  and  when the  user  p resses  t he  reset  bu t ton  on  the  NES.  Reset  
interrup t s  canno t  be m asked  by the  CPU.  When a rese t  interru p t  is 
received  by the  CPU, t he  curren t  s ta te  is saved  an d  execution  ju m p s  to  
t he  reset  han dler, s pecified  by the  p rogra m  at  location  $FFFC and  $FFFD. 
The interru p t  han dler  is followed u n til an  RTI ins t ruction  is 
reached, at  which poin t  t he  p revious  s ta te  is res tored  and  execution  
con tinues  as  nor mal.

Addres sing Modes

Zero Page: Zero page add res sing m o de  takes  a  single operand  which is t he  
lower byte of t he  ad dress.  The u p per  byte of t he  add res s  is assu me d  to  
be ze ro  (on the  ' zero page').

Indexed  Zero Page (X): Indexed ze ro  page X ad dressing m o de  takes  a  single 
operand  which is t he  lower byte of t he  base ad dress.  The p rovided  byte 
is offse t  by the  content s  of t he  X register, and  the  resul ting one  byte 
(wrapped  aroun d  on  overflow) is t he  lower  byte of t he  add ress.  The 
u p per  byte of t he  add ress  is assu me d  to  be ze ro.

Indexed  Zero Page (Y): Indexed  zero  page Y ad dressing m o de  takes  a  single 
operand  which is t he  lower byte of t he  base ad dress.  The p rovided  byte 
is offse t  by the  content s  of t he  Y regis ter, an d  the  resul ting one  byte 
(wrapped  aroun d  on  overflow) is t he  lower  byte of t he  add ress.  The 
u p per  byte of t he  add ress  is assu me d  to  be ze ro.

Absolute: Absolu te  ad dressing m o de  takes  two operands  which for m  the  two 
bytes  of t he  absolu te  ad dress.  Because t he  6502 is lit tle - endian, t he  
lowest  byte of t he  add ress  is p rovided  firs t.

Indexed  Absolu te (X): Indexed  absolu te  X ad dressing m o de  takes  two 
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operands, which for m  the  two bytes  of t he  base  add ress  (the firs t  byte 
p rovided  for ms  the  lower  byte of t he  base).  The base  is t hen  offse t  by 
the  con ten t s  of t he  X regis ter  to  for m  the  ad dress  (the su m  wraps  
aroun d  on  overflow).

Indexed  Absolu te (Y): Indexed absolu te  Y ad dressing m o de  takes  two 
operands, which for m  the  two bytes  of t he  base  add ress  (the firs t  byte 
p rovided  for ms  the  lower  byte of t he  base).  The base  is t hen  offse t  by 
the  con ten t s  of t he  Y regis ter  to  for m  the  ad dress  (the s u m  wraps  
aroun d  on  overflow).

Indirect: Indirect  add ressing m o de  takes  two operands  which for m  a 16 - bit  
add ress.  The add ress  is t hen  dereferenced, an d  the  two bytes  following 
the  dereferenced  ad dress  for m  the  new add ress.  When for ming bo th  
add resses, t he  firs t  byte is t he  byte with  lowes t  p riority.

Implied: Implied  ad dressing m o de  takes  no  operands.  The add ress  is assu me d  
by the  na me of t he  ins t r uctions.

Accum ulator: Accu m ulator  add res sing m o de  takes  no  operan ds.  Ins t ructions  
u sing accu m ulator  ad dressing m o de  opera te  directly on  the  accu m ulator  
register.

Immedia te: Immediate addressing m o de  takes  one  operand.  Inst r uctions  u sing 
im mediate  ad dressing m o de  opera te  directly on  the  one  operan d  (no 
add ress  is calculated).

Relative: Relative add ressing m o de  takes  one  operand  which is inter pre ted  as  a  
signed  integer in t he  range - 128 to  127.  This integer  is u sed  as  an  offse t  
fro m  the  cur ren t  value of t he  p rogra m  coun ter  (after  it  is incre mented  
following the  ins t r uction) to  for m  the  add res s.  Relative addressing 
m o de  is u sed  in branch ins t ructions.

Indexed  Indirect: Indexed  Indirect  add res sing m o de  takes  a  single operand  
which for ms  the  base  add ress.  The con ten t s  of t he  X regis ter  are  t hen  
adde d  to  t he  base ad dres s  with  wraparoun d  to  for m  the  lowest  byte of 
t he  inter mediate  ad dress.  The u p per  byte of t he  inter media te ad dress  is 
assu me d  to  be 0.  The inter media te address  is t hen  dereferenced, 
an d  the  two bytes  im me diately following the  dereferenced  location  for m  
the  lowes t  an d  highes t  bytes  of t he  add res s, res pectively.

Indirect  Indexed: Indirect  indexed ad dressing m o de  takes  in a  single operand  
which serves  as  t he  lowest  byte of a  base ad dress.  The u p per  byte of t he  
base  ad dress  is assu me d  to  be  0.  The base ad dress  is t hen  dereferenced, 
an d  the  dereferenced  value is offset  by the  conten t s  of t he  Y register.  
The result  for m s  the  address.
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Instructions

There are 56  u nique ins t ructions  t ha t  can  be executed  by the  CPU.  They are lis ted  
below:

     ADC   Add  Memory to  Accum ulator  with  Carry
     AND   "AND" Memory with  Accu m ulator
     ASL   Shift  Left One Bit (Memory or  Accu m ulator)

     BCC   Branch on  Carry Clear
     BCS   Branch on  Carry Set
     BEQ   Branch on  Result  Zero
     BIT   Test  Bits in Memory with  Accu m ulator
     BMI   Branch on  Result  Minus
     BNE   Branch on  Result  not  Zero
     BPL   Branch on  Result  Plus
     BRK   Force Break
     BVC   Branch on  Overflow Clear
     BVS   Branch on  Overflow Set

     CLC   Clear  Carry Flag
     CLD   Clear Decimal Mode
     CLI   Clear interru p t  Disable Bit
     CLV   Clear Overflow Flag
     CMP   Com pare  Memory an d  Accu m ulator
     CPX   Com pare Memory and  Index X
     CPY   Com pare Memory an d  Index Y

     DEC   Decrement  Memory by One
     DEX   Decre ment  Index X by One
     DEY   Decre ment  Index Y by One

     EOR   "Exclusive - Or" Memory with  Accum ulator

     INC   Incre ment  Memory by One
     INX   Increment  Index X by One
     INY   Incre ment  Index Y by One

     JMP   Jum p  to  New Location                        
     JSR   Jum p  to  New Location  Saving Return  Address                 
                                                                     
     LDA   Load Accu m ulator  with  Memory                              
     LDX   Load Index X with  Memory                                  
     LDY   Load Index Y with  Memory                                  
     LSR   Shift  Right  One Bit (Memory or  Accu m ulator)               
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     NOP   No Opera tion                                               
                                                                        
     ORA   "OR" Memory with  Accum ulator                               
                                                                        
     PHA   Push  Accum ulator  on  Stack                                 
     PHP   Push  Processor  Status  on  Stack                            
     PLA   Pull Accum ulator  fro m  Stack                               
     PLP   Pull Processor  Status  fro m  Stack                          
                                                                        
     ROL   Rota te One Bit Left (Memory or  Accum ulator)               
     ROR   Rotate  One Bit Right  (Memory or  Accu m ulator)              
     RTI   Return  fro m  Inter rup t                                      
     RTS   Return  fro m  Subrou tine                                    
                                                                        
     SBC   Subtract  Memory fro m  Accu m ulator  with  Borrow              
     SEC   Set Carry Flag                                            
     SED   Set Decimal Mode                                          
     SEI   Set Interru p t  Disable Status                               
     STA   Store Accu m ulator  in Memory                               
     STX   Store Index X in Memory                                   
     STY   Store Index Y in Memory                                   
                                                                        
     TAX   Transfer  Accu m ulator  to  Index X                           
     TAY   Transfer  Accum ulator  to  Index Y                           
     TSX   Transfer  Stack Pointer  to  Index X                         
     TXA   Transfer  Index X to  Accu m ulator                            
     TXS   Transfer  Index X to  Stack Pointer                          
     TYA   Transfer  Index Y to  Accu m ulator                            

The PPU (2C02)

The graphics  p rocessing for t he  NES is han dled  by the  2C02 graphics p rocessing 
u nit, known as  t he  Picture Processing Unit (PPU).  The PPU s tores  infor mation  abou t  
t he  graphics in a  16 - kilobyte  me mory called VRAM.  Further  infor mation  abou t  
s p ri tes  is s tored  in a  256 Byte m e mory called  SPR- RAM.  The CPU can  write to  VRAM 
an d  SPR- RAM, as  well as  accessing o ther  infor mation  rela ting to  t he  PPU, t hrough  
u se  of an  8  Byte regis ter  file, which m a p s  to  t he  region  $2000 - $2008 in t he  CPU's 
me m ory m a p.  The registers  are  explained  in de tail below, as  well a s  read / wri te  
accessibility by the  CPU.

