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Project Description

The general specification for picking a project in 18-545 was as follows: students
were to design a video game. The game was required to have the following:

- Output to a video display

- Sound effects

- User input

- Support for multiple simultaneous players

- Scoring or victory conditions

Teams were then to design and implement the game in a manner that it could stand
alone on the Xilinx Vertex-Il Pro FPGA board. To meet these specifications, team
TNT decided to create a hardware emulator for the Nintendo Entertainment System
(NES). The original goal of the team was to create a full hardware implementation of
an emulator which could read games in from a cartridge and take user input from
original NES controllers.

The CPU (6502)

The processing for the NESis handled by the 8-bit 6502 processor. The processor
had 56 different instructions, and 13 addressing modes, for a total of 151 different
unique instruction / addressing mode combinations (see 'Instructions’). The 6502 is
little-endian, meaning that data is stored least-significant byte first. 16-bit
addresses are sent from the CPU to a memory mapper to determine the physical
location of the memory at that area. While 16 KB of memory are addressable, many
of the addresses are actually mapped to the same location. The mapping of the
memory is described below.

MMU (Memory Mapping Unit)

The 16-bit CPU addresses are sent to the MMU to determine the physical location
specified by the address. The memory map of the address space is as follows:

$0000 - $07FF: Internal CPU RAM (mirrored at locations $0800- $1FFF)
$2000 - $2007: PPU 1/0 Registers (mirrored at locations $2008- $3FFF)
$4000 - $4017: Internal APU Registers

$4018 - $5FFF: Cartridge Expansion Area

$6000 - $7FFF:. Cartridge SRAM Area

$8000 - $FFFF: Cartridge PRG-ROM Area

The MMU uses the address from the CPU as an index into a lookup table, converts

the address to a different form depending on which region it maps to, and sets
control signals (read/write) to various portions of the NES, again depending on which
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region the address maps to.

Registers

The CPU has 6 8-bit registers which it uses for various purposes. They are as
follows:

PC: The 8-bit program counter, which stores the address of the instruction
currently being executed.

SP: The 8-bit stack pointer, which points to the bottom of the stack.
X: The 8-bit X register, used to offset addresses for various addressing modes.
Y: The 8-bit Y register, used to offset addresses for various addressing modes.

A: The 8-bit accumulator register, used to perform mathematical and logical
operations in various instructions.

P. The 8-bit status register, used to store various information about the status
of the processor. The information in the status register is as
follows:

Bit 7: N (set if the result of the last operation is negative)

Bit 6: V (set if the result of the last operation overflows)

Bit 5: Unused (always returns 0 on read)

Bit 4: B (Break, indicates if a break command has been executed, causing
an IRQ interrupt)

Bit 3: D (Decimal mode: switches the 6502 into and out of BCD mode)

Bit 2: | (Interrupt disable: masks IRQ interrupts)

Bit 1: Z (set if the result of the last operation is zero)

Bit 0: C (set if the result of the last operation has a carry-out)

Interrupts

The 6502 can receive and handle three different types of interrupts: Non- Maskable
Interrupt (NMI), Maskable interrupts (IRQ), and reset interrupts. They are described
below.

NMI: Non-Maskable interrupt. This interrupt is sent by the PPU to the CPU
when the PPU enters its VBlank stage. While the NMI cannot be masked,
clearing bit 7 of PPU 1/0O register $2000 will disable the PPU from
sending an NMI to the CPU on VBlank. When the CPU receives an NMI,
the current state is saved and execution jumps to the address specified
by the NMI handler address. This address isthe value at address $FFFA



and $FFFB in the program. Execution continues through the handler
until an RTI (return from interrupt) instruction is reached, and then the
previous state of the CPU isrestored and execution continues.

IRQ: Maskable interrupt. IRQ interrupts are sent to the CPU by various
memory mappers. In addition, the BRK (break) instruction will cause an
IRQ interrupt to be sent to the CPU. The CPU can mask IRQ interrupts
by setting the interrupt disable flag (bit 2 of register P). When an IRQ is
received, if interrupts are not disabled, the CPU saves the current state
and jumps to the location specified by the IRQ handler address. This
address isthe value at address $FFFE and $FFFF in the program.
Execution continues through the handler until an RTI is reached, and
then the previous state is restored and execution continues as normal.

Reset: Reset interrupt. Reset interrupts are sent to the CPU when the system
first starts and when the user presses the reset button on the NES. Reset
interrupts cannot be masked by the CPU. When areset interrupt is
received by the CPU, the current state is saved and execution jumps to
the reset handler, specified by the program at location $FFFC and $FFFD.
The interrupt handler is followed until an RTI instruction is
reached, at which point the previous state is restored and execution
continues as normal.

Addressing Modes

Zero Page: Zero page addressing mode takes a single operand which isthe
lower byte of the address. The upper byte of the address is assumed to
be zero (on the 'zero page).

Indexed Zero Page (X): Indexed zero page X addressing mode takes a single
operand which is the lower byte of the base address. The provided byte
is offset by the contents of the X register, and the resulting one byte
(wrapped around on overflow) isthe lower byte of the address. The
upper byte of the address is assumed to be zero.

Indexed Zero Page (Y): Indexed zero page Y addressing mode takes a single
operand which isthe lower byte of the base address. The provided byte
is offset by the contents of the Y register, and the resulting one byte
(wrapped around on overflow) isthe lower byte of the address. The
upper byte of the address is assumed to be zero.

Absolute: Absolute addressing mode takes two operands which form the two
bytes of the absolute address. Because the 6502 is little-endian, the
lowest byte of the address is provided first.

Indexed Absolute (X): Indexed absolute X addressing mode takes two
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operands, which form the two bytes of the base address (the first byte
provided forms the lower byte of the base). The base is then offset by
the contents of the X register to form the address (the sum wraps
around on overflow).

Indexed Absolute (Y): Indexed absolute Y addressing mode takes two
operands, which form the two bytes of the base address (the first byte
provided forms the lower byte of the base). The base isthen offset by
the contents of the Y register to form the address (the sum wraps
around on overflow).

