
Team TNT
David Mohney
Michael Bailey
Archi Agarwal

Martin Rosenberg

18 - 545 Fall 2007

h t t p: / / www.andrew.cmu.edu / ~ d m o h ney /TNT

1

Team TNT: Contents

Project Description 3

CPU (6502) 3
MMU 3
Registers 4
Interrup ts 4
Addressing Modes 5
Inst ructions 7

PPU (2C02) 8
PPU I /O Registers 8
VRAM 11

NES Color Bits 13
Pattern Tables 13
Attribute Tables 14
Name Tables 15

Datapa th Details 15
Sprite Datapa th 16
Backgroun d Datapa th 17

Rendering Details 18

The TNT NES Emulator 20
TNT Emulator Results 20
Emulator Specific Modules 21

Clock Genera tion 21
VGA Outp u t 22
Controller Interface 23

Emulator Specific Implementa tion 23

NES Emulation Advice 23

Individual Thoughts 25
Michael Bailey 25
David Mohney 25
Archi Agarwal 26
Martin Rosenberg 27

2

Project Description

The general s pecification for picking a p roject in 18 - 545 was as follows: s tu den ts
were to design a video ga me. The ga me was required to have the following:

- Outp u t to a video dis play
- Sound effects
- User inpu t
- Suppor t for m ul tiple simultaneous players
- Scoring or victory conditions

Teams were t hen to design and imple ment t he game in a m a n ner t ha t it could s tan d
alone on the Xilinx Vertex - II Pro FPGA boar d. To mee t t hese s pecifications, tea m
TNT decided to crea te a har dware e m ulator for t he Nintendo Enter tain ment Syste m
(NES). The original goal of t he tea m was to crea te a full ha r dware imple menta tion of
an em ula tor which could read games in from a car t ridge an d take u ser inpu t fro m
original NES controllers.

The CPU (6502)

The p rocessing for t he NES is han dled by the 8 - bi t 6502 p rocessor. The p rocessor
ha d 56 different ins t ructions, and 13 ad dressing m o des, for a to tal of 151 different
u nique ins t r uction / add res sing m o de combinations (see 'Ins t ructions'). The 6502 is
lit tle - endian, m eaning tha t da ta is s tored leas t - significant byte firs t. 16 - bit
add resses are sent fro m the CPU to a m e m ory m a p per to de ter mine the p hysical
location of t he m e mory a t t ha t a rea. While 16 KB of me mory are add ressable, m a ny
of t he ad dresses are actually m a p pe d to t he sa me location. The m a p ping of t he
me m ory is described below.

MMU (Memory Mapping Unit)

The 16 - bit CPU ad dresses are sen t to t he MMU to de ter mine the p hysical location
s pecified by the ad dress. The me mory m a p of t he ad dress s pace is as follows:

$0000 - $07FF: Internal CPU RAM (mirrored a t locations $0800 - $1FFF)
$2000 - $2007: PPU I /O Registers (mirrored a t locations $2008 - $3FFF)
$4000 - $4017: Internal APU Registers
$4018 - $5FFF: Cart ridge Expansion Area
$6000 - $7FFF: Cart ridge SRAM Area
$8000 - $FFFF: Cart ridge PRG - ROM Area

The MMU uses t he add res s fro m the CPU as an index into a lookup table, conver ts
t he add ress to a differen t for m de pen ding on which region it m a ps to, an d se ts
con trol signals (read / wri te) to various por tions of t he NES, again de pending on which

3

region the ad dress m a ps to.

Registers

The CPU has 6 8 - bit registers which it u ses for various p u r poses. They are as
follows:

PC: The 8 - bi t p rogra m coun ter, which s tores the ad dress of t he ins t ruction
curren tly being executed.

SP: The 8 - bi t s tack poin ter, which poin t s to t he bot to m of t he s tack.

X: The 8 - bit X regis ter, u sed to offse t add res ses for various add res sing m o des.

Y: The 8 - bit Y regis ter, u sed to offse t add res ses for various add res sing m o des.

A: The 8 - bit accu m ulator regis ter, u sed to perfor m m a t he matical and logical
opera tions in various ins t r uctions.

P: The 8 - bit s ta tu s regis ter, u sed to s tore various infor mation abou t t he s ta tu s
of t he p rocessor. The infor mation in t he s ta tus register is a s
follows:

Bit 7: N (set if t he resul t of the las t opera tion is negative)
Bit 6: V (set if t he resul t of t he las t opera tion overflows)
Bit 5: Unused (always re tu r ns 0 on read)
Bit 4: B (Break, indicates if a break com ma n d has been executed, causing

an IRQ interru p t)
Bit 3: D (Decimal m o de: switches t he 6502 into and ou t of BCD m o de)
Bit 2: I (Interru p t disable: m asks IRQ inter rup ts)
Bit 1: Z (set if t he result of t he las t opera tion is z e ro)
Bit 0: C (set if t he resul t of t he las t opera tion has a carry - ou t)

Interrupts

The 6502 can receive an d han dle t h ree differen t types of interru p ts: Non - Maskable
Interrup t (NMI), Maskable interru p ts (IRQ), and rese t interrup t s. They are described
below.

NMI: Non - Maskable interru p t. This interru p t is sent by the PPU to t he CPU
when the PPU enters its VBlank s tage. While t he NMI cannot be m a sked,
clearing bit 7 of PPU I /O regis ter $2000 will disable t he PPU fro m
sending an NMI to t he CPU on VBlank. When the CPU receives an NMI,
t he current s t a te is saved and execution ju m p s to t he address s pecified
by the NMI han dler ad dress. This ad dress is t he value at ad dress $FFFA

4

an d $FFFB in t he p rogra m. Execution continues t hrough the han dler
u n til an RTI (return fro m inter rup t) ins t ruction is reached, and then the
p revious s ta te of t he CPU is res tored an d execution continues.

IRQ: Maskable inter ru p t. IRQ inter rup ts are sen t to t he CPU by various
me m ory m a p pers. In ad di tion, t he BRK (break) ins t ruction will cause an
IRQ interru p t to be sen t to t he CPU. The CPU can m ask IRQ interru p t s
by se t ting the inter rup t disable flag (bit 2 of regis ter P). When an IRQ is
received, if interrup t s are no t disabled, t he CPU saves t he current s ta te
an d ju m ps to t he location s pecified by the IRQ han dler ad dress. This
add ress is t he value a t add ress $FFFE an d $FFFF in t he p rogra m.
Execution con tinues t h rough the han dler u n til an RTI is reached, and
then the p revious s ta te is res tored and execution continues as nor mal.

Reset: Reset interru p t. Reset inter rup ts are sen t to t he CPU when the syste m
firs t s tar t s and when the user p resses t he reset bu t ton on the NES. Reset
interrup t s canno t be m asked by the CPU. When a rese t interru p t is
received by the CPU, t he curren t s ta te is saved an d execution ju m p s to
t he reset han dler, s pecified by the p rogra m at location $FFFC and $FFFD.
The interru p t han dler is followed u n til an RTI ins t ruction is
reached, at which poin t t he p revious s ta te is res tored and execution
con tinues as nor mal.

Addres sing Modes

Zero Page: Zero page add res sing m o de takes a single operand which is t he
lower byte of t he ad dress. The u p per byte of t he add res s is assu me d to
be ze ro (on the ' zero page').

Indexed Zero Page (X): Indexed ze ro page X ad dressing m o de takes a single
operand which is t he lower byte of t he base ad dress. The p rovided byte
is offse t by the content s of t he X register, and the resul ting one byte
(wrapped aroun d on overflow) is t he lower byte of t he add ress. The
u p per byte of t he add ress is assu me d to be ze ro.