PPU I /O Registers
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$2000: PPU Control Register # 1  (Write only)
Bit 7: Enable NMI on  VBlank (0 =  Disabled, 1 =Enbaled)
Bit 6: PPU Master /Slave Selection  (0 =Master, 1 =Slave) (Not u sed  in NES)
Bit 5: Sprite Size (0 = 8x8, 1 = 8x16)
Bit 4: Backgroun d  Pat tern  Table Select (0 =VRAM $0000, 1 =VRAM $1000)
Bit 3: 8x8 Sprite Pat tern  Table Select  (0 =VRAM $0000, 1 =VRAM $1000)
Bit 2: VRAM Address  Increment  Amount  (0 =Incre ment  by 1, 

1 =Incre ment  by 32)
Bits 1 - 0: Name Table Scroll Address  (0 - 3 =VRAM $2000, $2400, $2800, 

$2C00)

Register  $2000 contains  various  cont rol infor ma tion  se t  by the  CPU and  u sed  
by the  CPU.

$2001: PPU Control Register # 2  (Write Only)
Bits 7 - 5: Color Emphasis  (Not u sed  in em ula tor)
Bit 4: Sprite Visibility (0 =Not  Displayed, 1 =Displayed)
Bit 3: Backgroun d  Visibility (0 =Not  Displayed, 1 =Displayed)
Bit 2: Sprite Clipping (0 =Hide in left  8 - pixel colu m n, 1 =No Clipping)
Bit 1: Backgroun d  Clipping (0 =Hide in left  8 - pixel colu m n, 1 =No 

Clipping)
Bit 0: Monochro me Mode (Not u sed  in em ula tor)

Register  $2001 contains  various  cont rol infor ma tion  se t  by the  CPU and  u sed  
by the  CPU.

$2002: PPU Status  Register (Read Only)
Bit 7: VBlank Flag (0 =Rendering, 1 =VBlank)
Bit 6: Sprite 0  Hit Flag (0 =No Collision, 1 =Spri te0 /Backgroun d  Collision)
Bit 5: Sprite Overflow Flag (0 =  At m os t  8  s p rites, 1 =More than  8  s p ri tes  

on  a  scanline)
Bit 4: Ignore Writes  to  VRAM
Bits 3 - 0: Not Used

Register  $2002 contains  various  s ta tus  infor mation  se t  by the  PPU an d  read  by 
the  CPU.  The VBlank Flag (Bit 7) is cleared  when  $2002 is read  by the  CPU.  
Reading also rese ts  t he  1 s t/ 2 n d  write flag (see $2005 an d  $2006).

$2003: SPR- RAM Address  Register (Write Only)
Bits 7 - 0: Address  to  access  in SPR- RAM

Register  $2003 contains  t he  add ress  u sed  by the  CPU to  access  SPR- RAM 
d uring VBlank and  u sed  by the  PPU to  access  SPR- RAM d uring ren dering.  
Also contains  t he  ad dress  in SPR- RAM to  s tar t  writing to  d uring a  DMA 
opera tion.  $2003 is au to ma tically incre mented  every time $2004 is writ ten  to  
(but  not  when  it is read  fro m).
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$2004: SPR- RAM Data Register (Read /Write)
Bits 7 - 0: Data to  write to  /  Data read  fro m  SPR- RAM at  ad dress  s pecified  by 

$2003

Register  $2004 contains  t he  da ta  re tu rned  fro m  SPR- RAM on  a read  or  t he  
data  to  be writ ten  to  SPR- RAM on  a write at  t he  ad dres s  s pecified  by $2003.  
Writing to  $2004 also increments  t he  value of $2003.

$2005: PPU Background Scrolling Offset (Write Only)
Firs t  Write:
Bits 7 - 0: Horizon tal scroll index (X value 0 - 255)

Second  Write:
Bits 7 - 0: Vertical scroll index (Y value 0 - 239)

Register  $2005 is u sed  to  m o dify t he  conten ts  of an  internal 16 - bit  VRAM 
address  poin ter  m ain tained  by the  regis ter  file (see 'VRAM Index Pointer ' for  
de tails).

$2006: VRAM Address  Register (Write Only)
Bits 7 - 0: Address  to  access  VRAM (First  write is u p per  8 - bits  of address, 

secon d  write is lower  6  bit s)

Register  $2006 is u sed  by the  CPU to  s pecify what  ad dress  to  write to  /  read  
from  d uring VBlank.  

$2007: VRAM Data Register (Read /Write)
Bits 7 - 0: Data to  write to /  Data read  from  VRAM at  ad dress  s pecified  by 

$2006

VRAM Index Pointer:
A one - bi t  register  is s tored  in t he  regis ter  file to  de ter mine the  pari ty of a  
par ticular  access  to  regis ter  $2005 and  $2006.  In ad dition, t he  regis ter  file 
s tores  a  16 - bi t  regis ter  u sed  by the  backgroun d  ren derer  to  u p da te its  scroll 
regis ters.  The for mat  of t he  16 - bi t  regis ter  is as  follows: 

yyyn nYYY YYXX XXX
X: The horizon tal index of t he  tile to  access  in VRAM (0 - 31)
Y: The ver tical index of t he  tile to  access  in VRAM (0 - 31)
n: The horizon tal an d  ver tical na me  table origin (0 - 3)
y: The fine ver tical scroll offse t, s pecifies which line of t he  accessed  tile 

to  use  (0 - 7)

Each write to  $2005 an d  $2006 u p da te  t he  16 - bit  regis ter, with  t he  value of 
t he  one - bi t  register  de ter mining how the  16 - bit  regis ter  is u p da ted.  The 
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table below describes  how the  16 - bit  poin ter  is u p da ted  by the  writes  to  
$2005 an d  $2006:

Poin ter  Bit $2005 -  1 s t  

Write
$2005 -  2 n d  

Write
$2006 -  1 s t  

Write
$2006 -  2 n d  

Write

Bit 15: - - - $2006 bit  7 -

Bit 14: y - $2005 bit  2 $2006 bit  6 -

Bit 13: y - $2005 bit  1 $2006 bit  5 -

Bit 12: y - $2005 bit  0 $2006 bit  4 -

Bit 11: n - - $2006 bit  3 -

Bit 10: n - - $2006 bit  2 -

Bit 9: Y - $2005 bit  7 $2006 bit  1 -

Bit 8: Y - $2005 bit  6 $2006 bit  0 -

Bit 7: Y - $2005 bit  5 - $2006 bit  7

Bit 6: Y - $2005 bit  4 - $2006 bit  6

Bit 5: Y - $2005 bit  3 - $2006 bit  5

Bit 4: X $2005 bit  7 - - $2006 bit  4

Bit 3: X $2005 bit  6 - - $2006 bit  3

Bit 2: X $2005 bit  5 - - $2006 bit  2

Bit 1: X $2005 bit  4 - - $2006 bit  1

Bit 0: X $2005 bit  3 - - $2006 bit  0
Table 1: VRAM Pointer  Update Values

For exa m ple, on  the  firs t  write to  register  $2005, t he  7 t h bit  of  t he  value writ ten  to  
$2005 gets  inser ted  in t he  VRAM pointer  bi t  4, which cor respon ds  to  t he  u p per  bi t  of  
t he  X tile index (see 'Backgroun d  Rendering').  On the  second  write to  register  $2005, 
t he  7 t h bit  of t he  value writ ten  gets  inser ted  in t he  VRAM pointer  bit  9, which 
correspon ds  to  t he  u p per  bit  of  t he  Y tile index.  In addition, bit s  2 - 0  of t he  firs t  
write to  $2005 u p da te  t he  fine horizon tal coun ter  in t he  backgroun d  renderer.