Indirect: Indirect addressing mode takes two operands which form a 16- bit
address. The address isthen dereferenced, and the two bytes following
the dereferenced address form the new address. When forming both
addresses, the first byte is the byte with lowest priority.

Implied: Implied addressing mode takes no operands. The address is assumed
by the name of the instructions.

Accumulator: Accumulator addressing mode takes no operands. Instructions
using accumulator addressing mode operate directly on the accumulator
register.

Immediate: Immediate addressing mode takes one operand. Instructions using
immediate addressing mode operate directly on the one operand (no
address is calculated).

Relative: Relative addressing mode takes one operand which isinterpreted as a
signed integer in therange - 128 to 127. Thisinteger is used as an offset
from the current value of the program counter (after it isincremented
following the instruction) to form the address. Relative addressing
mode is used in branch instructions.

Indexed Indirect: Indexed Indirect addressing mode takes a single operand
which forms the base address. The contents of the X register are then
added to the base address with wraparound to form the lowest byte of
the intermediate address. The upper byte of the intermediate address is
assumed to be 0. The intermediate address is then dereferenced,
and the two bytes immediately following the dereferenced location form
the lowest and highest bytes of the address, respectively.

Indirect Indexed: Indirect indexed addressing mode takes in a single operand
which serves as the lowest byte of a base address. The upper byte of the
base address is assumed to be 0. The base address isthen dereferenced,
and the dereferenced value is offset by the contents of the Y register.
The result forms the address.



Instructions

There are 56 unique instructions that can be executed by the CPU. They are listed
below:

ADC Add Memory to Accumulator with Carry
AND "AND" Memory with Accumulator
ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bitsin Memory with Accumulator
BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator
CPX Compare Memory and Index X

CPY Compare Memory and Index Y

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

EOR "Exclusive-Or" Memory with Accumulator

INC Increment Memory by One
INX Increment Index X by One
INY Increment Index Y by One

JMP Jump to New Location
JSR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Index X with Memory

LDY Load Index Y with Memory

LSR Shift Right One Bit (Memory or Accumulator)



NOP

ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI

RTS

SBC
SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX

TXA
TXS
TYA

No Operation
"OR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode
Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

The PPU (2C02)

The graphics processing for the NESis handled by the 2C02 graphics processing
unit, known as the Picture Processing Unit (PPU). The PPU stores information about
the graphicsin a 16-kilobyte memory called VRAM. Further information about
spritesis stored in a 256 Byte memory called SPR-RAM. The CPU can write to VRAM
and SPR-RAM, as well as accessing other information relating to the PPU, through
use of an 8 Byte register file, which maps to the region $2000-$2008 in the CPU's
memory map. The registers are explained in detail below, as well as read/write

accessibility by the CPU.

PPU I /O Registers



$2000: PPU Control Register #1 (Write only)

Bit 7: Enable NMI on VBlank (0O = Disabled, 1=Enbal ed)

Bit 6: PPU Master/Slave Selection (O0=Master, 1=Slave) (Not used in NES)
Bit 5: Sprite Size (0=8x8, 1=8x16)

Bit 4: Background Pattern Table Select (0=VRAM $0000, 1=VRAM $1000)
Bit 3: 8x8 Sprite Pattern Table Select (0=VRAM $0000, 1=VRAM $1000)
Bit 2: VRAM Address Increment Amount (O=Increment by 1,

1=Increment by 32)
Bits 1-0:  Name Table Scroll Address (0-3=VRAM $2000, $2400, $2800,
$2C00)

Register $2000 contains various control information set by the CPU and used
by the CPU.

$2001: PPU Control Register #2 (Write Only)
Bits 7-5: Color Emphasis (Not used in emulator)

Bit 4: Sprite Visibility (0=Not Displayed, 1=Displayed)

Bit 3: Background Visibility (0O=Not Displayed, 1=Displayed)

Bit 2: Sprite Clipping (O=Hide in left 8-pixel column, 1=No Clipping)

Bit 1: Background Clipping (O=Hide in left 8- pixel column, 1=No
Clipping)

Bit O: Monochrome Mode (Not used in emulator)

Register $2001 contains various control information set by the CPU and used

by the CPU.
$2002: PPU Status Register (Read Only)
Bit 7: VBlank Flag (O=Rendering, 1=VBlank)
Bit 6: Sprite O Hit Flag (0=No Collision, 1=Sprite0/Background Collision)
Bit 5: Sprite Overflow Flag (0= At most 8 sprites, 1=More than 8 sprites
on a scanline)
Bit 4: Ignore Writes to VRAM

Bits 3-0: Not Used

Register $2002 contains various status information set by the PPU and read by
the CPU. The VBlank Flag (Bit 7) is cleared when $2002 isread by the CPU.
Reading also resets the 1%/2" write flag (see $2005 and $2006).

$2003: SPR-RAM Address Register (Write Only)
Bits 7-0: Address to access in SPR-RAM

Register $2003 contains the address used by the CPU to access SPR-RAM
during VBlank and used by the PPU to access SPR-RAM during rendering.
Also contains the address in SPR-RAM to start writing to during a DMA
operation. $2003 is automatically incremented every time $2004 is written to
(but not when it isread from).



$2004: SPR-RAM Data Register (Read/Write)
Bits 7-0: Datato writeto/ Dataread from SPR-RAM at address specified by
$2003

Register $2004 contains the data returned from SPR-RAM on aread or the
data to be written to SPR-RAM on a write at the address specified by $2003.
Writing to $2004 also increments the value of $2003.

$2005: PPU Background Scrolling Offset (Write Only)
First Write:
Bits 7-0: Horizontal scroll index (X value 0-255)

Second Write:
Bits 7-0:  Vertical scroll index (Y value 0-239)

Register $2005 is used to modify the contents of an internal 16-bit VRAM
address pointer maintained by the register file (see 'VRAM Index Pointer' for
details).