Indexed Zero Page (Y): Indexed zero page Y ad dressing m o de takes a single
operand which is t he lower byte of t he base ad dress. The p rovided byte
is offse t by the content s of t he Y regis ter, an d the resul ting one byte
(wrapped aroun d on overflow) is t he lower byte of t he add ress. The
u p per byte of t he add ress is assu me d to be ze ro.

Absolute: Absolu te ad dressing m o de takes two operands which for m the two
bytes of t he absolu te ad dress. Because t he 6502 is lit tle - endian, t he
lowest byte of t he add ress is p rovided firs t.

Indexed Absolu te (X): Indexed absolu te X ad dressing m o de takes two

5

operands, which for m the two bytes of t he base add ress (the firs t byte
p rovided for ms the lower byte of t he base). The base is t hen offse t by
the con ten t s of t he X regis ter to for m the ad dress (the su m wraps
aroun d on overflow).

Indexed Absolu te (Y): Indexed absolu te Y ad dressing m o de takes two
operands, which for m the two bytes of t he base add ress (the firs t byte
p rovided for ms the lower byte of t he base). The base is t hen offse t by
the con ten t s of t he Y regis ter to for m the ad dress (the s u m wraps
aroun d on overflow).

Indirect: Indirect add ressing m o de takes two operands which for m a 16 - bit
add ress. The add ress is t hen dereferenced, an d the two bytes following
the dereferenced ad dress for m the new add ress. When for ming bo th
add resses, t he firs t byte is t he byte with lowes t p riority.

Implied: Implied ad dressing m o de takes no operands. The add ress is assu me d
by the na me of t he ins t r uctions.

Accum ulator: Accu m ulator add res sing m o de takes no operan ds. Ins t ructions
u sing accu m ulator ad dressing m o de opera te directly on the accu m ulator
register.

Immedia te: Immediate addressing m o de takes one operand. Inst r uctions u sing
im mediate ad dressing m o de opera te directly on the one operan d (no
add ress is calculated).

Relative: Relative add ressing m o de takes one operand which is inter pre ted as a
signed integer in t he range - 128 to 127. This integer is u sed as an offse t
fro m the cur ren t value of t he p rogra m coun ter (after it is incre mented
following the ins t r uction) to for m the add res s. Relative addressing
m o de is u sed in branch ins t ructions.

Indexed Indirect: Indexed Indirect add res sing m o de takes a single operand
which for ms the base add ress. The con ten t s of t he X regis ter are t hen
adde d to t he base ad dres s with wraparoun d to for m the lowest byte of
t he inter mediate ad dress. The u p per byte of t he inter media te ad dress is
assu me d to be 0. The inter media te address is t hen dereferenced,
an d the two bytes im me diately following the dereferenced location for m
the lowes t an d highes t bytes of t he add res s, res pectively.

Indirect Indexed: Indirect indexed ad dressing m o de takes in a single operand
which serves as t he lowest byte of a base ad dress. The u p per byte of t he
base ad dress is assu me d to be 0. The base ad dress is t hen dereferenced,
an d the dereferenced value is offset by the conten t s of t he Y register.
The result for m s the address.

6

Instructions

There are 56 u nique ins t ructions t ha t can be executed by the CPU. They are lis ted
below:

 ADC Add Memory to Accum ulator with Carry
 AND "AND" Memory with Accu m ulator
 ASL Shift Left One Bit (Memory or Accu m ulator)

 BCC Branch on Carry Clear
 BCS Branch on Carry Set
 BEQ Branch on Result Zero
 BIT Test Bits in Memory with Accu m ulator
 BMI Branch on Result Minus
 BNE Branch on Result not Zero
 BPL Branch on Result Plus
 BRK Force Break
 BVC Branch on Overflow Clear
 BVS Branch on Overflow Set

 CLC Clear Carry Flag
 CLD Clear Decimal Mode
 CLI Clear interru p t Disable Bit
 CLV Clear Overflow Flag
 CMP Com pare Memory an d Accu m ulator
 CPX Com pare Memory and Index X
 CPY Com pare Memory an d Index Y

 DEC Decrement Memory by One
 DEX Decre ment Index X by One
 DEY Decre ment Index Y by One

 EOR "Exclusive - Or" Memory with Accum ulator

 INC Incre ment Memory by One
 INX Increment Index X by One
 INY Incre ment Index Y by One

 JMP Jum p to New Location
 JSR Jum p to New Location Saving Return Address

 LDA Load Accu m ulator with Memory
 LDX Load Index X with Memory
 LDY Load Index Y with Memory
 LSR Shift Right One Bit (Memory or Accu m ulator)

7

 NOP No Opera tion

 ORA "OR" Memory with Accum ulator

 PHA Push Accum ulator on Stack
 PHP Push Processor Status on Stack
 PLA Pull Accum ulator fro m Stack
 PLP Pull Processor Status fro m Stack

 ROL Rota te One Bit Left (Memory or Accum ulator)
 ROR Rotate One Bit Right (Memory or Accu m ulator)
 RTI Return fro m Inter rup t
 RTS Return fro m Subrou tine

 SBC Subtract Memory fro m Accu m ulator with Borrow
 SEC Set Carry Flag
 SED Set Decimal Mode
 SEI Set Interru p t Disable Status
 STA Store Accu m ulator in Memory
 STX Store Index X in Memory
 STY Store Index Y in Memory

 TAX Transfer Accu m ulator to Index X
 TAY Transfer Accum ulator to Index Y
 TSX Transfer Stack Pointer to Index X
 TXA Transfer Index X to Accu m ulator
 TXS Transfer Index X to Stack Pointer
 TYA Transfer Index Y to Accu m ulator

The PPU (2C02)

The graphics p rocessing for t he NES is han dled by the 2C02 graphics p rocessing
u nit, known as t he Picture Processing Unit (PPU). The PPU s tores infor mation abou t
t he graphics in a 16 - kilobyte me mory called VRAM. Further infor mation abou t
s p ri tes is s tored in a 256 Byte m e mory called SPR- RAM. The CPU can write to VRAM
an d SPR- RAM, as well as accessing o ther infor mation rela ting to t he PPU, t hrough
u se of an 8 Byte regis ter file, which m a p s to t he region $2000 - $2008 in t he CPU's
me m ory m a p. The registers are explained in de tail below, as well a s read / wri te
accessibility by the CPU.

PPU I /O Registers

8

$2000: PPU Control Register # 1 (Write only)
Bit 7: Enable NMI on VBlank (0 = Disabled, 1 =Enbaled)
Bit 6: PPU Master /Slave Selection (0 =Master, 1 =Slave) (Not u sed in NES)
Bit 5: Sprite Size (0 = 8x8, 1 = 8x16)
Bit 4: Backgroun d Pat tern Table Select (0 =VRAM $0000, 1 =VRAM $1000)
Bit 3: 8x8 Sprite Pat tern Table Select (0 =VRAM $0000, 1 =VRAM $1000)
Bit 2: VRAM Address Increment Amount (0 =Incre ment by 1,

1 =Incre ment by 32)
Bits 1 - 0: Name Table Scroll Address (0 - 3 =VRAM $2000, $2400, $2800,

$2C00)

Register $2000 contains various cont rol infor ma tion se t by the CPU and u sed
by the CPU.

$2001: PPU Control Register # 2 (Write Only)
Bits 7 - 5: Color Emphasis (Not u sed in em ula tor)
Bit 4: Sprite Visibility (0 =Not Displayed, 1 =Displayed)
Bit 3: Backgroun d Visibility (0 =Not Displayed, 1 =Displayed)
Bit 2: Sprite Clipping (0 =Hide in left 8 - pixel colu m n, 1 =No Clipping)
Bit 1: Backgroun d Clipping (0 =Hide in left 8 - pixel colu m n, 1 =No

Clipping)
Bit 0: Monochro me Mode (Not u sed in em ula tor)

Register $2001 contains various cont rol infor ma tion se t by the CPU and u sed
by the CPU.