One other  od dity of t he  NES is t ha t  t here is only one  one - bit  parity register  to  
de ter mine whether  a  regis ter  is on  the  firs t  or  secon d  write.  As a  resul t, writing to  
$2005 once causes  t he  next  write to  $2006 to  coun t  as  t he  secon d  write.

VRAM

The NES' graphics infor mation  is s tored  in a  16 - Kilobyte me mory called VRAM.  the  
layout  of VRAM is as  follows: 
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Figure 1: VRAM Memory Map
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NES Color Bits

There are 64  NES syste m  colors, s pecified  by a  6 - bit  value.  At any given poin t  in 
time, s p rites  an d  the  backgroun d  can  only u se  a  subset  of t hose  colors  as  s pecified  
by their res pective palet te.  The backgroun d  palet te  consis ts  of t he  16  bytes  s tar ting 
a t  location  $3F00.  Each byte - long ent ry is t he  6 - bit  NES syste m  color index, as  well 
as  two bits  used  by the  NES to  s pecify t he  intensi ty of t he  color (these bit s  are 
u n used  by the  em ulator).  The color a t  location  $3F00 is t he  default  backgroun d  
color, and  is mirrored  a t  locations  $3F04, $3F08, and  $3F0C.  Therefore, t he  
backgroun d  can  only u se  13  colors.  The s p rite palet te  consis t s  of t he  16  bytes  
s tar ting at  location  $3F10.  The en t ries a t  locations   $3F10, $3F14, $3F18, and  $3F1C 
are u sed  to  indicate  t he  s p rite is invisible, so  t he  s p ri tes  can  therefore only u se  12  
colors.

For any given pixel dis played  on  the  screen, its  index into t he  s p ri te  or  backgroun d  
palet te  is de ter mined  by a  4 - bit  value.  The lower  2 - bits  are de ter mined  by the  
pa t tern  tables  (see 'Pat tern  Tables'), and  the  u p per  2 - bits  are de ter mined  by the  
a t t ribute tables  (see 'Attribu te Tables').

Pattern Tables

The NES has  two pa t tern  tables, one a t  VRAM location  $0000, an d  one a t  VRAM 
location  $1000.  Eeach 16 - byte en t ry into t he  pa t tern  table describes  t he  lower  2 -
bits  of t he  index into  t he  palet te  table for  an  8x8 pixel tile.  The firs t  8  bytes  contain 
t he  lowes t  bit, and  the  second  8  bytes  contain t he  highes t  bit, as  s hown in an  
exa m ple below:
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Figure 2: Pat tern  Table Exam ple

As show in t he  exa m ple, t he  u p per  bit  of  t he  color is taken  fro m  the  secon d  8 - bytes  
($0008 -  $000F), and  the  lower bit  of t he  color is t aken  fro m  the  firs t  8  bytes  ($0000 
-  $0007).  These two bi ts  a re  concatenated  together  to  for m  the  lower two bits  of t he  
index into t he  palet te  table.

Attribute Tables

The u p per  two bi ts  of t he  index into t he  palet te  tables  is given by the  at t ribu te 
tables.  There are 4  a t t ribu te  tables in t he  NES, one a t  VRAM location  $23C0, one a t  
$27C0, one  a t  $2BC0, and  one a t  $2FC0.  Each one - byte en t ry into t he  a t t ribu te table 
describes  t he  u p per  two bi ts  of t he  index into  t he  palet te  table for 16  8x8 - pixel tiles. 
The lowest  two bi ts  a re  u sed  to  describe t he  u p per - left  square of 4  tiles, t he  next  
two bits  describe t he  u p per - right  square, t he  t hird  two bi ts  describe t he  lower - left  
square, and  the  highes t  two bits  describe t he  lower - right  square.
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Figure 3: Att ribu te Table Exam ple

In t he  exa m ple above, $0 - $F each  describe one  8x8 - pixel tile.  If t he  correspon ding 
one - byte en t ry in t he  a t t ribute table was 33221100 where 0, 1, 2, and  3  are arbitrary 
2 - bit  values, t hen  $C - $F would  u se  33  as  t he  u p per  two bi ts  of t he  index into  t he  
palet te  table, $8 - $B would  u se  22, $4 - $7 would  use  11, an d  $0 - $3 would  use  00.

Name Tables

Each a t t ribute table has  a  correspon ding na me table.  The four  na me tables used  by 
the  NES are s tored  a t  VRAM locations  $2000, $2400, $2800, an d  $2C00.  Each one -
byte na me table en t ry acts  as  an  index into either  pa t tern  table 0  or  pa t tern  table 1  
to  s pecify which pa t tern  tile is u sed  for  an  8x8 - pixel tile.

The NES only has  s pace in its  VRAM to  s tore  two na me tables and  two at t ribu te 
tables; however, it can  ad dress  four  of each.  Two na me  an d  at t ribu te tables are 
mirror s  of t he  o ther  two, in a  m a n ner  de ter mined  by the  type  of mir roring u sed  by 
the  game.  If horizon tal mirroring is being u sed, t he  firs t  two na me and  a t t ribute 
tables  are  t he  sa me, an d  the  secon d  two na me and  a t t ribute  tables  are  t he  sa me.  If 
ver tical mir roring is being u sed, na me and  a t t ribu te tables  one and  th ree are t he  
sa me, an d  two an d  four  are t he  sa me.  Additionally, a  game can  u se  4 - way scrolling, 
in which each  na me table an d  a t t ribute table s tores  u nique infor mation.  In t his  case, 
t he  las t  two na me  an d  at t ribu te tables are s tored  in internal m e m ory on  the  
car t ridge.

Datapath Details

The da tapath  in t he  NES is broken  u p  into  two dis tinct  sections, s p rites  and  
backgroun d, which are joined  together  at  t he  end.  The da tapath  for  each  section  is 
described  below.
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Sprite Datapath

Infor ma tion  abou t  t he  s p ri tes  is s tored  in SPR - RAM, a 256 - byte me mory tha t  can  be 
writ ten  to  an d  read  fro m  by the  CPU d uring VBlank.  Each s p rite is described  by a  
con tiguous  4 - byte section, for a  to tal of 64  s p rites  possible.  The s p ri tes  are s tored  
in or der  of p riority, s uch  tha t  if two s p ri tes  contain  overlapping non - t rans parent  
sections, t he  s p ri te t ha t  is firs t  in SPR- RAM will contain p riority over t he  other.  Only 
8  s p ri tes  can  be displayed  on  a  scanline; t he  firs t  8  s p rites  in SPR- RAM tha t  are 
de ter mined  to  be in range in a  given scanline are used.  The layout  of t he  s p ri tes  in 
SPR- RAM is described  as  follows: 

SPR- RAM
BYTE 0: Sprite Y-Position  (Minus  1)

This byte s tores  t he  Y-Coordinate of t he  s p ri te  on  the  screen, minus  1.  The 
reason  one is sub t racted  is so  t ha t  t he  in - range evaluation  can  be sim plified, 
as  it ha p pens  one  scanline before t he  s p ri te  is actually rendered  (see 
'Rendering Details').

BYTE 1: Pat tern  Table Tile Index
This byte s tores  t he  index into  t he  pa t tern  tables to  de ter mine the  bi tma p  for 
t his  s p rite.  For 8x8 s p rites, bit s  7 - 0  de ter mine the  index directly, an d  bit  3  of 
regis ter  $2000 de ter mines  which table to  u se.  For 8x16 s p ri tes, bit s  7 - 1  
deter mine the  u p per  7  bit s  of t he  index (both  of t he  pa t terns  a t  t ha t  index are 
u sed), an d  bit  0  de ter mines  which pa t tern  table to  use.

BYTE 2: Sprite Attribute  Infor mation
This byte s tores  various  a t t ribu te infor ma tion  abou t  t he  s p ri te, as  described  
below:

Bit 7: Flip Sprite Vertically (1 =Flip, 0 =Don' t  flip)
Bit 6: Flip Sprite Horizon tally (1 =Flip, 0 =Don' t  flip)
Bit 5: Backgroun d  Priority (1 =Sprite is behind  backgroun d, 0 =Spri te  is in 

fron t)
Bits 4 - 2: Not u sed  (always 0)
Bits 1 - 0: Upper  two bi ts  of palet te  en t ry (correspon d  to  a t t ribute  table 

infor mation)

BYTE 3: Sprite X-Position
This byte s tores  t he  X-Coor dinate of t he  s p ri te on  the  screen.  