$2006: VRAM Address Register (Write Only)
Bits 7-0:  Address to access VRAM (First write isupper 8-bits of address,
second write is lower 6 bits)

Register $2006 is used by the CPU to specify what address to writeto / read
from during VBlank.

$2007: VRAM Data Register (Read/Write)
Bits 7-0: Data to write to/ Data read from VRAM at address specified by
$2006

VRAM Index Pointer:
A one-bit register is stored in the register file to determine the parity of a
particular access to register $2005 and $2006. In addition, the register file
stores a 16-bit register used by the background renderer to update its scroll
registers. The format of the 16-bit register is as follows:

yyyn nYYY YYXX XXX
X: The horizontal index of the tile to access in VRAM (0-31)
Y: The vertical index of the tile to access in VRAM (0-31)
n: The horizontal and vertical name table origin (0-3)
y: The fine vertical scroll offset, specifies which line of the accessed tile
to use (0-7)

Each write to $2005 and $2006 update the 16-bit register, with the value of
the one-bit register determining how the 16-bit register isupdated. The
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table below describes how the 16-bit pointer isupdated by the writes to
$2005 and $2006:

Pointer Bit $2005 - 17 $2005 - 2™ $2006 - 17 $2006 - 2™
Write Write Write Write

Bit 15: - - - $2006 bit 7 -
Bit 14: y - $2005 bit 2 $2006 bit 6 -
Bit 13: y - $2005 bit 1 $2006 bit 5 -
Bit 12: y - $2005 bit 0 $2006 bit 4 -
Bit 11: n - - $2006 bit 3 -
Bit 10: n - - $2006 bit 2 :
Bit 9: Y - $2005 bit 7 $2006 bit 1 -
Bit 8: Y - $2005 bit 6 $2006 bit 0 :
Bit 7: Y - $2005 bit 5 - $2006 bit 7
Bit 6: Y - $2005 bit 4 - $2006 bit 6
Bit 5: Y - $2005 bit 3 - $2006 bit 5
Bit 4: X $2005 bit 7 - - $2006 bit 4
Bit 3: X $2005 bit 6 - - $2006 bit 3
Bit 2: X $2005 bit 5 - - $2006 bit 2
Bit 1: X $2005 bit 4 - - $2006 bit 1
Bit 0: X $2005 bit 3 - - $2006 bit 0

Table 1: VRAM Pointer Update Values

For example, on the first write to register $2005, the 7" bit of the value written to

$2005 gets inserted in the VRAM pointer bit 4, which corresponds to the upper bit of
the X tile index (see '‘Background Rendering'). On the second write to register $2005,

the 7" bit of the value written getsinserted in the VRAM pointer bit 9, which
corresponds to the upper bit of the Y tile index. In addition, bits 2-0 of the first
write to $2005 update the fine horizontal counter in the background renderer.

One other oddity of the NESisthat thereis only one one-bit parity register to
determine whether aregister ison the first or second write. Asaresult, writing to
$2005 once causes the next write to $2006 to count as the second write.

VRAM

The NES graphics information is stored in a 16-Kilobyte memory called VRAM. the
layout of VRAM is as follows:
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Figure 1: VRAM Memory Map
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NES Color Bits

There are 64 NES system colors, specified by a 6-bit value. At any given point in
time, sprites and the background can only use a subset of those colors as specified
by their respective palette. The background palette consists of the 16 bytes starting
at location $3F00. Each byte-long entry isthe 6-bit NES system color index, as well
as two bits used by the NESto specify the intensity of the color (these bits are
unused by the emulator). The color at location $3F00 is the default background
color, and ismirrored at locations $3F04, $3F08, and $3F0C. Therefore, the
background can only use 13 colors. The sprite palette consists of the 16 bytes
starting at location $3F10. The entries at locations $3F10, $3F14, $3F18, and $3F1C
are used to indicate the sprite isinvisible, so the sprites can therefore only use 12
colors.

For any given pixel displayed on the screen, its index into the sprite or background
palette is determined by a 4-bit value. The lower 2-bits are determined by the
pattern tables (see 'Pattern Tables'), and the upper 2-bits are determined by the
attribute tables (see 'Attribute Tables').

Pattern Tables

The NES has two pattern tables, one at VRAM location $0000, and one at VRAM
location $1000. Eeach 16-byte entry into the pattern table describes the lower 2-
bits of the index into the palette table for an 8x8 pixel tile. The first 8 bytes contain
the lowest bit, and the second 8 bytes contain the highest bit, as shown in an
example below:
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Address Yalue Address Value

S0000 00040000 S0008 00000000
00000D0DD 00101000
01000100 01000100
00000000 10000010
11111110 00000D0D00D
no0000D0an 10000040
(Mooooo1a0 (Mooooo1o

0007 00O0O0O0DO0DD0 S000F 0O0O0O0OQO0O0DQ

Result
00010000
00202000
02000230010
20000020
14111110
20000020
Eo00o00 30
00000DD D

Figure 2: Pattern Table Example

As show in the example, the upper bit of the color is taken from the second 8-hytes
($0008 - $000F), and the lower bit of the color istaken from the first 8 bytes ($0000
- $0007). These two bits are concatenated together to form the lower two bits of the
index into the palette table.

Attribute Tables

The upper two bits of the index into the palette tables is given by the attribute
tables. There are 4 attribute tables in the NES, one at VRAM location $23CO0, one at
$27C0, one at $2BCO0, and one at $2FC0. Each one-byte entry into the attribute table
describes the upper two bits of the index into the palette table for 16 8x8- pixel tiles.
The lowest two bits are used to describe the upper-left square of 4 tiles, the next
two bits describe the upper-right square, the third two bits describe the lower-left
square, and the highest two bits describe the lower-right square.
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1
|

Square 0 ! Square 1
|

0 s1 | 84 85
|

2 s3 | %6 87
|

_________ _=__________

Square 2 : Square 3
I
|

B 59 [ i FD
I
|

3A 3B : JE EF
I

Figure 3: Attribute Table Example

In the example above, $0- $F each describe one 8x8-pixel tile. If the corresponding
one-byte entry in the attribute table was 33221100 where 0, 1, 2, and 3 are arbitrary
2-bit values, then $C-$F would use 33 as the upper two bits of the index into the
palette table, $8-$B would use 22, $4-$7 would use 11, and $0-$3 would use 00.