$2002: PPU Status Register (Read Only)
Bit 7: VBlank Flag (0 =Rendering, 1 =VBlank)
Bit 6: Sprite 0 Hit Flag (0 =No Collision, 1 =Spri te0 /Backgroun d Collision)
Bit 5: Sprite Overflow Flag (0 = At m os t 8 s p rites, 1 =More than 8 s p ri tes

on a scanline)
Bit 4: Ignore Writes to VRAM
Bits 3 - 0: Not Used

Register $2002 contains various s ta tus infor mation se t by the PPU an d read by
the CPU. The VBlank Flag (Bit 7) is cleared when $2002 is read by the CPU.
Reading also rese ts t he 1 s t/ 2 n d write flag (see $2005 an d $2006).

$2003: SPR- RAM Address Register (Write Only)
Bits 7 - 0: Address to access in SPR- RAM

Register $2003 contains t he add ress u sed by the CPU to access SPR- RAM
d uring VBlank and u sed by the PPU to access SPR- RAM d uring ren dering.
Also contains t he ad dress in SPR- RAM to s tar t writing to d uring a DMA
opera tion. $2003 is au to ma tically incre mented every time $2004 is writ ten to
(but not when it is read fro m).

9

$2004: SPR- RAM Data Register (Read /Write)
Bits 7 - 0: Data to write to / Data read fro m SPR- RAM at ad dress s pecified by

$2003

Register $2004 contains t he da ta re tu rned fro m SPR- RAM on a read or t he
data to be writ ten to SPR- RAM on a write at t he ad dres s s pecified by $2003.
Writing to $2004 also increments t he value of $2003.

$2005: PPU Background Scrolling Offset (Write Only)
Firs t Write:
Bits 7 - 0: Horizon tal scroll index (X value 0 - 255)

Second Write:
Bits 7 - 0: Vertical scroll index (Y value 0 - 239)

Register $2005 is u sed to m o dify t he conten ts of an internal 16 - bit VRAM
address poin ter m ain tained by the regis ter file (see 'VRAM Index Pointer ' for
de tails).

$2006: VRAM Address Register (Write Only)
Bits 7 - 0: Address to access VRAM (First write is u p per 8 - bits of address,

secon d write is lower 6 bit s)

Register $2006 is u sed by the CPU to s pecify what ad dress to write to / read
from d uring VBlank.

$2007: VRAM Data Register (Read /Write)
Bits 7 - 0: Data to write to / Data read from VRAM at ad dress s pecified by

$2006

VRAM Index Pointer:
A one - bi t register is s tored in t he regis ter file to de ter mine the pari ty of a
par ticular access to regis ter $2005 and $2006. In ad dition, t he regis ter file
s tores a 16 - bi t regis ter u sed by the backgroun d ren derer to u p da te its scroll
regis ters. The for mat of t he 16 - bi t regis ter is as follows:

yyyn nYYY YYXX XXX
X: The horizon tal index of t he tile to access in VRAM (0 - 31)
Y: The ver tical index of t he tile to access in VRAM (0 - 31)
n: The horizon tal an d ver tical na me table origin (0 - 3)
y: The fine ver tical scroll offse t, s pecifies which line of t he accessed tile

to use (0 - 7)

Each write to $2005 an d $2006 u p da te t he 16 - bit regis ter, with t he value of
t he one - bi t register de ter mining how the 16 - bit regis ter is u p da ted. The

10

table below describes how the 16 - bit poin ter is u p da ted by the writes to
$2005 an d $2006:

Poin ter Bit $2005 - 1 s t

Write
$2005 - 2 n d

Write
$2006 - 1 s t

Write
$2006 - 2 n d

Write

Bit 15: - - - $2006 bit 7 -

Bit 14: y - $2005 bit 2 $2006 bit 6 -

Bit 13: y - $2005 bit 1 $2006 bit 5 -

Bit 12: y - $2005 bit 0 $2006 bit 4 -

Bit 11: n - - $2006 bit 3 -

Bit 10: n - - $2006 bit 2 -

Bit 9: Y - $2005 bit 7 $2006 bit 1 -

Bit 8: Y - $2005 bit 6 $2006 bit 0 -

Bit 7: Y - $2005 bit 5 - $2006 bit 7

Bit 6: Y - $2005 bit 4 - $2006 bit 6

Bit 5: Y - $2005 bit 3 - $2006 bit 5

Bit 4: X $2005 bit 7 - - $2006 bit 4

Bit 3: X $2005 bit 6 - - $2006 bit 3

Bit 2: X $2005 bit 5 - - $2006 bit 2

Bit 1: X $2005 bit 4 - - $2006 bit 1

Bit 0: X $2005 bit 3 - - $2006 bit 0
Table 1: VRAM Pointer Update Values

For exa m ple, on the firs t write to register $2005, t he 7 t h bit of t he value writ ten to
$2005 gets inser ted in t he VRAM pointer bi t 4, which cor respon ds to t he u p per bi t of
t he X tile index (see 'Backgroun d Rendering'). On the second write to register $2005,
t he 7 t h bit of t he value writ ten gets inser ted in t he VRAM pointer bit 9, which
correspon ds to t he u p per bit of t he Y tile index. In addition, bit s 2 - 0 of t he firs t
write to $2005 u p da te t he fine horizon tal coun ter in t he backgroun d renderer.

One other od dity of t he NES is t ha t t here is only one one - bit parity register to
de ter mine whether a regis ter is on the firs t or secon d write. As a resul t, writing to
$2005 once causes t he next write to $2006 to coun t as t he secon d write.

VRAM

The NES' graphics infor mation is s tored in a 16 - Kilobyte me mory called VRAM. the
layout of VRAM is as follows:

11

Figure 1: VRAM Memory Map

12

NES Color Bits

There are 64 NES syste m colors, s pecified by a 6 - bit value. At any given poin t in
time, s p rites an d the backgroun d can only u se a subset of t hose colors as s pecified
by their res pective palet te. The backgroun d palet te consis ts of t he 16 bytes s tar ting
a t location $3F00. Each byte - long ent ry is t he 6 - bit NES syste m color index, as well
as two bits used by the NES to s pecify t he intensi ty of t he color (these bit s are
u n used by the em ulator). The color a t location $3F00 is t he default backgroun d
color, and is mirrored a t locations $3F04, $3F08, and $3F0C. Therefore, t he
backgroun d can only u se 13 colors. The s p rite palet te consis t s of t he 16 bytes
s tar ting at location $3F10. The en t ries a t locations $3F10, $3F14, $3F18, and $3F1C
are u sed to indicate t he s p rite is invisible, so t he s p ri tes can therefore only u se 12
colors.

For any given pixel dis played on the screen, its index into t he s p ri te or backgroun d
palet te is de ter mined by a 4 - bit value. The lower 2 - bits are de ter mined by the
pa t tern tables (see 'Pat tern Tables'), and the u p per 2 - bits are de ter mined by the
a t t ribute tables (see 'Attribu te Tables').

Pattern Tables

The NES has two pa t tern tables, one a t VRAM location $0000, an d one a t VRAM
location $1000. Eeach 16 - byte en t ry into t he pa t tern table describes t he lower 2 -
bits of t he index into t he palet te table for an 8x8 pixel tile. The firs t 8 bytes contain
t he lowes t bit, and the second 8 bytes contain t he highes t bit, as s hown in an
exa m ple below:

13

Figure 2: Pat tern Table Exam ple

As show in t he exa m ple, t he u p per bit of t he color is taken fro m the secon d 8 - bytes
($0008 - $000F), and the lower bit of t he color is t aken fro m the firs t 8 bytes ($0000
- $0007). These two bi ts a re concatenated together to for m the lower two bits of t he
index into t he palet te table.