During the  firs t  s tage of each  scanline (see 'Rendering Details'), t he  s p ri te 
infor mation  is later  t ransferred  into a  24 - byte internal region  of te m porary s torage. 
Each s p rite  in t his  area is described  by three con tiguous  bytes, for a  to tal of eight  
s p ri tes  (correspon ding to  t he  8  s p ri tes  t ha t  can  be in range in each  scanline).  The 
infor mation  s tored  for each  s p rite is described  as  follows:
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Sprite Tem porary Storage
BYTE 0: Pat tern  Table Tile Index

This byte s tores  t he  index into  t he  pa t tern  tables to  de ter mine the  bi tma p  for 
t his  s p rite.  This is copied  directly fro m  byte 1  in SPR- RAM.

BYTE 1: Sprite X-Position
This s tores  t he  X-Coordina te of t he  s p rite  on  the  screen.  This is copied  
directly fro m  byte 3  in SPR- RAM.

BYTE 2: Sprite Attribute  Infor mation
This s tores  various  a t t ribu te  infor mation  abou t  t he  s p rite.  This a t t ribu te 
infor mation  is slightly differen t  t han  the  a t t ribu te infor mation  s tored  in SPR-
RAM.  It is de scribed  below:

Bits 7 - 4: Lowest  8 - bits  of t he  in - range com parison  (see 'Rendering Details')
Bit 3: Flip Sprite Horizon tally (1 =Flip, 0 =Don' t  Flip)
Bit 2: Backgroun d  Priority (1 =Sprite behind  backgroun d, 0 =Sprite in 

fron t)
Bits 1 - 0: Upper  two bi ts  of palet te  en t ry

From  the  te m porary s torage, t he  pa t tern  is looked  u p  in VRAM.  The ad dres s  of t he  
s p ri te pa t ter n  in VRAM is de ter mined  as  follows (depending on  whether  s p ri te  size  is 
8x8 or  8x16):

8x8 s p ri tes: { 1'b0, $2000.3, Tile Index [7:0], High_Bit, Range[2:0]}
8x16 s p ri tes: { 1'b0, Tile Index[0], Tile Index[7:1], High_Bit, Range[2:0]}

High_Bit is a  cont rol signal fro m  the  FSM, which will firs t  load  the  lowest  bit  of t he  
palet te  table index, and  then  the  highest  bit.  Range correspon ds  to  t he  difference 
calculated  in t he  in - range evaluation  unit  (see 'Rendering Details').

Afterwar ds, t he  pa t tern  (along with  t he  X-Coordinate, t he  a t t ribu te infor mation, an d  
the  p riority bit) a re  t ransferred  into  a  series  of buffers  which hold  t he  da ta  u n til 
rendering occurs.

Background Datapath

During the  ren der  period  an d  d u ring the  backgroun d  p refetch  (see 'Rendering 
Details'), t he  backgroun d  ren derer  m u s t  look u p  firs t  t he  pa t ter n  index in t he  na me 
table, t hen  the  a t t ribute  infor mation  in t he  a t t ribute table, and  las tly it m u s t  look u p  
the  u p per  an d  lower byte describing the  par ticular  pa t tern  tile indexed.

A series of coun ters  de ter mine which index in the  na me table to  access  in VRAM; the  
following describes  t he  coun ters  and  their bit - widths:
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FH[2:0]: The 3 - bit  fine horizon tal offset  u sed  to  de ter mine which pixel of t he  
pat tern  to  select

FV[2:0]: The 3 - bit  fine ver tical offse t  used  to  de ter mine  which line of t he  
pat tern  to  u se

HT[4:0]: The 5 - bi t  horizon tal offset  use d  to  de ter mine which horizon tal tile to  
fetch

VT[4:0]: The 5 - bi t  ver tical offset  u sed  to  de ter mine which line to  fetch  a  tile 
from

H: The 1 - bit  coun ter  u sed  to  de ter mine the  lowest  bi t  of  which na me table to  
u se

V: The 1 - bit  coun ter  u sed  to  de ter mine the  highes t  bi t  of  which na me table to  
u se

The ad dress  looked  u p  in t he  na me table correspon ds  to  t he  following: 

{ 2'b10, Tile index (from  na me table) [7:0], High_Bit, FV[2:0]}

Because t he  fetching of s p rites  and  backgroun d  tiles  occurs  a t  differen t  times, t he  
High_Bit signal can  be shared  between  the  two.

The coun ters  are  chained  together  in t he  following or der: FH, H, FV, V, HT, VT.  When 
one rolls  over to  its  m ax value (all ones  for each  coun ter  excep t  VT, which rolls over 
a t  239), t he  next  one  in t he  lis t  is incre mented.  In addition, t he  coun ters  are  u p da ted  
on  writes  to  $2006 an d  $2007 by the  CPU, as  de ter mined  by the  VRAM pointer.  The 
'XXXXX' of t he  VRAM pointer  corres pon ds  to  t he  HT coun ter, t he  'YYYYY' 
correspon ds  to  t he  VT, t he  'yyy' correspon ds  to  t he  FV, an d  the  'nn'  correspon ds  to  
t he  FV an d  HV, res pectively.

After  t he  app ropria te  byte is fetched  fro m  the  na me table, it is s tored  in an  8 - bit  
register, an d  the  correspon ding ent ry is fetched  fro m  the  at t ribu te table.  At t his  
poin t, t he  VT and  HT coun ters  select  which two bits  of t he  a t t ribu te  byte to  u se, and  
the  two at t ribu te bit s  are  s tored  in a  2 - bi t  regis ter.  Then the  two correspon ding 
bytes  are fetched  fro m  the  pa t tern  tables, as  selected  by the  tile index fro m  the  na me 
table and  fro m  the  FV coun ter.  Each of t hese  pa t tern  bytes  are s tored  in 8 - bi t  
buffers.  After  all of  t he  values  are fetched, t he  a t t ribute  bytes, along with  t he  two 
pa t tern  bytes, a re  m oved  to  a  buffer.  During render, t he  ap propriate  bit s  of t he  
buffer  are  de ter mined  by the  FH coun ter, which is incre mented  every ren der  cycle. 
When the  FH coun ter  reaches  7, t he  next  pa t terns  an d  at t ribu te bi ts  a re  loaded  fro m  
the  registers  into t he  buffers  to  be rendered.

Rendering Details

The ren dering of each  fram  in t he  PPU is broken  u p  into  261 scanlines.  The firs t  20  
scanlines  (0 - 19) are refer red  to  as  t he  VBlank period.  This is t he  only time when  the  
CPU m ay access  SPR - RAM an d  VRAM.  The PPU res t s  d u ring this  period, an d  no thing 
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is ren dered  on  the  screen.  The next  scanline (20) is used  by the  PPU to  load  da ta  
fro m  SPR- RAM into t he  Sprite te m porary m e mory, and  then  to  look u p  the  pa t terns  
in VRAM and  load  the  s p rite  buffers  so  t he  pixels will be available at  t he  s ta r t  of 
scanline 21.  The firs t  two tiles  of t he  backgroun d  for  scanline 21  are also looked  u p  
in scanline 21.  Nothing is rendered  on  the  screen  d uring scanline 20).  The following 
240 scanlines  (21 - 260) are u sed  to  actually ren der  pixels to  t he  screen.  The next  
scanline (261) is t he  las t  scanline.  During this  scanline, t he  PPU res t s  and  p repares  
to  en ter  t he  VBlank period.

Each scanline last s  341 clock cycles.  The PPU m us t  look u p  170 bytes  in VRAM per  
scanline (except  for  scanlines  0 - 19  which look u p  no thing, scanline 20  which only 
looks  u p  s p ri tes  and  2  backgroun d  tiles, an d  scanline 261 which does  no thing). 
Since each  VRAM access  takes  two clock cycles, t he  scanlines  can  be  evenly divided  
into 171 s tages, one  for  each  lookup  plus  a  res t  cycle a t  t he  end.  The s tages  are 
described  as  follows:

Memory stages  1 - 128:

This is t he  period  d uring which the  PPU is actually rendering pixels on  the  screen.  It 
las ts  256 clock cycles, d uring which one  horizon tal line (256 pixels) is d rawn on  the  
screen.  During these  me m ory s tages, t he  backgroun d  ren derer  is reading fro m  
VRAM to  de ter mine the  na me, a t t ribute, an d  pa t tern  table en t ries correspon ding to  
each  tile on  the  cur ren t  scanline (except  t he  firs t  two tiles, which are fetched  d u ring 
s tages  161 - 168 on  the  p revious  scanline).  The ad dress  into t he  na me  tables  in 
VRAM is de ter mined  by a  series of scroll regesters  (see 'Backgroun d  Datapath'  
above).  Once fetched, t he  backgroun d  da ta  is s tored  in t he  backgroun d  buffers, 
where it is displayed.  The fine horizon tal scroll de ter mines  which pixel fro m  the  las t  
buffer  will actually be  displayed on  the  screen.