Name Tables

Each attribute table has a corresponding name table. The four name tables used by
the NES are stored at VRAM locations $2000, $2400, $2800, and $2C00. Each one-
byte name table entry acts as an index into either pattern table O or pattern table 1
to specify which pattern tile is used for an 8x8-pixel tile.

The NES only has space in its VRAM to store two name tables and two attribute
tables; however, it can address four of each. Two name and attribute tables are
mirrors of the other two, in a manner determined by the type of mirroring used by
the game. If horizontal mirroring is being used, the first two name and attribute
tables are the same, and the second two name and attribute tables are the same. If
vertical mirroring is being used, name and attribute tables one and three are the
same, and two and four are the same. Additionally, a game can use 4-way scrolling,
in which each name table and attribute table stores unique information. In this case,
the last two name and attribute tables are stored in internal memory on the
cartridge.

Datapath Details

The datapath in the NESis broken up into two distinct sections, sprites and
background, which are joined together at the end. The datapath for each section is
described below.
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Sprite Datapath

Information about the spritesis stored in SPR-RAM, a 256-byte memory that can be
written to and read from by the CPU during VBlank. Each sprite is described by a
contiguous 4-byte section, for atotal of 64 sprites possible. The sprites are stored
in order of priority, such that if two sprites contain overlapping non-transparent
sections, the sprite that is first in SPR-RAM will contain priority over the other. Only
8 sprites can be displayed on a scanline; the first 8 sprites in SPR-RAM that are
determined to be in range in a given scanline are used. The layout of the spritesin
SPR-RAM is described as follows:

SPR-RAM

BYTE O: Sprite Y-Position (Minus 1)
This byte stores the Y-Coordinate of the sprite on the screen, minus 1. The
reason one is subtracted is so that the in-range evaluation can be simplified,
as it happens one scanline before the sprite is actually rendered (see
'Rendering Details').

BYTE 1: Pattern Table Tile Index
This byte stores the index into the pattern tables to determine the bitmap for
this sprite. For 8x8 sprites, bits 7-0 determine the index directly, and bit 3 of
register $2000 determines which table to use. For 8x16 sprites, bits 7-1
determine the upper 7 bits of the index (both of the patterns at that index are
used), and bit O determines which pattern table to use.

BYTE 2: Sprite Attribute Information
This byte stores various attribute information about the sprite, as described

below:

Bit 7: Flip Sprite Vertically (1=Flip, 0=Don't flip)

Bit 6: Flip Sprite Horizontally (1=Flip, 0=Don't flip)

Bit 5: Background Priority (1=Sprite is behind background, 0=Spriteisin

front)

Bits 4-2: Not used (always 0)

Bits 1-0: Upper two bits of palette entry (correspond to attribute table
information)

BYTE 3: Sprite X-Position
This byte stores the X-Coordinate of the sprite on the screen.

During the first stage of each scanline (see 'Rendering Details'), the sprite
information is later transferred into a 24-byte internal region of temporary storage.
Each spritein this area is described by three contiguous bytes, for a total of eight
sprites (corresponding to the 8 sprites that can be in range in each scanline). The
information stored for each sprite is described as follows:
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Sprite Temporary Storage

BYTE O: Pattern Table Tile Index
This byte stores the index into the pattern tables to determine the bitmap for
this sprite. Thisis copied directly from byte 1 in SPR-RAM.

BYTE 1: Sprite X-Position
This stores the X-Coordinate of the sprite on the screen. Thisis copied
directly from byte 3 in SPR-RAM.

BYTE 2: Sprite Attribute Information
This stores various attribute information about the sprite. This attribute
information is slightly different than the attribute information stored in SPR-
RAM. Itis described below:

Bits 7-4: Lowest 8-bits of the in-range comparison (see 'Rendering Details')

Bit 3: Flip Sprite Horizontally (1=Flip, 0=Don't Flip)
Bit 2: Background Priority (1=Sprite behind background, 0=Sprite in
front)

Bits 1-0: Upper two bits of palette entry

From the temporary storage, the pattern is looked up in VRAM. The address of the
sprite pattern in VRAM is determined as follows (depending on whether sprite sizeis
8x8 or 8x16):

8x8 sprites: { 1'b0, $2000.3, Tile Index [7:0], High_Bit, Range[2:0]}
8x16 sprites: { 1'b0, Tile Index[0], Tile Index[7:1], High_Bit, Range[2:0]}

High_Bit is a control signal from the FSM, which will first load the lowest bit of the
palette table index, and then the highest bit. Range corresponds to the difference
calculated in the in-range evaluation unit (see 'Rendering Details').

Afterwards, the pattern (along with the X-Coordinate, the attribute information, and
the priority bit) are transferred into a series of buffers which hold the data until
rendering occurs.

Background Datapath

During the render period and during the background prefetch (see 'Rendering
Details'), the background renderer must look up first the pattern index in the name
table, then the attribute information in the attribute table, and lastly it must look up
the upper and lower byte describing the particular pattern tile indexed.

A series of counters determine which index in the name table to access in VRAM; the
following describes the counters and their bit-widths:
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FH[2:0]: The 3-bit fine horizontal offset used to determine which pixel of the
pattern to select

FV[2:0]: The 3-bit fine vertical offset used to determine which line of the
pattern to use

HT[4:0]: The 5-bit horizontal offset used to determine which horizontal tile to
fetch

VT[4:0]: The 5-bit vertical offset used to determine which line to fetch a tile
from

H: The 1-bit counter used to determine the lowest bit of which name table to
use

V: The 1-bit counter used to determine the highest bit of which name table to
use

The address looked up in the name table corresponds to the following:
{2'b10, Tileindex (from name table) [7:0], High_Bit, FV[2:0]}

Because the fetching of sprites and background tiles occurs at different times, the
High_Bit signal can be shared between the two.