Attribute Tables

The u p per two bi ts of t he index into t he palet te tables is given by the at t ribu te
tables. There are 4 a t t ribu te tables in t he NES, one a t VRAM location $23C0, one a t
$27C0, one a t $2BC0, and one a t $2FC0. Each one - byte en t ry into t he a t t ribu te table
describes t he u p per two bi ts of t he index into t he palet te table for 16 8x8 - pixel tiles.
The lowest two bi ts a re u sed to describe t he u p per - left square of 4 tiles, t he next
two bits describe t he u p per - right square, t he t hird two bi ts describe t he lower - left
square, and the highes t two bits describe t he lower - right square.

14

Figure 3: Att ribu te Table Exam ple

In t he exa m ple above, $0 - $F each describe one 8x8 - pixel tile. If t he correspon ding
one - byte en t ry in t he a t t ribute table was 33221100 where 0, 1, 2, and 3 are arbitrary
2 - bit values, t hen $C - $F would u se 33 as t he u p per two bi ts of t he index into t he
palet te table, $8 - $B would u se 22, $4 - $7 would use 11, an d $0 - $3 would use 00.

Name Tables

Each a t t ribute table has a correspon ding na me table. The four na me tables used by
the NES are s tored a t VRAM locations $2000, $2400, $2800, an d $2C00. Each one -
byte na me table en t ry acts as an index into either pa t tern table 0 or pa t tern table 1
to s pecify which pa t tern tile is u sed for an 8x8 - pixel tile.

The NES only has s pace in its VRAM to s tore two na me tables and two at t ribu te
tables; however, it can ad dress four of each. Two na me an d at t ribu te tables are
mirror s of t he o ther two, in a m a n ner de ter mined by the type of mir roring u sed by
the game. If horizon tal mirroring is being u sed, t he firs t two na me and a t t ribute
tables are t he sa me, an d the secon d two na me and a t t ribute tables are t he sa me. If
ver tical mir roring is being u sed, na me and a t t ribu te tables one and th ree are t he
sa me, an d two an d four are t he sa me. Additionally, a game can u se 4 - way scrolling,
in which each na me table an d a t t ribute table s tores u nique infor mation. In t his case,
t he las t two na me an d at t ribu te tables are s tored in internal m e m ory on the
car t ridge.

Datapath Details

The da tapath in t he NES is broken u p into two dis tinct sections, s p rites and
backgroun d, which are joined together at t he end. The da tapath for each section is
described below.

15

Sprite Datapath

Infor ma tion abou t t he s p ri tes is s tored in SPR - RAM, a 256 - byte me mory tha t can be
writ ten to an d read fro m by the CPU d uring VBlank. Each s p rite is described by a
con tiguous 4 - byte section, for a to tal of 64 s p rites possible. The s p ri tes are s tored
in or der of p riority, s uch tha t if two s p ri tes contain overlapping non - t rans parent
sections, t he s p ri te t ha t is firs t in SPR- RAM will contain p riority over t he other. Only
8 s p ri tes can be displayed on a scanline; t he firs t 8 s p rites in SPR- RAM tha t are
de ter mined to be in range in a given scanline are used. The layout of t he s p ri tes in
SPR- RAM is described as follows:

SPR- RAM
BYTE 0: Sprite Y-Position (Minus 1)

This byte s tores t he Y-Coordinate of t he s p ri te on the screen, minus 1. The
reason one is sub t racted is so t ha t t he in - range evaluation can be sim plified,
as it ha p pens one scanline before t he s p ri te is actually rendered (see
'Rendering Details').

BYTE 1: Pat tern Table Tile Index
This byte s tores t he index into t he pa t tern tables to de ter mine the bi tma p for
t his s p rite. For 8x8 s p rites, bit s 7 - 0 de ter mine the index directly, an d bit 3 of
regis ter $2000 de ter mines which table to u se. For 8x16 s p ri tes, bit s 7 - 1
deter mine the u p per 7 bit s of t he index (both of t he pa t terns a t t ha t index are
u sed), an d bit 0 de ter mines which pa t tern table to use.

BYTE 2: Sprite Attribute Infor mation
This byte s tores various a t t ribu te infor ma tion abou t t he s p ri te, as described
below:

Bit 7: Flip Sprite Vertically (1 =Flip, 0 =Don' t flip)
Bit 6: Flip Sprite Horizon tally (1 =Flip, 0 =Don' t flip)
Bit 5: Backgroun d Priority (1 =Sprite is behind backgroun d, 0 =Spri te is in

fron t)
Bits 4 - 2: Not u sed (always 0)
Bits 1 - 0: Upper two bi ts of palet te en t ry (correspon d to a t t ribute table

infor mation)

BYTE 3: Sprite X-Position
This byte s tores t he X-Coor dinate of t he s p ri te on the screen.

During the firs t s tage of each scanline (see 'Rendering Details'), t he s p ri te
infor mation is later t ransferred into a 24 - byte internal region of te m porary s torage.
Each s p rite in t his area is described by three con tiguous bytes, for a to tal of eight
s p ri tes (correspon ding to t he 8 s p ri tes t ha t can be in range in each scanline). The
infor mation s tored for each s p rite is described as follows:

16

Sprite Tem porary Storage
BYTE 0: Pat tern Table Tile Index

This byte s tores t he index into t he pa t tern tables to de ter mine the bi tma p for
t his s p rite. This is copied directly fro m byte 1 in SPR- RAM.

BYTE 1: Sprite X-Position
This s tores t he X-Coordina te of t he s p rite on the screen. This is copied
directly fro m byte 3 in SPR- RAM.

BYTE 2: Sprite Attribute Infor mation
This s tores various a t t ribu te infor mation abou t t he s p rite. This a t t ribu te
infor mation is slightly differen t t han the a t t ribu te infor mation s tored in SPR-
RAM. It is de scribed below:

Bits 7 - 4: Lowest 8 - bits of t he in - range com parison (see 'Rendering Details')
Bit 3: Flip Sprite Horizon tally (1 =Flip, 0 =Don' t Flip)
Bit 2: Backgroun d Priority (1 =Sprite behind backgroun d, 0 =Sprite in

fron t)
Bits 1 - 0: Upper two bi ts of palet te en t ry

From the te m porary s torage, t he pa t tern is looked u p in VRAM. The ad dres s of t he
s p ri te pa t ter n in VRAM is de ter mined as follows (depending on whether s p ri te size is
8x8 or 8x16):

8x8 s p ri tes: { 1'b0, $2000.3, Tile Index [7:0], High_Bit, Range[2:0]}
8x16 s p ri tes: { 1'b0, Tile Index[0], Tile Index[7:1], High_Bit, Range[2:0]}

High_Bit is a cont rol signal fro m the FSM, which will firs t load the lowest bit of t he
palet te table index, and then the highest bit. Range correspon ds to t he difference
calculated in t he in - range evaluation unit (see 'Rendering Details').

Afterwar ds, t he pa t tern (along with t he X-Coordinate, t he a t t ribu te infor mation, an d
the p riority bit) a re t ransferred into a series of buffers which hold t he da ta u n til
rendering occurs.

Background Datapath

During the ren der period an d d u ring the backgroun d p refetch (see 'Rendering
Details'), t he backgroun d ren derer m u s t look u p firs t t he pa t ter n index in t he na me
table, t hen the a t t ribute infor mation in t he a t t ribute table, and las tly it m u s t look u p
the u p per an d lower byte describing the par ticular pa t tern tile indexed.