The X-Coordinate value in t he  s p rite buffers  is decre mented  each  cycle d u ring this  
p hase  u n til it equals  ze ro.  At t his  poin t, t he  s p rite s tar t s  displaying on  the  screen.

Also d u ring these  s tages, t he  s p ri te  ren derer  reads  t h rough  SPR- RAM to  deter mine 
which s p rites  are  in range to  be d rawn d u ring the  NEXT scanline.  The firs t  8  s p ri tes  
de ter mined  to  be in range are loaded  into the  s p ri te - te m porary me mory.

The in - range evaluation  s ta r t s  fro m  the  firs t  s p ri te in SPR- RAM, and  ends  with  t he  
64 t h (each  s p rite is evaluated, even  af ter  8  in - range s p ri tes  are found).  The 
evaluation  of each  s p ri te takes  4  cycles, corres pon ding to  reading each  byte in SPR-
RAM associated  with  t ha t  s p rite.  The following difference is calculated  as  an  'in -
range tes t ': 

(Curren t_Scanline – 21) – (Sprite_Y_Coordinate +  1)

If t his  value is be tween  0  and  7, t he  s p ri te is de ter mined  to  be  in - range.  It is t hen  
m oved  into  s p rite te m porary s torage, along with  t he  lowest  four  bit s  of t he  in - range 
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te s t  difference.  If t he  ver tical inversion  bit  is set, t he  lowest  t h ree bit s  of t his  
difference are flipped  to  p roduce the  ver tical inversion  effect.  The firs t  8  s p rites  
de ter mined  to  be in range are s tored  into  t he  me m ory a t  t his  poin t.

Memory stages  129 - 160:

During these  s tages, t he  s p rite ren derer  loads  t he  buffers  with  t he  bi tma p  pa t tern  
da ta.  For each  of t he  8  s p ri tes  in te m porary me mory, t he  ren derer  firs t  looks  u p  the  
bit ma p  pa t tern  in VRAM using the  index s tored  a t  t he  firs t  byte in te m porary 
me m ory.  For each  s p rite, two garbage VRAM accesses  occur  (these ha p pen  so  t ha t  
t he  Nintendo  can  reuse  t he  har dware for  t he  backgroun d  fetching).  Then the  bit map  
correspon ding to  t he  lowest  bit  is fetched, and  then  the  bit ma p  corres pon ding to  t he  
highes t  bi t  is fetched.  At t his  poin t, ho rizon tal inversion  is ap plied, an d  then  the  
pa t terns  are s tored  in t he  s p rite buffers  along with  t he  a t t ribu te da ta  and  the  p riority 
bit.

Memory stages  161 - 168:

This is when  the  backgroun d  renderer  fetches  t he  firs t  two tiles  to  be displayed on  
the  screen  d uring the  next  scanline.  It does  t his  so  t ha t  t hey can  be loaded  into t he  
buffer  an d  be ready to  s tar t  displaying a t  t he  beginning of t he  render  pe riod.  The 
fetching of t hese two tiles  works  t he  exact sa me way as  it does  in t he  firs t  128 
me m ory s tages: firs t  t he  na me table byte is re t rieved  fro m  VRAM, then  the  a t t ribu te 
table byte, next  t he  pa t tern  table en t ry correspon ding to  t he  lower bit  of t he  index 
into t he  palet te  t able, an d  las t  t he  pa t tern  correspon ding to  t he  higher  bit.

Memory stages  169 - 170:

During this  s tage, t he  backgroun d  renderer  fetches  two bytes  fro m  the  na me table. 
It is unclear  as  to  why these  two bytes  are fetched  fro m  VRAM.

After stage  170  (clock cycle 341):

After  t he  170 t h me mory fetch, t he  PPU res t s  for  one  clock cycle before beginning the  
next  scanline.

The TNT NES Emulator

TNT Emulator Results

The original goal of t he  p roject  was  to  be able to  play NES ga mes  from  a  car t ridge 
tha t  connect s  to  t he  boar d.  In the  end, s u p por t  for  car t ridges  was no t  able to  be  
adde d.  In t heir place, ROMs are downloaded  on to  t he  Desktop.  These ROMS are r un  
th rough  a p rogra m  tha t  t ransla tes  t he m  into  t he  PRG - ROM and  CHR - ROM sections. 
The CHR - ROM an d  VRAM m o d ules  are t hen  initialized  to  t he  values  s pecified in t he  
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files  before the  p roject  is synthesized  on to  t he  boar d.

In ad di tion, t he  pAPU (2A03) was no t  fully implemented.  The following describes  t he  
role of the  pAPU an d  tea m  TNT's final p rogress  in t he  m o d ule.

The 2A03 was t he  soun d  p rocessor  u sed  by the  NES.  It actually con tained  the  6502
CPU, an d  had  a several wrap pers  t ha t  cont rolled  various  frequency genera tor s, an d
other  com ponen ts.  The CPU me mory add resses  $4000 th rough  $4020 are han dled  
by the  2A03.  Most  of t he m  sim ply con trol t he  audio p rocessor, se t ting the  volume, 
envelope decay, frequency, d ura tion, e tc.  $4014 is s pecial; it does n' t  actually cont rol 
t he  pAPU exactly, bu t  it  does  initiate a  DMA sequence las ting 512 cycles.  The pAPU 
sections  of t he  2A03 are also res ponsible for  genera ting the  level sensitive IRQ's. 
Team  TNT implemented  the  DMA engine as  a  m o d ule between  the  CPU
an d  the  MMU, with  t he  pAPU as  a  separa te  m o d ule t ha t  would  be  accessed  via t he  
MMU. 
As of right  now m os t  of t he  individual m o d ules  for  controlling the  pAPU have been  
writ ten  (duty cycle genera tor, t riangle wave genera tor, envelope  genera tor, frequency 
sweep  genera tor, timing cont rol, frequency cont rol).  Missing are a  rando m  noise 
genera tor  and  a decoder  t ha t  has  so me
interes ting p roper ties.  Most  of t he  com ponen ts  haven' t  been  hooked  u p, and  they 
are missing the  d ual por ted  ability to  com m u nicate with  t he  CPU.  After  solving a  
similar  p roblem with  t he  PPU and  CPU com m u nicating with  each  o ther, any timing 
issues  with  t he  pAPU can be  solved  in a  relatively s mall a mou nt  of time.  

The NES em ulator  is designed  to  run  on  the  Xilinx FPGA board.  As a  resul t, several 
com ponen t s  (such  as  t he  VGA connection) were u nique to  t he  em ula tor.  Those 
m o d ules  are described  below.

Emulator - Specific Modules

Clock Generation

The Xilinx boar d  has  one sys te m  clock tha t  runs  a t  100 MHz.  All o ther  frequencies  
are genera ted  th rough  the  use  of t he  Digital Clock Manager  (DCM) m o d ule (provided  
by Xilinx for u se  in XPS, ada p ted  to  be u sed  in ISE).  The various  clocks  u sed  by the  
em ulator, along with  t he  m e thod  of genera ting the m, is lis ted  below.

VGA Clock: The VGA ou t pu t  is designed  to  run  a t  25  MHz; t his  is t he  leas t  
flexible clock in t he  design  of t he  e m ulator.  The VGA clock is 
genera ted  by dividing the  boar d's  sys te m  clock by 4.  The VGA 
base clock then  serves  as  t he  syste m  clock for  t he  NES (although  
the  NES' syte m  clock ran  a t  only 24  MHz).

PPU Clock: The PPU clock is obtained  by dividing the  sys te m  clock by 6, 
yielding a  4.17 MHz clock.  While t his  is slower  t han  the  NES' PPU 
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clock frequency of 5.1 MHz, t his  is not  a  p roblem as  t he  VGA RAM 
has  3  buffers  to  accom m o date  differen t  clock frequencies.