The counters are chained together in the following order: FH, H, FV, V, HT, VT. When
one rolls over to its max value (all ones for each counter except VT, which rolls over
at 239), the next one in thelist isincremented. In addition, the counters are updated
on writes to $2006 and $2007 by the CPU, as determined by the VRAM pointer. The
AXXXX' of the VRAM pointer corresponds to the HT counter, the 'YYYYY'
corresponds to the VT, the 'yyy' corresponds to the FV, and the 'nn’' corresponds to
the FV and HV, respectively.

After the appropriate byte is fetched from the name table, it is stored in an 8-bit
register, and the corresponding entry is fetched from the attribute table. At this
point, the VT and HT counters select which two bits of the attribute byte to use, and
the two attribute bits are stored in a 2-bit register. Then the two corresponding
bytes are fetched from the pattern tables, as selected by the tile index from the name
table and from the FV counter. Each of these pattern bytes are stored in 8-bit
buffers. After all of the values are fetched, the attribute bytes, along with the two
pattern bytes, are moved to a buffer. During render, the appropriate bits of the
buffer are determined by the FH counter, which is incremented every render cycle.
When the FH counter reaches 7, the next patterns and attribute bits are loaded from
the registers into the buffers to be rendered.

Rendering Details

The rendering of each fram in the PPU is broken up into 261 scanlines. The first 20
scanlines (0-19) are referred to as the VBlank period. Thisisthe only time when the
CPU may access SPR-RAM and VRAM. The PPU rests during this period, and nothing
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isrendered on the screen. The next scanline (20) is used by the PPU to load data
from SPR-RAM into the Sprite temporary memory, and then to look up the patterns
in VRAM and load the sprite buffers so the pixels will be available at the start of
scanline 21. The first two tiles of the background for scanline 21 are also looked up
in scanline 21. Nothing isrendered on the screen during scanline 20). The following
240 scanlines (21-260) are used to actually render pixelsto the screen. The next
scanline (261) isthe last scanline. During this scanline, the PPU rests and prepares
to enter the VBlank period.

Each scanline lasts 341 clock cycles. The PPU must look up 170 bytesin VRAM per
scanline (except for scanlines 0-19 which look up nothing, scanline 20 which only
looks up sprites and 2 background tiles, and scanline 261 which does nothing).
Since each VRAM access takes two clock cycles, the scanlines can be evenly divided
into 171 stages, one for each lookup plus arest cycle at the end. The stages are
described as follows:

Memory stages 1-128:

Thisisthe period during which the PPU is actually rendering pixels on the screen. It
lasts 256 clock cycles, during which one horizontal line (256 pixels) isdrawn on the
screen. During these memory stages, the background renderer isreading from
VRAM to determine the name, attribute, and pattern table entries corresponding to
each tile on the current scanline (except the first two tiles, which are fetched during
stages 161-168 on the previous scanline). The address into the name tables in
VRAM is determined by a series of scroll regesters (see '‘Background Datapath'
above). Once fetched, the background data is stored in the background buffers,
where it isdisplayed. The fine horizontal scroll determines which pixel from the last
buffer will actually be displayed on the screen.

The X-Coordinate value in the sprite buffers is decremented each cycle during this
phase until it equals zero. At this point, the sprite starts displaying on the screen.

Also during these stages, the sprite renderer reads through SPR-RAM to determine
which sprites are in range to be drawn during the NEXT scanline. The first 8 sprites
determined to be in range are loaded into the sprite-temporary memory.

The in-range evaluation starts from the first sprite in SPR-RAM, and ends with the
64" (each sprite is evaluated, even after 8 in-range sprites are found). The
evaluation of each sprite takes 4 cycles, corresponding to reading each byte in SPR-
RAM associated with that sprite. The following difference is calculated as an 'in-
range test'":

(Current_Scanline —21) — (Sprite_Y_Coordinate + 1)

If this value is between 0 and 7, the sprite is determined to be in-range. Itisthen
moved into sprite temporary storage, along with the lowest four bits of the in-range
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test difference. If the vertical inversion bit is set, the lowest three bits of this
difference are flipped to produce the vertical inversion effect. The first 8 sprites
determined to be in range are stored into the memory at this point.

Memory stages 129-160:

During these stages, the sprite renderer loads the buffers with the bitmap pattern
data. For each of the 8 spritesin temporary memory, the renderer first looks up the
bitmap pattern in VRAM using the index stored at the first byte in temporary
memory. For each sprite, two garbage VRAM accesses occur (these happen so that
the Nintendo can reuse the hardware for the background fetching). Then the bitmap
corresponding to the lowest bit is fetched, and then the bitmap corresponding to the
highest bit is fetched. At this point, horizontal inversion is applied, and then the
patterns are stored in the sprite buffers along with the attribute data and the priority
bit.

Memory stages 161-168:

Thisiswhen the background renderer fetches the first two tiles to be displayed on
the screen during the next scanline. It does this so that they can be loaded into the
buffer and be ready to start displaying at the beginning of the render period. The
fetching of these two tiles works the exact same way as it does in the first 128
memory stages: first the name table byte isretrieved from VRAM, then the attribute
table byte, next the pattern table entry corresponding to the lower bit of the index
into the palette table, and last the pattern corresponding to the higher bit.

Memory stages 169-170:

During this stage, the background renderer fetches two bytes from the name table.
It isunclear as to why these two bytes are fetched from VRAM.

After stage 170 (clock cycle 341):

After the 170" memory fetch, the PPU rests for one clock cycle before beginning the
next scanline.