A series of coun ters de ter mine which index in the na me table to access in VRAM; the
following describes t he coun ters and their bit - widths:

17

FH[2:0]: The 3 - bit fine horizon tal offset u sed to de ter mine which pixel of t he
pat tern to select

FV[2:0]: The 3 - bit fine ver tical offse t used to de ter mine which line of t he
pat tern to u se

HT[4:0]: The 5 - bi t horizon tal offset use d to de ter mine which horizon tal tile to
fetch

VT[4:0]: The 5 - bi t ver tical offset u sed to de ter mine which line to fetch a tile
from

H: The 1 - bit coun ter u sed to de ter mine the lowest bi t of which na me table to
u se

V: The 1 - bit coun ter u sed to de ter mine the highes t bi t of which na me table to
u se

The ad dress looked u p in t he na me table correspon ds to t he following:

{ 2'b10, Tile index (from na me table) [7:0], High_Bit, FV[2:0]}

Because t he fetching of s p rites and backgroun d tiles occurs a t differen t times, t he
High_Bit signal can be shared between the two.

The coun ters are chained together in t he following or der: FH, H, FV, V, HT, VT. When
one rolls over to its m ax value (all ones for each coun ter excep t VT, which rolls over
a t 239), t he next one in t he lis t is incre mented. In addition, t he coun ters are u p da ted
on writes to $2006 an d $2007 by the CPU, as de ter mined by the VRAM pointer. The
'XXXXX' of t he VRAM pointer corres pon ds to t he HT coun ter, t he 'YYYYY'
correspon ds to t he VT, t he 'yyy' correspon ds to t he FV, an d the 'nn' correspon ds to
t he FV an d HV, res pectively.

After t he app ropria te byte is fetched fro m the na me table, it is s tored in an 8 - bit
register, an d the correspon ding ent ry is fetched fro m the at t ribu te table. At t his
poin t, t he VT and HT coun ters select which two bits of t he a t t ribu te byte to u se, and
the two at t ribu te bit s are s tored in a 2 - bi t regis ter. Then the two correspon ding
bytes are fetched fro m the pa t tern tables, as selected by the tile index fro m the na me
table and fro m the FV coun ter. Each of t hese pa t tern bytes are s tored in 8 - bi t
buffers. After all of t he values are fetched, t he a t t ribute bytes, along with t he two
pa t tern bytes, a re m oved to a buffer. During render, t he ap propriate bit s of t he
buffer are de ter mined by the FH coun ter, which is incre mented every ren der cycle.
When the FH coun ter reaches 7, t he next pa t terns an d at t ribu te bi ts a re loaded fro m
the registers into t he buffers to be rendered.

Rendering Details

The ren dering of each fram in t he PPU is broken u p into 261 scanlines. The firs t 20
scanlines (0 - 19) are refer red to as t he VBlank period. This is t he only time when the
CPU m ay access SPR - RAM an d VRAM. The PPU res t s d u ring this period, an d no thing

18

is ren dered on the screen. The next scanline (20) is used by the PPU to load da ta
fro m SPR- RAM into t he Sprite te m porary m e mory, and then to look u p the pa t terns
in VRAM and load the s p rite buffers so t he pixels will be available at t he s ta r t of
scanline 21. The firs t two tiles of t he backgroun d for scanline 21 are also looked u p
in scanline 21. Nothing is rendered on the screen d uring scanline 20). The following
240 scanlines (21 - 260) are u sed to actually ren der pixels to t he screen. The next
scanline (261) is t he las t scanline. During this scanline, t he PPU res t s and p repares
to en ter t he VBlank period.

Each scanline last s 341 clock cycles. The PPU m us t look u p 170 bytes in VRAM per
scanline (except for scanlines 0 - 19 which look u p no thing, scanline 20 which only
looks u p s p ri tes and 2 backgroun d tiles, an d scanline 261 which does no thing).
Since each VRAM access takes two clock cycles, t he scanlines can be evenly divided
into 171 s tages, one for each lookup plus a res t cycle a t t he end. The s tages are
described as follows:

Memory stages 1 - 128:

This is t he period d uring which the PPU is actually rendering pixels on the screen. It
las ts 256 clock cycles, d uring which one horizon tal line (256 pixels) is d rawn on the
screen. During these me m ory s tages, t he backgroun d ren derer is reading fro m
VRAM to de ter mine the na me, a t t ribute, an d pa t tern table en t ries correspon ding to
each tile on the cur ren t scanline (except t he firs t two tiles, which are fetched d u ring
s tages 161 - 168 on the p revious scanline). The ad dress into t he na me tables in
VRAM is de ter mined by a series of scroll regesters (see 'Backgroun d Datapath'
above). Once fetched, t he backgroun d da ta is s tored in t he backgroun d buffers,
where it is displayed. The fine horizon tal scroll de ter mines which pixel fro m the las t
buffer will actually be displayed on the screen.

The X-Coordinate value in t he s p rite buffers is decre mented each cycle d u ring this
p hase u n til it equals ze ro. At t his poin t, t he s p rite s tar t s displaying on the screen.

Also d u ring these s tages, t he s p ri te ren derer reads t h rough SPR- RAM to deter mine
which s p rites are in range to be d rawn d u ring the NEXT scanline. The firs t 8 s p ri tes
de ter mined to be in range are loaded into the s p ri te - te m porary me mory.

The in - range evaluation s ta r t s fro m the firs t s p ri te in SPR- RAM, and ends with t he
64 t h (each s p rite is evaluated, even af ter 8 in - range s p ri tes are found). The
evaluation of each s p ri te takes 4 cycles, corres pon ding to reading each byte in SPR-
RAM associated with t ha t s p rite. The following difference is calculated as an 'in -
range tes t ':

(Curren t_Scanline – 21) – (Sprite_Y_Coordinate + 1)

If t his value is be tween 0 and 7, t he s p ri te is de ter mined to be in - range. It is t hen
m oved into s p rite te m porary s torage, along with t he lowest four bit s of t he in - range

19

te s t difference. If t he ver tical inversion bit is set, t he lowest t h ree bit s of t his
difference are flipped to p roduce the ver tical inversion effect. The firs t 8 s p rites
de ter mined to be in range are s tored into t he me m ory a t t his poin t.

Memory stages 129 - 160:

During these s tages, t he s p rite ren derer loads t he buffers with t he bi tma p pa t tern
da ta. For each of t he 8 s p ri tes in te m porary me mory, t he ren derer firs t looks u p the
bit ma p pa t tern in VRAM using the index s tored a t t he firs t byte in te m porary
me m ory. For each s p rite, two garbage VRAM accesses occur (these ha p pen so t ha t
t he Nintendo can reuse t he har dware for t he backgroun d fetching). Then the bit map
correspon ding to t he lowest bit is fetched, and then the bit ma p corres pon ding to t he
highes t bi t is fetched. At t his poin t, ho rizon tal inversion is ap plied, an d then the
pa t terns are s tored in t he s p rite buffers along with t he a t t ribu te da ta and the p riority
bit.

Memory stages 161 - 168:

This is when the backgroun d renderer fetches t he firs t two tiles to be displayed on
the screen d uring the next scanline. It does t his so t ha t t hey can be loaded into t he
buffer an d be ready to s tar t displaying a t t he beginning of t he render pe riod. The
fetching of t hese two tiles works t he exact sa me way as it does in t he firs t 128
me m ory s tages: firs t t he na me table byte is re t rieved fro m VRAM, then the a t t ribu te
table byte, next t he pa t tern table en t ry correspon ding to t he lower bit of t he index
into t he palet te t able, an d las t t he pa t tern correspon ding to t he higher bit.

Memory stages 169 - 170:

During this s tage, t he backgroun d renderer fetches two bytes fro m the na me table.
It is unclear as to why these two bytes are fetched fro m VRAM.

After stage 170 (clock cycle 341):

After t he 170 t h me mory fetch, t he PPU res t s for one clock cycle before beginning the
next scanline.