CPU Clock: The CPU clock is obtained  by dividing the  syste m  clock by 12, 
yielding a  2.53 MHz clock.  This is only 2  times  slower t han  the  
PPU, as  opposed  to  t he  3  times  slower t ha t  t he  6502 clock is fro m  
the  2C02 clock.  This will also no t  cause a  p roblem; it will only 
allow the  CPU m ore  time to  write to  VRAM d uring a  VBlank.

VGA Output

The Xilinx boar ds  are hooked  u p  to  a  640 x 480 VGA com p u ter  m o ni tor.  The 
m o nitor  is hooked  u p  to  a  25  MHz clock.  In ad di tion  to  t he  clock, it has  8 - bit  por t s  
for  red, green, and  blue pixel values, as  well as  one - bit  por t s  for  an  h - sync signal 
an d  a v - sync signal.  During each  of t he  firs t  640 VGA clock cycles, the  value 
received  by the  red, green, an d  blue por t s  will de ter mine the  pixels displayed on  the  
screen.  After  640 cycles (correspon ding to  640 horizon tal pixels or  one line), an  t he  
h - sync signal is as ser ted  an d  the  red, green, and  blue values  m u s t  be ze ro.  Once the  
h - sync signal goes  low, t he  screen  s ta r t s  accep ting red, green, and  blue values  
correspon ding to  t he  pixels on  the  next  line.  Once all 480 lines have been  d rawn, t he  
v - sync signal is asser ted.  Again d uring this  time, t he  red, green, and  blue values  
m u s t  be  ze ro.  If any of t he  color  values  are non zero  d u ring h - sync or  v - sync, t he  
m o nitor  will not  receive a  video signal.  

In ad di tion, t he  timing of t he  signals  m u s t  cor res pon d  to  a  p rese t  timing pa t tern. 
Xilinx p rovides  a  m o d ule in t he  XPS libraries to  genera te  t he  correct  timing signals. 
Because t he  m o d ule is designed  for  XPS, t he  m o d ule was por ted  fro m  the  XPS 
libraries to  work in ISE an d  t rim me d  to  fit  t he  needs  of t he  em ulator.  Most  of t he  
u n necessary signals  were s t ripped  ou t  (although  so me s till re main), an d  the  VGA 
RAM m o d ule u sed  by XPS was m o dified  to  fi t t he  needs  of t he  em ula tor.

The VGA RAM m o d ule is implemented  as  a  series of 256 x 240 x 6 - bit  d ual - por ted  
block ra ms.  Each 6 - bi t  en t ry corres pon ds  to  t he  NES syste m  color  to  be represen ted  
a t  t ha t  location  on  the  screen.  The PPU writes  to  t he  RAM m o d ule d u ring its  render  
s tage, an d  af ter  it ha s  writ ten  valid da ta  to  one entire  buffer, t he  VGA m o d ule reads  
fro m  tha t  buffer.  Because t he  VGA reads  quicker  t han  the  PPU writes  to  t he  RAM, 
th ree buffers  are  necessary to  com pletely p revent  tearing.  The VGA m o d ule reads  
fro m  one buffer  behind  the  buffer  t ha t  t he  PPU is writing to, so metimes  ren dering 
the  sa me buffer  twice in a  row to  s tay behind.  When the  PPU is do ne writing a  
buffer, it s ta r t s  writing to  t he  next  buffer while t he  VGA finishes  rendering fro m  its  
curren t  buffer, when  it m oves  on  to  t he  one  the  PPU has  jus t  finished  writing to.

Because t he  NES graphics are a t  a  256 x 240 resolu tion, each  pixel is rendered  4  
times  to  crea te a  512 x 480 resolu tion.  The re maining 128 horizon tal pixels  on  the  
screen  are rendered  in black, 64  before t he  s tar t  of t he  NES screen  an d  64  af ter.
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Controller Interface

The CPU ob tains  u ser  inpu t  infor mation  by querying to  me mory m a p pe d  I /O por t s  
(addres s  locations  $4016 an d  $4017).  To read  the  cont roller  inpu t  da ta  t he  CPU 
m u s t  firs t  write a  1  an d  then  a  0  to  t he  ad dress.  After t hese  signals  have been  
asser ted  t he  CPU can  then  read  the  da ta  back fro m  the  I /O por t.  The da ta  is 
re tu rned  serially with  one  bu t ton  da ta  value re tu r ned  per  read.  The da ta  is re tu rn  in 
t he  following order: {A, B, SELECT, START, UP, DOWN, LEFT, RIGHT}.  

To actually obtain  t he  da ta  fro m  the  inpu t  cont roller  con tinually poll t he  cont roller  
an d  s tore t he  inpu t  da ta  in regis ters  t ha t  t he  CPU will have access  to  when  reading 
fro m  the  I /O por t s.  To acco m plish  polling an  NES con troller  inpu t  finite s ta te  
m achine implementa tion  was taken  fro m  a p revious  mi t  p roject.  The source used  
can  be foun d  a t  t he  following link 
(ht tp: / / web.mit.edu / 6.111 /www / s2004 /PROJECTS /2 / nes.ht m).  The general s ta te  
p rogression  fro m  this  source was correct  bu t  so me al tera tions  to  t he  code ha d  to  
m a de  for  t he  m o d ule to  work for our  implementa tion. 

Emulator - Specific Implementation

The m ain  goal when  developing the  NES e m ulator  was to  m ake it as  similar as  
possible to  t he  original NES; however, so me por tions  of t he  NES were either  
u n docu mented  or  u nclear, and  therefore t he  em ulator  differs  from  the  original 
sys te m  in so me ways.  Differences  are lis ted  in t his  section.

CPU: The m ain  difference be tween TNT's em ulator  and  the  actual NES are cycle 
coun ts  for  ins t ructions.  While m os t  ins t ructions  m ain tain the  sa me 
cycle coun ts  as  t he  original sys te m  there are a  few which do  m a tch  the  
s pecified cycle coun t.  As with  m os t  dis parities  in t he  em ulator  
implementa tion, given m ore  time the  t hese discrepancies could  easily be  
re moved.

PPU:  The em ula tor' s  PPU follows docu mented  da tapa th  fairly closely.  Some 
fea tu res  were o mit ted  to  allow time to  get  a  sim ple ROM working. Most 
no table, s p ri te 0  hi t  de tection  an d  so me of t he  me mory mirroring was 
no t  imple mented.

Final Scope: Due to  time cons t rain t s  t he  final em ulator  imple menta tion  lacked  
soun d  capability an d  the  game car t ridge interface.  The em ulator  can  
however  run  downloaded  game ROMs in t he  .NES for mat.  A graphics 
de mo  an d  a m a ze  game were successfully downloaded  and  ran  on  the  
em ulator.  Further  ga me ROM tes ting was not  com pleted  d ue  to  lack of 
time.

NES Emulation Advice
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The two m os t  difficult  pa r t s  of crea ting a  ha r dware em ula tor  of t he  NES are 
u n ders tanding how the  NES works  and  tes ting the  pieces  of t he  em ulator.  Before 
s tar ting to  crea te  an  em ula tor, it is impor tan t  to  have thoroughly read  th rough  and  
u n ders tood  as  m uch  docu menta tion  abou t  t he  NES as  possible.  It is also helpful to  
no tice where discrepancies exist  in various  docu men ta tions; t ha t  way, when  creating 
the  em ulator, t he  designer  can  be min dful as  to  what  m ay or  m ay no t  be correct.

It is not  vital to  com pletely u n ders tan d  everything abou t  t he  NES before s tar ting to  
write the  em ula tor; because  the  original NES was designed  for  perfor ma nce, t here are 
m a ny hacks  t ha t  will no t  m ake sense un til t he  em ulator  designer  has  got ten  to  a  
par ticular  poin t  in t he  em ulator  design.  It is however impor tan t  to  u n ders tan d  a t  a  
higher  level how the  NES is p u t  together, t he  com ponen ts  involved  and  how they 
interface with  one  ano ther.

When tes ting the  various  com ponen ts  of t he  NES, it is a  good  idea to  t horoughly tes t  
each  com ponen t  alone and  to  be confident  t ha t  each  com ponen t  works  before 
s tar ting to  integra te  t he  various  com ponen ts.  Sufficien t  time should  be  left  for 
integra tion; once t he  PPU an d  the  CPU are com m u nicating th rough  the  PPU's I /O 
registers, it  is very likely t ha t  t here will be m a ny bugs  tha t  were no t  foun d  d u ring 
u nit  tes ting.