The TNT NES Emulator

TNT Emulator Results

The original goal of the project was to be able to play NES games from a cartridge
that connects to the board. Inthe end, support for cartridges was not able to be
added. Intheir place, ROMs are downloaded onto the Desktop. These ROMS are run
through a program that translates them into the PRG-ROM and CHR-ROM sections.
The CHR-ROM and VRAM modules are then initialized to the values specified in the
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files before the project is synthesized onto the board.

In addition, the pAPU (2A03) was not fully implemented. The following describes the
role of the pAPU and team TNT's final progress in the module.

The 2A03 was the sound processor used by the NES. It actually contained the 6502
CPU, and had a several wrappers that controlled various frequency generators, and
other components. The CPU memory addresses $4000 through $4020 are handled
by the 2A03. Most of them simply control the audio processor, setting the volume,
envelope decay, frequency, duration, etc. $4014 is special; it doesn't actually control
the pAPU exactly, but it does initiate a DMA sequence lasting 512 cycles. The pAPU
sections of the 2A03 are also responsible for generating the level sensitive IRQ's.
Team TNT implemented the DMA engine as a module between the CPU

and the MMU, with the pAPU as a separate module that would be accessed viathe
MMU.

As of right now most of the individual modules for controlling the pAPU have been
written (duty cycle generator, triangle wave generator, envelope generator, frequency
sweep generator, timing control, frequency control). Missing are a random noise
generator and a decoder that has some

interesting properties. Most of the components haven't been hooked up, and they
are missing the dual ported ability to communicate with the CPU. After solving a
similar problem with the PPU and CPU communicating with each other, any timing
issues with the pAPU can be solved in arelatively small amount of time.

The NES emulator is designed to run on the Xilinx FPGA board. Asaresult, several
components (such as the VGA connection) were unique to the emulator. Those
modules are described below.

Emulator - Specific Modules
Clock Generation

The Xilinx board has one system clock that runs at 100 MHz. All other frequencies

are generated through the use of the Digital Clock Manager (DCM) module (provided
by Xilinx for use in XPS, adapted to be used in ISE). The various clocks used by the

emulator, along with the method of generating them, is listed below.

VGA Clock: The VGA output is designed to run at 25 MHz; thisis the least
flexible clock in the design of the emulator. The VGA clock is
generated by dividing the board's system clock by 4. The VGA
base clock then serves as the system clock for the NES (although
the NES sytem clock ran at only 24 MH2z).

PPU Clock: The PPU clock is obtained by dividing the system clock by 6,
yielding a 4.17 MHz clock. While thisis slower than the NES' PPU
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clock frequency of 5.1 MHz, thisis not a problem as the VGA RAM
has 3 buffers to accommodate different clock frequencies.

CPU Clock: The CPU clock is obtained by dividing the system clock by 12,
yielding a 2.53 MHz clock. Thisisonly 2 times slower than the
PPU, as opposed to the 3 times slower that the 6502 clock isfrom
the 2C02 clock. This will also not cause a problem; it will only
allow the CPU more time to write to VRAM during a VBlank.

VGA Output

The Xilinx boards are hooked up to a 640 x 480 VGA computer monitor. The
monitor is hooked up to a 25 MHz clock. In addition to the clock, it has 8-bit ports
for red, green, and blue pixel values, as well as one-bit ports for an h-sync signal
and av-sync signal. During each of the first 640 VGA clock cycles, the value
received by the red, green, and blue ports will determine the pixels displayed on the
screen. After 640 cycles (corresponding to 640 horizontal pixels or one line), an the
h-sync signal is asserted and the red, green, and blue values must be zero. Once the
h-sync signal goes low, the screen starts accepting red, green, and blue values
corresponding to the pixels on the next line. Once all 480 lines have been drawn, the
v-sync signal is asserted. Again during this time, the red, green, and blue values
must be zero. If any of the color values are nonzero during h-sync or v-sync, the
monitor will not receive a video signal.

In addition, the timing of the signals must correspond to a preset timing pattern.
Xilinx provides a module in the XPSlibraries to generate the correct timing signals.
Because the module is designed for XPS, the module was ported from the XPS
libraries to work in ISE and trimmed to fit the needs of the emulator. Most of the
unnecessary signals were stripped out (although some still remain), and the VGA
RAM module used by XPSwas modified to fit the needs of the emulator.

The VGA RAM moduleisimplemented as a series of 256 x 240 x 6-bit dual -ported
block rams. Each 6-bit entry corresponds to the NES system color to be represented
at that location on the screen. The PPU writes to the RAM module during its render
stage, and after it has written valid data to one entire buffer, the VGA module reads
from that buffer. Because the VGA reads quicker than the PPU writes to the RAM,
three buffers are necessary to completely prevent tearing. The VGA module reads
from one buffer behind the buffer that the PPU is writing to, sometimes rendering
the same buffer twicein arow to stay behind. When the PPU is done writing a
buffer, it starts writing to the next buffer while the VGA finishes rendering from its
current buffer, when it moves on to the one the PPU has just finished writing to.

Because the NES graphics are at a 256 x 240 resolution, each pixel isrendered 4

times to create a 512 x 480 resolution. The remaining 128 horizontal pixels on the
screen are rendered in black, 64 before the start of the NES screen and 64 after.
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Controller Interface

The CPU obtains user input information by querying to memory mapped I/O ports
(address locations $4016 and $4017). To read the controller input data the CPU
must first write a 1 and then a 0 to the address. After these signals have been
asserted the CPU can then read the data back from the I/O port. The datais
returned serially with one button data value returned per read. The dataisreturnin
the following order: {A, B, SELECT, START, UP, DOWN, LEFT, RIGHT}.

To actually obtain the data from the input controller continually poll the controller
and store the input data in registers that the CPU will have access to when reading
from the 1/0 ports. To accomplish polling an NES controller input finite state
machine implementation was taken from a previous mit project. The source used
can be found at the following link
(http://web.mit.edu/6.111/www/s2004/PROJECTS/2/nes.htm). The general state
progression from this source was correct but some alterations to the code had to
made for the module to work for our implementation.