The TNT NES Emulator

TNT Emulator Results

The original goal of t he p roject was to be able to play NES ga mes from a car t ridge
tha t connect s to t he boar d. In the end, s u p por t for car t ridges was no t able to be
adde d. In t heir place, ROMs are downloaded on to t he Desktop. These ROMS are r un
th rough a p rogra m tha t t ransla tes t he m into t he PRG - ROM and CHR - ROM sections.
The CHR - ROM an d VRAM m o d ules are t hen initialized to t he values s pecified in t he

20

files before the p roject is synthesized on to t he boar d.

In ad di tion, t he pAPU (2A03) was no t fully implemented. The following describes t he
role of the pAPU an d tea m TNT's final p rogress in t he m o d ule.

The 2A03 was t he soun d p rocessor u sed by the NES. It actually con tained the 6502
CPU, an d had a several wrap pers t ha t cont rolled various frequency genera tor s, an d
other com ponen ts. The CPU me mory add resses $4000 th rough $4020 are han dled
by the 2A03. Most of t he m sim ply con trol t he audio p rocessor, se t ting the volume,
envelope decay, frequency, d ura tion, e tc. $4014 is s pecial; it does n' t actually cont rol
t he pAPU exactly, bu t it does initiate a DMA sequence las ting 512 cycles. The pAPU
sections of t he 2A03 are also res ponsible for genera ting the level sensitive IRQ's.
Team TNT implemented the DMA engine as a m o d ule between the CPU
an d the MMU, with t he pAPU as a separa te m o d ule t ha t would be accessed via t he
MMU.
As of right now m os t of t he individual m o d ules for controlling the pAPU have been
writ ten (duty cycle genera tor, t riangle wave genera tor, envelope genera tor, frequency
sweep genera tor, timing cont rol, frequency cont rol). Missing are a rando m noise
genera tor and a decoder t ha t has so me
interes ting p roper ties. Most of t he com ponen ts haven' t been hooked u p, and they
are missing the d ual por ted ability to com m u nicate with t he CPU. After solving a
similar p roblem with t he PPU and CPU com m u nicating with each o ther, any timing
issues with t he pAPU can be solved in a relatively s mall a mou nt of time.

The NES em ulator is designed to run on the Xilinx FPGA board. As a resul t, several
com ponen t s (such as t he VGA connection) were u nique to t he em ula tor. Those
m o d ules are described below.

Emulator - Specific Modules

Clock Generation

The Xilinx boar d has one sys te m clock tha t runs a t 100 MHz. All o ther frequencies
are genera ted th rough the use of t he Digital Clock Manager (DCM) m o d ule (provided
by Xilinx for u se in XPS, ada p ted to be u sed in ISE). The various clocks u sed by the
em ulator, along with t he m e thod of genera ting the m, is lis ted below.

VGA Clock: The VGA ou t pu t is designed to run a t 25 MHz; t his is t he leas t
flexible clock in t he design of t he e m ulator. The VGA clock is
genera ted by dividing the boar d's sys te m clock by 4. The VGA
base clock then serves as t he syste m clock for t he NES (although
the NES' syte m clock ran a t only 24 MHz).

PPU Clock: The PPU clock is obtained by dividing the sys te m clock by 6,
yielding a 4.17 MHz clock. While t his is slower t han the NES' PPU

21

clock frequency of 5.1 MHz, t his is not a p roblem as t he VGA RAM
has 3 buffers to accom m o date differen t clock frequencies.

CPU Clock: The CPU clock is obtained by dividing the syste m clock by 12,
yielding a 2.53 MHz clock. This is only 2 times slower t han the
PPU, as opposed to t he 3 times slower t ha t t he 6502 clock is fro m
the 2C02 clock. This will also no t cause a p roblem; it will only
allow the CPU m ore time to write to VRAM d uring a VBlank.

VGA Output

The Xilinx boar ds are hooked u p to a 640 x 480 VGA com p u ter m o ni tor. The
m o nitor is hooked u p to a 25 MHz clock. In ad di tion to t he clock, it has 8 - bit por t s
for red, green, and blue pixel values, as well as one - bit por t s for an h - sync signal
an d a v - sync signal. During each of t he firs t 640 VGA clock cycles, the value
received by the red, green, an d blue por t s will de ter mine the pixels displayed on the
screen. After 640 cycles (correspon ding to 640 horizon tal pixels or one line), an t he
h - sync signal is as ser ted an d the red, green, and blue values m u s t be ze ro. Once the
h - sync signal goes low, t he screen s ta r t s accep ting red, green, and blue values
correspon ding to t he pixels on the next line. Once all 480 lines have been d rawn, t he
v - sync signal is asser ted. Again d uring this time, t he red, green, and blue values
m u s t be ze ro. If any of t he color values are non zero d u ring h - sync or v - sync, t he
m o nitor will not receive a video signal.

In ad di tion, t he timing of t he signals m u s t cor res pon d to a p rese t timing pa t tern.
Xilinx p rovides a m o d ule in t he XPS libraries to genera te t he correct timing signals.
Because t he m o d ule is designed for XPS, t he m o d ule was por ted fro m the XPS
libraries to work in ISE an d t rim me d to fit t he needs of t he em ulator. Most of t he
u n necessary signals were s t ripped ou t (although so me s till re main), an d the VGA
RAM m o d ule u sed by XPS was m o dified to fi t t he needs of t he em ula tor.

The VGA RAM m o d ule is implemented as a series of 256 x 240 x 6 - bit d ual - por ted
block ra ms. Each 6 - bi t en t ry corres pon ds to t he NES syste m color to be represen ted
a t t ha t location on the screen. The PPU writes to t he RAM m o d ule d u ring its render
s tage, an d af ter it ha s writ ten valid da ta to one entire buffer, t he VGA m o d ule reads
fro m tha t buffer. Because t he VGA reads quicker t han the PPU writes to t he RAM,
th ree buffers are necessary to com pletely p revent tearing. The VGA m o d ule reads
fro m one buffer behind the buffer t ha t t he PPU is writing to, so metimes ren dering
the sa me buffer twice in a row to s tay behind. When the PPU is do ne writing a
buffer, it s ta r t s writing to t he next buffer while t he VGA finishes rendering fro m its
curren t buffer, when it m oves on to t he one the PPU has jus t finished writing to.

Because t he NES graphics are a t a 256 x 240 resolu tion, each pixel is rendered 4
times to crea te a 512 x 480 resolu tion. The re maining 128 horizon tal pixels on the
screen are rendered in black, 64 before t he s tar t of t he NES screen an d 64 af ter.

22

Controller Interface

The CPU ob tains u ser inpu t infor mation by querying to me mory m a p pe d I /O por t s
(addres s locations $4016 an d $4017). To read the cont roller inpu t da ta t he CPU
m u s t firs t write a 1 an d then a 0 to t he ad dress. After t hese signals have been
asser ted t he CPU can then read the da ta back fro m the I /O por t. The da ta is
re tu rned serially with one bu t ton da ta value re tu r ned per read. The da ta is re tu rn in
t he following order: {A, B, SELECT, START, UP, DOWN, LEFT, RIGHT}.

To actually obtain t he da ta fro m the inpu t cont roller con tinually poll t he cont roller
an d s tore t he inpu t da ta in regis ters t ha t t he CPU will have access to when reading
fro m the I /O por t s. To acco m plish polling an NES con troller inpu t finite s ta te
m achine implementa tion was taken fro m a p revious mi t p roject. The source used
can be foun d a t t he following link
(ht tp: / / web.mit.edu / 6.111 /www / s2004 /PROJECTS /2 / nes.ht m). The general s ta te
p rogression fro m this source was correct bu t so me al tera tions to t he code ha d to
m a de for t he m o d ule to work for our implementa tion.

Emulator - Specific Implementation

The m ain goal when developing the NES e m ulator was to m ake it as similar as
possible to t he original NES; however, so me por tions of t he NES were either
u n docu mented or u nclear, and therefore t he em ulator differs from the original
sys te m in so me ways. Differences are lis ted in t his section.