There were several pieces of infor mation  tha t  beca me apparen t  t h roughou t  t he  
course  of t he  p roject.  Among the m  are:

- Synthesis  is no t  simulation.  Often  times, a  pa r ticular  com ponen t  will 
sim ula te  p ro perly and  will ap pear  to  work on  ModelSim.  Unfortunately, 
t his  does  no t  mean  tha t  it will synthesize  correctly.  Further more, even  if 
it does  synthesize correctly, it is not  necessarily t r ue  t ha t  it will pe rfor m  
the  sa me before an d  af ter  synthesis.  Therefore, it is impor tan t  to  tes t  
t horoughly af ter  syn thesis  to  ensure  t ha t  t he  com ponen ts  are  fi t ting 
together  correctly.  In ad dition, t he  XST syn thesizer  will a t te m p t  to  
op timize  away par t s  of t he  design  tha t  are u nnecessary.  Therefore, 
when  tes ting an  individual m o d ule with  a  s t ub  to  sim ula te  t he  res t  of t he  
design, t he  s tub  will of ten  be op timized  away an d  this  will so metimes  
cause  t he  appearance of t he  design  tha t  is being tes ted  no t  working.  The 
lesson  to  be learned  is t ha t  synthesis  can  change m a ny par t s  of a  design, 
an d  it is impor tan t  to  read  the  synthesis  repor t  to  u n ders tand  what  
exactly it is doing.

- Read the  docu men ta tion  carefully.  In m a ny cases, especially in t he  PPU, t he  
functionality of t he  NES (or em ula tor) depends  on  a  s mall de tail of t he  
design  tha t  could  easily be  misun ders tood  or  even  ignored.  Reading 
m a ny different  docu ment s  allows the  e m ula tor's  designer  to  ca tch  as  
m a ny of t hese details as  possible.  While designing, docu me nta tion  
s hould  be referred  to  of ten.
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- Read the  XST syn thesis  docu menta tion.  There is a  very good  docu ment  
describing synthesis  in XST.  The m os t  impor tan t  pa r t  of t he  docu ment  
is t he  por tion  tha t  describes  how to  design  for  t he  synthesizer.  
Par ticularly, RAMs and  FSMs s hould  be designed  in a  m a n ner  s uch  tha t  
t he  synthesizer  will recognize t he m  an d  synthesize  t he m  in an  op timal 
fashion.

Individual Thoughts

Michael Bailey  (mbailey)

The NES project  was  a  very interes ting an d  very fun  p roject.  For t his  p roject  I 
worked  p rimarily on  the  PPU.  Dave and  I co - wrote t he  entire PPU da tapath  and  
con trol over t he  firs t  half of t he  se mes ter.  To accom plish  t his, we s pen t  a  significant  
por tion  of time sif ting th rough  docu menta tion  an d  t rying to  un ders tand  all of  t he  
me m ory op timizations  t he  NES sys te m  used.  Once we com pleted  this  por tion  of t he  
p roject, I began  working on  the  cont roller  interface an d  the  PPU /CPU interface.  The 
con troller  took about  a  week to  get  working.  This was m os tly d ue  to  using a  broken  
con troller  a t  t he  beginning of tes ting.  The PPU - CPU I /O interface took abou t  t he  
sa me a mou nt  of time.  It was  difficult  a t  firs t  m a naging the  interface with  two clocks, 
bu t  eventually everything was debugged  and  working p roperly.  After t hese tasks  
were com pleted, we began overall integra tion.  I worked  with  archi debugging so me 
to  t he  interr up t  functionality of t he  CPU and  then  finally debugging the  PPU.  This 
took lots  of time es pecially since synthesis  took close to  twenty minu tes  pe r  t ry. 
Early in t he  se mes ter  I worked  abou t  10  to  20  hours  pe r  week on  the  p roject  and  in 
t he  las t  m o nt h  I p u t  in abou t  60  hours  per  week.  Also af ter  t he  p ublic Demo Dave 
an d  I p u t  in abou t  20  hours  wor th  of work to  get  t he  ROMs to  actually work.  Not  all 
of t his  time was s pen t  working however  since syn thesis  took so  long.

I t hink the  class  was se t  u p  very well and  the  TAs were especially helpful.  My only 
regre t  was  no t  knowing enough  abou t  t he  FPGA boar d  when  s pecifying our  initial 
design.  If we would  have s pecified  our  RAM m o d ules  to  ta rget  the  block RAMs fro m  
the  beginning of t he  p roject, we would  have ha d  m uch  less  to  debug an d  would  have 
been  able to  de mo  bet ter  ga mes.   However, d ue  to  t his  lack of foresight, we 
scra mbled  over  t he  las t  t h ree weeks  to  tweak all of  our  m o d ules  and  timings  so  we 
could  u tilize t he  block RAMs and  no  jus t  t he  logic fabric.  This was a  t ra mendous  
se tback, an d  m a de  the  firs t  half of se mes ters  work u seless.

The only change I would  s uggest  is m aybe a lecture  dedica ted  to  verilog design 
s pecific to  t he  FPGA where FSM and  RAM design is discussed.  This m ay no t  be 
necessary for  m os t  groups, bu t  any group  u sing ISE would  find  this  infor mation  very 
helpful.  Having this  knowledge early in t he  se mes ter  would  have been  invaluable.

David Mohne y  (dmohne y)
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Before taking this  course, I had  very lit tle (240 level) experience with  synthesizable 
verilog.  Because our  p roject  was  implemented  largely in Verilog, t he  course helped  
me  gras p  the  difference between  sim ulatable verilog and  synthesizable verilog.

From  the  s ta r t  of t he  se mes ter, tea m  TNT s plit  u p  into t he  PPU tea m, which I was  a  
par t  of, and  the  CPU tea m, which I was  no t.  Michael an d  I worked  together  in 
implementing the  PPU.  The firs t  approximately third  of t he  class  was s pen t  get ting 
u sed  to  how the  PPU works, and  reading th rough  various  differen t  docu menta tions  
an d  no ting discrepancies in t he m.  Once we actually s tar ted  coding the  PPU, t hings  
went  p re t ty quickly.  Both Michael and  I worked  on  m os t  com ponen t s  of t he  PPU 
together, an d  s pen t  a  few hours  per  week th roughou t  t he  beginning of t he  se mes ter. 
Star ting abou t  a  week or  two before Thanksgiving break, we s tar ted  s pen ding 
considerably m ore time in lab, p ulling the  occasional all - nighter  working on  various  
par t s  of t he  PPU.  I t hen  s tar ted  working on  the  VGA ou tp u t  while Michael s tar ted  
working on  the  con trollers  and  the  PPU IO registers.  During the  las t  week of t he  
p roject, t he  PPU an d  CPU tea ms  worked  together  to  a t te m p t  to  integra te  t he  PPU and  
CPU together, an d  to  debug the  various  p roblems  we encoun tered  d uring integra tion. 
The tea m  s pen t  m os t  of t he  en tire week in lab d uring this  week.  In t he  week 
following the  de mo (during which we did  no t  de mo  because  our  p roject  was  broken), 
Michael an d  I continued  to  work on  the  p roject  to  get  ROMs to  work.  In t he  final 
couple of days, Michael continued  to  debug the  PPU while I com piled  the  final repor t  
an d  crea ted  the  tea m's  website.

This class  was a  very posi tive experience for  me  an d  int roduced  me  to  t he  exciting 
field  of FPGA design.  If I ha d  the  se mes ter  to  do  over  again, t here is absolu tely 
no thing tha t  I would  change.

Archi Agarwal (archia)

I  ha d  a  good  learning  experience  with  t his  p roject.  I  took  this  course  so  as  to  
improve  my  verilog  coding  skills.  I ha d  done  verilog  coding  before  bu t  t his  was  t he  
firs t  time  I was  doing  a  big  p roject  in  verilog.  But  soon  I realized  tha t  t here  was 
m uch  m ore  in  t his  p roject  t han  jus t  verilog  coding.  This  class  was  good  an d  
introd uced  m e  to  FPGA concept s  and  also com pu ter  archi tecture.