Emulator - Specific Implementation

The main goal when developing the NESemulator was to make it as similar as
possible to the original NES; however, some portions of the NESwere either
undocumented or unclear, and therefore the emulator differs from the original
system in some ways. Differences are listed in this section.

CPU: The main difference between TNT's emulator and the actual NES are cycle
counts for instructions. While most instructions maintain the same
cycle counts as the original system there are a few which do match the
specified cycle count. Aswith most disparitiesin the emulator
implementation, given more time the these discrepancies could easily be
removed.

PPU: The emulator's PPU follows documented datapath fairly closely. Some
features were omitted to allow time to get a simple ROM working. Most
notable, sprite 0 hit detection and some of the memory mirroring was
not implemented.

Final Scope: Due to time constraints the final emulator implementation lacked
sound capability and the game cartridge interface. The emulator can
however run downloaded game ROMs in the .NESformat. A graphics
demo and a maze game were successfully downloaded and ran on the
emulator. Further game ROM testing was not completed due to lack of
time.

NES Emulation Advice
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The two most difficult parts of creating a hardware emulator of the NES are
understanding how the NESworks and testing the pieces of the emulator. Before
starting to create an emulator, it isimportant to have thoroughly read through and
understood as much documentation about the NES as possible. Itis also helpful to
notice where discrepancies exist in various documentations; that way, when creating
the emulator, the designer can be mindful as to what may or may not be correct.

It is not vital to completely understand everything about the NES before starting to
write the emulator; because the original NESwas designed for performance, there are
many hacks that will not make sense until the emulator designer has gotten to a
particular point in the emulator design. Itishowever important to understand at a
higher level how the NESis put together, the components involved and how they
interface with one another.

When testing the various components of the NES, it is a good idea to thoroughly test
each component alone and to be confident that each component works before
starting to integrate the various components. Sufficient time should be left for
integration; once the PPU and the CPU are communicating through the PPU's I/O
registers, it is very likely that there will be many bugs that were not found during
unit testing.

There were several pieces of information that became apparent throughout the
course of the project. Among them are:

- Synthesis is not simulation. Often times, a particular component will
simulate properly and will appear to work on ModelSim. Unfortunately,
this does not mean that it will synthesize correctly. Furthermore, even if
it does synthesize correctly, it is not necessarily true that it will perform
the same before and after synthesis. Therefore, it isimportant to test
thoroughly after synthesis to ensure that the components are fitting
together correctly. In addition, the XST synthesizer will attempt to
optimize away parts of the design that are unnecessary. Therefore,
when testing an individual module with a stub to simulate the rest of the
design, the stub will often be optimized away and this will sometimes
cause the appearance of the design that is being tested not working. The
lesson to be learned is that synthesis can change many parts of a design,
and it isimportant to read the synthesis report to understand what
exactly it is doing.

- Read the documentation carefully. In many cases, especially in the PPU, the
functionality of the NES (or emulator) depends on a small detail of the
design that could easily be misunderstood or even ignored. Reading
many different documents allows the emulator's designer to catch as
many of these details as possible. While designing, documentation
should be referred to often.
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- Read the XST synthesis documentation. Thereis avery good document
describing synthesisin XST. The most important part of the document
isthe portion that describes how to design for the synthesizer.
Particularly, RAMs and FSMs should be designed in a manner such that
the synthesizer will recognize them and synthesize them in an optimal
fashion.

Individual Thoughts

Michael Bailey (mbailey)

The NES project was a very interesting and very fun project. For this project |
worked primarily on the PPU. Dave and | co-wrote the entire PPU datapath and
control over the first half of the semester. To accomplish this, we spent a significant
portion of time sifting through documentation and trying to understand all of the
memory optimizations the NES system used. Once we completed this portion of the
project, | began working on the controller interface and the PPU/CPU interface. The
controller took about a week to get working. This was mostly due to using a broken
controller at the beginning of testing. The PPU-CPU 1/0 interface took about the
same amount of time. It was difficult at first managing the interface with two clocks,
but eventually everything was debugged and working properly. After these tasks
were completed, we began overall integration. | worked with archi debugging some
to the interrupt functionality of the CPU and then finally debugging the PPU. This
took lots of time especially since synthesis took close to twenty minutes per try.
Early in the semester | worked about 10 to 20 hours per week on the project and in
the last month | put in about 60 hours per week. Also after the public Demo Dave
and | put in about 20 hours worth of work to get the ROMs to actually work. Not all
of this time was spent working however since synthesis took so long.

| think the class was set up very well and the TAs were especially helpful. My only
regret was not knowing enough about the FPGA board when specifying our initial
design. If we would have specified our RAM modules to target the block RAMs from
the beginning of the project, we would have had much less to debug and would have
been able to demo better games. However, due to this lack of foresight, we
scrambled over the last three weeks to tweak all of our modules and timings so we
could utilize the block RAMs and no just the logic fabric. This was atramendous
setback, and made the first half of semesters work useless.

The only change | would suggest is maybe a lecture dedicated to verilog design
specific to the FPGA where FSM and RAM design is discussed. This may not be

necessary for most groups, but any group using ISE would find this information very
helpful. Having this knowledge early in the semester would have been invaluable.

David Mohney (dmohney)
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Before taking this course, | had very little (240 level) experience with synthesizable
verilog. Because our project was implemented largely in Verilog, the course helped
me grasp the difference between simulatable verilog and synthesizable verilog.

From the start of the semester, team TNT split up into the PPU team, which | was a
part of, and the CPU team, which | was not. Michael and | worked together in
implementing the PPU. The first approximately third of the class was spent getting
used to how the PPU works, and reading through various different documentations
and noting discrepancies in them. Once we actually started coding the PPU, things
went pretty quickly. Both Michael and | worked on most components of the PPU
together, and spent a few hours per week throughout the beginning of the semester.
Starting about a week or two before Thanksgiving break, we started spending
considerably more time in lab, pulling the occasional all -nighter working on various
parts of the PPU. | then started working on the VGA output while Michael started
working on the controllers and the PPU 10 registers. During the last week of the
project, the PPU and CPU teams worked together to attempt to integrate the PPU and
CPU together, and to debug the various problems we encountered during integration.
The team spent most of the entire week in lab during this week. In the week
following the demo (during which we did not demo because our project was broken),
Michael and | continued to work on the project to get ROMs to work. Inthe final
couple of days, Michael continued to debug the PPU while | compiled the final report
and created the team's website.