CPU: The m ain difference be tween TNT's em ulator and the actual NES are cycle
coun ts for ins t ructions. While m os t ins t ructions m ain tain the sa me
cycle coun ts as t he original sys te m there are a few which do m a tch the
s pecified cycle coun t. As with m os t dis parities in t he em ulator
implementa tion, given m ore time the t hese discrepancies could easily be
re moved.

PPU: The em ula tor' s PPU follows docu mented da tapa th fairly closely. Some
fea tu res were o mit ted to allow time to get a sim ple ROM working. Most
no table, s p ri te 0 hi t de tection an d so me of t he me mory mirroring was
no t imple mented.

Final Scope: Due to time cons t rain t s t he final em ulator imple menta tion lacked
soun d capability an d the game car t ridge interface. The em ulator can
however run downloaded game ROMs in t he .NES for mat. A graphics
de mo an d a m a ze game were successfully downloaded and ran on the
em ulator. Further ga me ROM tes ting was not com pleted d ue to lack of
time.

NES Emulation Advice

23

The two m os t difficult pa r t s of crea ting a ha r dware em ula tor of t he NES are
u n ders tanding how the NES works and tes ting the pieces of t he em ulator. Before
s tar ting to crea te an em ula tor, it is impor tan t to have thoroughly read th rough and
u n ders tood as m uch docu menta tion abou t t he NES as possible. It is also helpful to
no tice where discrepancies exist in various docu men ta tions; t ha t way, when creating
the em ulator, t he designer can be min dful as to what m ay or m ay no t be correct.

It is not vital to com pletely u n ders tan d everything abou t t he NES before s tar ting to
write the em ula tor; because the original NES was designed for perfor ma nce, t here are
m a ny hacks t ha t will no t m ake sense un til t he em ulator designer has got ten to a
par ticular poin t in t he em ulator design. It is however impor tan t to u n ders tan d a t a
higher level how the NES is p u t together, t he com ponen ts involved and how they
interface with one ano ther.

When tes ting the various com ponen ts of t he NES, it is a good idea to t horoughly tes t
each com ponen t alone and to be confident t ha t each com ponen t works before
s tar ting to integra te t he various com ponen ts. Sufficien t time should be left for
integra tion; once t he PPU an d the CPU are com m u nicating th rough the PPU's I /O
registers, it is very likely t ha t t here will be m a ny bugs tha t were no t foun d d u ring
u nit tes ting.

There were several pieces of infor mation tha t beca me apparen t t h roughou t t he
course of t he p roject. Among the m are:

- Synthesis is no t simulation. Often times, a pa r ticular com ponen t will
sim ula te p ro perly and will ap pear to work on ModelSim. Unfortunately,
t his does no t mean tha t it will synthesize correctly. Further more, even if
it does synthesize correctly, it is not necessarily t r ue t ha t it will pe rfor m
the sa me before an d af ter synthesis. Therefore, it is impor tan t to tes t
t horoughly af ter syn thesis to ensure t ha t t he com ponen ts are fi t ting
together correctly. In ad dition, t he XST syn thesizer will a t te m p t to
op timize away par t s of t he design tha t are u nnecessary. Therefore,
when tes ting an individual m o d ule with a s t ub to sim ula te t he res t of t he
design, t he s tub will of ten be op timized away an d this will so metimes
cause t he appearance of t he design tha t is being tes ted no t working. The
lesson to be learned is t ha t synthesis can change m a ny par t s of a design,
an d it is impor tan t to read the synthesis repor t to u n ders tand what
exactly it is doing.

- Read the docu men ta tion carefully. In m a ny cases, especially in t he PPU, t he
functionality of t he NES (or em ula tor) depends on a s mall de tail of t he
design tha t could easily be misun ders tood or even ignored. Reading
m a ny different docu ment s allows the e m ula tor's designer to ca tch as
m a ny of t hese details as possible. While designing, docu me nta tion
s hould be referred to of ten.

24

- Read the XST syn thesis docu menta tion. There is a very good docu ment
describing synthesis in XST. The m os t impor tan t pa r t of t he docu ment
is t he por tion tha t describes how to design for t he synthesizer.
Par ticularly, RAMs and FSMs s hould be designed in a m a n ner s uch tha t
t he synthesizer will recognize t he m an d synthesize t he m in an op timal
fashion.

Individual Thoughts

Michael Bailey (mbailey)

The NES project was a very interes ting an d very fun p roject. For t his p roject I
worked p rimarily on the PPU. Dave and I co - wrote t he entire PPU da tapath and
con trol over t he firs t half of t he se mes ter. To accom plish t his, we s pen t a significant
por tion of time sif ting th rough docu menta tion an d t rying to un ders tand all of t he
me m ory op timizations t he NES sys te m used. Once we com pleted this por tion of t he
p roject, I began working on the cont roller interface an d the PPU /CPU interface. The
con troller took about a week to get working. This was m os tly d ue to using a broken
con troller a t t he beginning of tes ting. The PPU - CPU I /O interface took abou t t he
sa me a mou nt of time. It was difficult a t firs t m a naging the interface with two clocks,
bu t eventually everything was debugged and working p roperly. After t hese tasks
were com pleted, we began overall integra tion. I worked with archi debugging so me
to t he interr up t functionality of t he CPU and then finally debugging the PPU. This
took lots of time es pecially since synthesis took close to twenty minu tes pe r t ry.
Early in t he se mes ter I worked abou t 10 to 20 hours pe r week on the p roject and in
t he las t m o nt h I p u t in abou t 60 hours per week. Also af ter t he p ublic Demo Dave
an d I p u t in abou t 20 hours wor th of work to get t he ROMs to actually work. Not all
of t his time was s pen t working however since syn thesis took so long.

I t hink the class was se t u p very well and the TAs were especially helpful. My only
regre t was no t knowing enough abou t t he FPGA boar d when s pecifying our initial
design. If we would have s pecified our RAM m o d ules to ta rget the block RAMs fro m
the beginning of t he p roject, we would have ha d m uch less to debug an d would have
been able to de mo bet ter ga mes. However, d ue to t his lack of foresight, we
scra mbled over t he las t t h ree weeks to tweak all of our m o d ules and timings so we
could u tilize t he block RAMs and no jus t t he logic fabric. This was a t ra mendous
se tback, an d m a de the firs t half of se mes ters work u seless.

The only change I would s uggest is m aybe a lecture dedica ted to verilog design
s pecific to t he FPGA where FSM and RAM design is discussed. This m ay no t be
necessary for m os t groups, bu t any group u sing ISE would find this infor mation very
helpful. Having this knowledge early in t he se mes ter would have been invaluable.

David Mohne y (dmohne y)

25

Before taking this course, I had very lit tle (240 level) experience with synthesizable
verilog. Because our p roject was implemented largely in Verilog, t he course helped
me gras p the difference between sim ulatable verilog and synthesizable verilog.

From the s ta r t of t he se mes ter, tea m TNT s plit u p into t he PPU tea m, which I was a
par t of, and the CPU tea m, which I was no t. Michael an d I worked together in
implementing the PPU. The firs t approximately third of t he class was s pen t get ting
u sed to how the PPU works, and reading th rough various differen t docu menta tions
an d no ting discrepancies in t he m. Once we actually s tar ted coding the PPU, t hings
went p re t ty quickly. Both Michael and I worked on m os t com ponen t s of t he PPU
together, an d s pen t a few hours per week th roughou t t he beginning of t he se mes ter.
Star ting abou t a week or two before Thanksgiving break, we s tar ted s pen ding
considerably m ore time in lab, p ulling the occasional all - nighter working on various
par t s of t he PPU. I t hen s tar ted working on the VGA ou tp u t while Michael s tar ted
working on the con trollers and the PPU IO registers. During the las t week of t he
p roject, t he PPU an d CPU tea ms worked together to a t te m p t to integra te t he PPU and
CPU together, an d to debug the various p roblems we encoun tered d uring integra tion.
The tea m s pen t m os t of t he en tire week in lab d uring this week. In t he week
following the de mo (during which we did no t de mo because our p roject was broken),
Michael an d I continued to work on the p roject to get ROMs to work. In t he final
couple of days, Michael continued to debug the PPU while I com piled the final repor t
an d crea ted the tea m's website.