My tea m m ate  Marty  helped  m e  a  lot  with  Verilog  coding.  Initially  we  discussed  the  
s ta te  diagra m  of  t he  en tire  CPU.  The  docu ment  p rovided  on  6502  on  web  is  of  
im mense  help.  I initially  wrote  the  verilog  code  for  ALU and  tes ted  it  by  simula ting  
on  Modelsim  an d  writing  s mall  tes t  benches  in  m achine  code.   After  ALU, I s t ar ted  
with  CPU.  Star ting with  140 s ta tes  we finally reached  25  s ta tes  an d  in t his  Marty was  
of  grea t  help  to  me.  I sim ulated  the  whole  CPU and  initially  tes ted  each  add ressing 
m o de  an d  each  ins t r uction  separa tely.   After  t ha t  I  wrote  s mall  tes t  cases  like 
genera ting  m ul tiple  of  2  or  genera ting  a  pa r ticular  sequence  of  n u m bers  and  tes ted  
t he  CPU agains t  t hese  tes t  benches.  Initially  I s tar ted  by  working  a  couple  of  hours  
per  day. However  t his  was  my firs t  experience of verilog coding on  s uch  a  big p roject  
so  I ha d  to  work  nearly 6 - 7  hours  everyday. It took  m e  a  long time to  figure  out  even  
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s mall p roblems. I believe my verilog coding has  improved a lot  over t his  se mes ter.

Then I s t ar ted  working on  inter rup t s. I wrote verilog for  IRQs an d  NMI interru p t s  an d  
sim ula ted  the  code u sing Modelsim and  wrote a  tes tbench  for  it. I also helped  a  bi t  in  
t he  integration  of  CPU an d  PPU working  m ainly  on  the  CPU par t,  debugging  u sing 
m o delsim.  At  t he  las t  m o me nt  CPU verilog  was  changed  by  Marty  so  as  to  fix  t he  
timing  p roblem  an d  I tes ted  it  agains t  s mall  tes tcases.  I do  wish  I knew  how  to  u se  
Xilinx FPGA before. Since I had  never  worked  on  FPGA, I could  no t  work  m uch  on  the  
boar d.  However  Marty,  David  and  Michael  helped  m e  a  lot  in  u n ders tanding  the  
working  of  boar d  an d  I a m  thankful  to  t he m  for  t ha t.  I also  wish  we  ha d  labs  t ha t  
gave de mo  as  to  u se  ISE. After  doing almos t  all labs  we ha d  to  learn  ISE on  our  own.

Martin Rosenberg (mjrosenb)

For t he  18 - 545 grou p  this  se mes ter, I was  on  the  sub tea m  that  crea ted  the  6502 
p rocessor.  The 6502 was firs t  crea ted  in t he  late 1970's.  As s uch, t hey did  a  large 
n u m ber  of t hings  t ha t  p robably haven' t  been  done  since t he  mid  1980's.  Initially our  
s ub - tea m  divided  the  p rocessor  into th ree m ain  com ponen t s, a  decoder, an  ALU, an d  
a fs m / d a tapat h.  I s pen t  abou t  two days  t ranslating a  .GIF of t he  ISA into a  decoder  
t ha t  was  woefully incom plete.  After  t his, a rchi an d  I s pen t  a  few days  a t te m p ting to  
get  a  general overview of how we were going to  crea te t he  p rocessor.  This p resen ted  
so me interes ting challenges, because t he  CPU ha d  no t  only an  ISA tha t  we ha d  to  
follow, bu t  it also ha d  a  timing res t rictions.   Since t he  p rocessor  isn' t  a  MIPS s tyle 
p rocessor  t ha t  has  limited  ad dres sing m o des, it was  kind  of obvious  t ha t  we needed  
to  have a  FSM & da ta pa th  as  op posed  to  the  single cycle p rocessor  t ha t  is crea ted  in 
18 - 447 tha t  ha s  no  internal s t a te  t ha t  isn' t  visible to  t he  p rogra m mer.  Never having 
crea ted  s uch  a p rocessor  before, I was  at  a  bi t  of  a  loss  as  how to  go abou t  designing 
a da tapath  and  FSM.  I t ried  designing a da ta pa th  firs t, t hen  m ake an  FSM using the  
da tapa th.  There were so me issues  related  to  no t  having enough  of t he  da ta pa th  to  
u se  in t he  FSM, or  no t  being able to  meet  timing res t rictions  with  t he  FSM.  In t he  
end, we op ted  to  write all of t he  opera tions  in a  RTL for m  explicitly s pecifing a  
n u m ber  of te m porary regis ters, t hen  deriving an  FSM fro m  the  lis t  of all ins t ructions, 
an d  the  da tapa th  from  the  se t  of opera tions  t ha t  were being done.  There were a  
bunch  of ins tances  where in or der  to  m ake our  work easier, we didn' t  t ry to  op timize 
our  design, and  u sed  3  adders  when  1  would  have been  s ufficient.  The p rimary goal 
was  to  get  each  ins t ruction  to  run  in an  equal n u m ber  of cycles if no t  lower.  The 
though  p rocess  behine t his  was  t ha t  we could  always add  a few cycles of 'do  no thing' 
to  t he  p rocessor.  Initially, we ha d  designed  the  p rocessor  to  have ze ro  cycle m e m ory 
access  time, which in reality jus t  m ean t  t ha t  it would  take any a mou nt  of time less  
t han  a  cycle.  Based  on  las t  year's  group  u sing DDR me mory, I t hought  t ha t  t his  was  
acceptable.  It wasn' t  u n til a  while later  t ha t  we were able to  figure ou t  how to  m ake 
everything work with  a  combination  of p re - fetching an d  ad ding no ps  into t he
FSM.  After t he  CPU ha d  passed  a  s ui te of te s t s  t ha t  we wrote, I fixed  the  CPU so  tha t  
it could  work on  both  m o delsim and  on  xilinx.  The fun  s tep  was ad ding in a  m e m ory 
m a p per  so  t ha t  t he  CPU though t  it was  always talking directly to  a  bank  of RAM, 
when  in fact  depending on  the  ad dresses, it  would  talk to  RAM, ROM, the  PPU, or  
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other  m e mory m a p pe d  registers.  Since Archi didn' t  have a  large a moun t  of 
experience writing verilog, I let  he r  do  m os t  of t he  tes ting, while I con tinued  to  
implement  new ins t ructions  (I also p rocras tina ted  on  writing both  BRK an d  RTI 
[retur n  fro m  interru p t]).  The NMI and  IRQ lines  were a  bi t  of  a  hack a t  t he  end, 
where ra ther  t han  latching the  next  ins t r uction  and  s ta te, I'll replace t ha t  with  t he  
mid dle of t he  BRK inst ruction, an d  ju m p  into t he  apropria te  s ta te, ra ther  t han  ever  
en tering the  decode s ta te.  After t he  CPU was m oved  on to  t he  FPGA, I focused  
p rimarialy on  debugging.  I foun d  tha t  d ue  to  the  lack of a  t radi tional FSM, and  
da tapa th, it was  easy to  m ake changes  to  it 's  s t r uc tu re.  There were rela tively few 
bugs  adde d  in by the  switch fro m  DDR to  t ra ditional RAM.   I s pen t  a  decent  a mou nt  
of t he  time d u ring the  se mes ter  jus t  m aking various  s mall m o d ules, s uch  as  the  
clock m o d ules, t he  interconnects, and  refor ma t ting the  top  m o d ule into a  m ore  sane  
for ma t.  Unfortuna tely, t here were a  few weeks where I wasn' t  able to  do  any work 
(family emergencies, job interviews, m ore  job interviews, and  so me com p u ter  
p roblems).  For t he  las t  day or  two, t here was no thing no ticably wrong with  t he  
p rocessor, and  I felt  t ha t  I was  at  a  bit  of  a  loss  to  help  with  t he  PPU.  There were 
several times  t hroughou t  t he  se mes ter  t ha t  I was  too  tired  to  reliably work on  the  
cpu, so  I s tar ted  writing the  APU.  I had  all of t he  basic code for  t he  APU, however  
t here were so me interes ting timing issues  tha t  existed  with  t he  audio p rocessor.  The 
syste m  clock ran  several tim mes  fas ter  t han  so me of t he  internals  of t he  audio, yet  
t here were registers  t ha t  needed  to  be  writ ten  to  by both  t he  audio p rocessor  and  the  
CPU.  At t his  poin t, I t hink  it would  take me  a couple of days  to  com plete t he  APU 
an d  integra te  it in to  t he  res t  of t he  NES.  
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