This class was a very positive experience for me and introduced me to the exciting
field of FPGA design. If | had the semester to do over again, there is absolutely
nothing that | would change.

Archi Agarwal (archia)

| had a good learning experience with this project. | took this course so as to
improve my verilog coding skills. | had done verilog coding before but this was the
first time | was doing a big project in verilog. But soon | realized that there was
much more in this project than just verilog coding. This class was good and
introduced me to FPGA concepts and also computer architecture.

My teammate Marty helped me a lot with Verilog coding. Initially we discussed the
state diagram of the entire CPU. The document provided on 6502 on web is of
immense help. | initially wrote the verilog code for ALU and tested it by simulating
on Modelsim and writing small test benches in machine code. After ALU, | started
with CPU. Starting with 140 states we finally reached 25 states and in this Marty was
of great help to me. | simulated the whole CPU and initially tested each addressing
mode and each instruction separately. After that | wrote small test cases like
generating multiple of 2 or generating a particular sequence of numbers and tested
the CPU against these test benches. Initially | started by working a couple of hours
per day. However this was my first experience of verilog coding on such a big project
so | had to work nearly 6-7 hours everyday. It took me along time to figure out even
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small problems. | believe my verilog coding has improved a lot over this semester.

Then | started working on interrupts. | wrote verilog for IRQs and NMI interrupts and
simulated the code using Modelsim and wrote a testbench for it. | also helped a bit in
the integration of CPU and PPU working mainly on the CPU part, debugging using
modelsim. At the last moment CPU verilog was changed by Marty so as to fix the
timing problem and | tested it against small testcases. | do wish | knew how to use
Xilinx FPGA before. Since | had never worked on FPGA, | could not work much on the
board. However Marty, David and Michael helped me a lot in understanding the
working of board and | am thankful to them for that. | also wish we had labs that
gave demo as to use ISE. After doing almost all labs we had to learn ISE on our own.

Martin Rosenberg (mjrosenb)

For the 18-545 group this semester, | was on the subteam that created the 6502
processor. The 6502 was first created in the late 1970's. Assuch, they did alarge
number of things that probably haven't been done since the mid 1980's. Initially our
sub-team divided the processor into three main components, a decoder, an ALU, and
a fsm/datapath. | spent about two days translating a .GIF of the ISA into a decoder
that was woefully incomplete. After this, archi and | spent a few days attempting to
get a general overview of how we were going to create the processor. This presented
some interesting challenges, because the CPU had not only an ISA that we had to
follow, but it also had atiming restrictions. Since the processor isn't a MIPS style
processor that has limited addressing modes, it was kind of obvious that we needed
to have a FSM & datapath as opposed to the single cycle processor that is created in
18-447 that has no internal state that isn't visible to the programmer. Never having
created such a processor before, | was at a bit of aloss as how to go about designing
a datapath and FSM. | tried designing a datapath first, then make an FSM using the
datapath. There were some issues related to not having enough of the datapath to
use in the FSM, or not being able to meet timing restrictions with the FSM. In the
end, we opted to write all of the operations in a RTL form explicitly specifing a
number of temporary registers, then deriving an FSM from the list of all instructions,
and the datapath from the set of operations that were being done. There were a
bunch of instances where in order to make our work easier, we didn't try to optimize
our design, and used 3 adders when 1 would have been sufficient. The primary goal
was to get each instruction to run in an equal number of cycles if not lower. The
though process behine this was that we could always add a few cycles of 'do nothing'
to the processor. Initially, we had designed the processor to have zero cycle memory
access time, which in reality just meant that it would take any amount of time less
than a cycle. Based on last year's group using DDR memory, | thought that this was
acceptable. It wasn't until a while later that we were able to figure out how to make
everything work with a combination of pre-fetching and adding nops into the

FSM. After the CPU had passed a suite of tests that we wrote, | fixed the CPU so that
it could work on both modelsim and on xilinx. The fun step was adding in a memory
mapper so that the CPU thought it was always talking directly to a bank of RAM,
when in fact depending on the addresses, it would talk to RAM, ROM, the PPU, or
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other memory mapped registers. Since Archi didn't have a large amount of
experience writing verilog, | let her do most of the testing, while | continued to
implement new instructions (I also procrastinated on writing both BRK and RTI
[return from interrupt]). The NMI and IRQ lines were a bit of a hack at the end,
where rather than latching the next instruction and state, I'll replace that with the
middle of the BRK instruction, and jump into the apropriate state, rather than ever
entering the decode state. After the CPU was moved onto the FPGA, | focused
primarialy on debugging. | found that due to the lack of a traditional FSM, and
datapath, it was easy to make changes to it's structure. There were relatively few
bugs added in by the switch from DDR to traditional RAM. | spent a decent amount
of the time during the semester just making various small modules, such as the
clock modules, the interconnects, and reformatting the top module into a more sane
format. Unfortunately, there were a few weeks where | wasn't able to do any work
(family emergencies, job interviews, more job interviews, and some computer
problems). For the last day or two, there was nothing noticably wrong with the
processor, and | felt that | was at a bit of aloss to help with the PPU. There were
several times throughout the semester that | was too tired to reliably work on the
cpu, so | started writing the APU. | had all of the basic code for the APU, however
there were some interesting timing issues that existed with the audio processor. The
system clock ran several timmes faster than some of the internals of the audio, yet
there were registers that needed to be written to by both the audio processor and the
CPU. At this point, I think it would take me a couple of days to complete the APU
and integrate it into the rest of the NES.
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