This class was a very posi tive experience for me an d int roduced me to t he exciting
field of FPGA design. If I ha d the se mes ter to do over again, t here is absolu tely
no thing tha t I would change.

Archi Agarwal (archia)

I ha d a good learning experience with t his p roject. I took this course so as to
improve my verilog coding skills. I ha d done verilog coding before bu t t his was t he
firs t time I was doing a big p roject in verilog. But soon I realized tha t t here was
m uch m ore in t his p roject t han jus t verilog coding. This class was good an d
introd uced m e to FPGA concept s and also com pu ter archi tecture.

My tea m m ate Marty helped m e a lot with Verilog coding. Initially we discussed the
s ta te diagra m of t he en tire CPU. The docu ment p rovided on 6502 on web is of
im mense help. I initially wrote the verilog code for ALU and tes ted it by simula ting
on Modelsim an d writing s mall tes t benches in m achine code. After ALU, I s t ar ted
with CPU. Star ting with 140 s ta tes we finally reached 25 s ta tes an d in t his Marty was
of grea t help to me. I sim ulated the whole CPU and initially tes ted each add ressing
m o de an d each ins t r uction separa tely. After t ha t I wrote s mall tes t cases like
genera ting m ul tiple of 2 or genera ting a pa r ticular sequence of n u m bers and tes ted
t he CPU agains t t hese tes t benches. Initially I s tar ted by working a couple of hours
per day. However t his was my firs t experience of verilog coding on s uch a big p roject
so I ha d to work nearly 6 - 7 hours everyday. It took m e a long time to figure out even

26

s mall p roblems. I believe my verilog coding has improved a lot over t his se mes ter.

Then I s t ar ted working on inter rup t s. I wrote verilog for IRQs an d NMI interru p t s an d
sim ula ted the code u sing Modelsim and wrote a tes tbench for it. I also helped a bi t in
t he integration of CPU an d PPU working m ainly on the CPU par t, debugging u sing
m o delsim. At t he las t m o me nt CPU verilog was changed by Marty so as to fix t he
timing p roblem an d I tes ted it agains t s mall tes tcases. I do wish I knew how to u se
Xilinx FPGA before. Since I had never worked on FPGA, I could no t work m uch on the
boar d. However Marty, David and Michael helped m e a lot in u n ders tanding the
working of boar d an d I a m thankful to t he m for t ha t. I also wish we ha d labs t ha t
gave de mo as to u se ISE. After doing almos t all labs we ha d to learn ISE on our own.

Martin Rosenberg (mjrosenb)

For t he 18 - 545 grou p this se mes ter, I was on the sub tea m that crea ted the 6502
p rocessor. The 6502 was firs t crea ted in t he late 1970's. As s uch, t hey did a large
n u m ber of t hings t ha t p robably haven' t been done since t he mid 1980's. Initially our
s ub - tea m divided the p rocessor into th ree m ain com ponen t s, a decoder, an ALU, an d
a fs m / d a tapat h. I s pen t abou t two days t ranslating a .GIF of t he ISA into a decoder
t ha t was woefully incom plete. After t his, a rchi an d I s pen t a few days a t te m p ting to
get a general overview of how we were going to crea te t he p rocessor. This p resen ted
so me interes ting challenges, because t he CPU ha d no t only an ISA tha t we ha d to
follow, bu t it also ha d a timing res t rictions. Since t he p rocessor isn' t a MIPS s tyle
p rocessor t ha t has limited ad dres sing m o des, it was kind of obvious t ha t we needed
to have a FSM & da ta pa th as op posed to the single cycle p rocessor t ha t is crea ted in
18 - 447 tha t ha s no internal s t a te t ha t isn' t visible to t he p rogra m mer. Never having
crea ted s uch a p rocessor before, I was at a bi t of a loss as how to go abou t designing
a da tapath and FSM. I t ried designing a da ta pa th firs t, t hen m ake an FSM using the
da tapa th. There were so me issues related to no t having enough of t he da ta pa th to
u se in t he FSM, or no t being able to meet timing res t rictions with t he FSM. In t he
end, we op ted to write all of t he opera tions in a RTL for m explicitly s pecifing a
n u m ber of te m porary regis ters, t hen deriving an FSM fro m the lis t of all ins t ructions,
an d the da tapa th from the se t of opera tions t ha t were being done. There were a
bunch of ins tances where in or der to m ake our work easier, we didn' t t ry to op timize
our design, and u sed 3 adders when 1 would have been s ufficient. The p rimary goal
was to get each ins t ruction to run in an equal n u m ber of cycles if no t lower. The
though p rocess behine t his was t ha t we could always add a few cycles of 'do no thing'
to t he p rocessor. Initially, we ha d designed the p rocessor to have ze ro cycle m e m ory
access time, which in reality jus t m ean t t ha t it would take any a mou nt of time less
t han a cycle. Based on las t year's group u sing DDR me mory, I t hought t ha t t his was
acceptable. It wasn' t u n til a while later t ha t we were able to figure ou t how to m ake
everything work with a combination of p re - fetching an d ad ding no ps into t he
FSM. After t he CPU ha d passed a s ui te of te s t s t ha t we wrote, I fixed the CPU so tha t
it could work on both m o delsim and on xilinx. The fun s tep was ad ding in a m e m ory
m a p per so t ha t t he CPU though t it was always talking directly to a bank of RAM,
when in fact depending on the ad dresses, it would talk to RAM, ROM, the PPU, or

27

other m e mory m a p pe d registers. Since Archi didn' t have a large a moun t of
experience writing verilog, I let he r do m os t of t he tes ting, while I con tinued to
implement new ins t ructions (I also p rocras tina ted on writing both BRK an d RTI
[retur n fro m interru p t]). The NMI and IRQ lines were a bi t of a hack a t t he end,
where ra ther t han latching the next ins t r uction and s ta te, I'll replace t ha t with t he
mid dle of t he BRK inst ruction, an d ju m p into t he apropria te s ta te, ra ther t han ever
en tering the decode s ta te. After t he CPU was m oved on to t he FPGA, I focused
p rimarialy on debugging. I foun d tha t d ue to the lack of a t radi tional FSM, and
da tapa th, it was easy to m ake changes to it 's s t r uc tu re. There were rela tively few
bugs adde d in by the switch fro m DDR to t ra ditional RAM. I s pen t a decent a mou nt
of t he time d u ring the se mes ter jus t m aking various s mall m o d ules, s uch as the
clock m o d ules, t he interconnects, and refor ma t ting the top m o d ule into a m ore sane
for ma t. Unfortuna tely, t here were a few weeks where I wasn' t able to do any work
(family emergencies, job interviews, m ore job interviews, and so me com p u ter
p roblems). For t he las t day or two, t here was no thing no ticably wrong with t he
p rocessor, and I felt t ha t I was at a bit of a loss to help with t he PPU. There were
several times t hroughou t t he se mes ter t ha t I was too tired to reliably work on the
cpu, so I s tar ted writing the APU. I had all of t he basic code for t he APU, however
t here were so me interes ting timing issues tha t existed with t he audio p rocessor. The
syste m clock ran several tim mes fas ter t han so me of t he internals of t he audio, yet
t here were registers t ha t needed to be writ ten to by both t he audio p rocessor and the
CPU. At t his poin t, I t hink it would take me a couple of days to com plete t he APU
an d integra te it in to t he res t of t he NES.

28

